用户名: 密码: 验证码:
镁合金及镁铝异种金属胶焊技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着轻量化目标的提出,镁、铝等轻合金得到了越来越广泛的应用。由于镁、铝合金的大范围应用和交叉使用,镁合金之间以及镁/铝异种金属之间的连接不可避免。特别是在航空航天、高铁船运等领域,已经对镁合金、铝合金同质及异质金属连接结构提出了迫切需求,并且要求连接结构具有高稳定性和高可靠性。因此,研究和开发新型连接工艺技术,以实现镁合金同质以及镁/铝异质金属之间的高强度可靠连接成为目前国内外研究的热点问题。
     本文采用新型连接方法-胶焊技术,对镁合金及镁/铝异种金属的连接进行了研究。胶焊技术是一种集成焊接和胶接两种方法优点的新型连接技术,具有应力分布均匀、动/静载强度高、剥离性能好等一系列优点,可实现同种及异种金属之间的稳定、可靠连接。本文利用激光胶接焊技术对镁合金进行了连接,有效的提高了接头的失效载荷;从胶层面积和焊缝方向两方面入手,对胶层与焊缝的力学协同作用机制进行了分析;研究了胶焊过程中出现的物理现象,揭示了胶黏剂与热源、材料三者之间相互作用机制:将激光胶接焊技术应用到镁/铝异种金属的连接中,研究了胶层对焊缝微观组织以及力学性能的影响机制;首次提出熔化极电弧(MIG)胶接点焊新工艺,进一步提高了镁/铝连接接头的可靠性,分析了金属间化合物对试件力学性能的影响机制。本文主要研究内容及结论如下:
     (1)研究了镁合金激光胶接焊接头的微观组织及力学性能,并与镁合金激光搭接焊接头、胶接接头进行了对比分析。研究结果显示焊缝内部晶粒与母材相比发生了细化,当热输入较大时熔合线附近形成半熔化区。镁合金激光胶接焊技术通过焊缝与胶层的复合作用,实现了二者的优势互补。力学性能测试结果显示:在本试验条件下,与激光焊接相比,胶焊试件拉伸剪切失效载荷可以提高150%以上,而剥离失效载荷达到胶接的160%,弥补了激光搭接焊接头拉伸剪切失效载荷低,胶接接头剥离性能差的缺点。
     (2)研究了不同胶层面积以及焊缝方向对镁合金激光胶接焊接头力学性能的影响,揭示了焊缝与胶层的力学协同作用机制。激光胶接焊接头中,胶层的存在可以减小试件拉伸过程中载荷力矩偏心对焊接接头的影响,舒缓接头内部应力集中,降低焊缝边缘撕裂应力;纵向焊缝激光胶接焊接头中,胶层可以阻碍焊缝裂纹的迅速扩展,使接头同时具有较大的剥离失效载荷和剥离位移,剥离吸收功提高50%以上。焊缝的存在可以阻止胶层受载过程中间隙的产生,阻碍胶层搭接边缘及内部的裂纹扩展,增加接头剥离阻抗,抵消剥离应力对搭接边缘胶层的影响。通过胶层与焊缝受载时的协同作用提升了接头的力学性能。
     (3)研究了胶焊过程中胶层-热源-材料三者的相互作用机制。胶层在焊接热源作用下受热分解气化,使熔池结构发生改变,减小了激光脉冲作用点处上层板材厚度,降低了激光穿过上板时的能量损失,剩余的高能量密度激光可在下板形成更大熔深;胶层分解的气体迅速膨胀并逸出熔池,从而对下板熔池产生强烈反冲作用力,促进下板焊接匙孔的形成;胶层分解逸出的气体可以改变焊接等离子体的运动路径,削弱了等离子体对激光能量的吸收和散焦作用。综上,胶层的存在使得焊接熔深及熔宽增加,与单独的激光搭接焊相比,激光胶接焊下板焊接熔深增加150%以上。
     (4)研究了镁/铝异种金属激光胶接焊接头特征,揭示了胶层对微观组织以及力学性能影响机制。对间隙胶焊(激光作用处无胶黏剂)和透胶胶焊(激光作用处涂覆胶黏剂)两种胶接焊技术所得到接头的微观组织进行对比分析,结果表明:间隙胶焊接头中金属间化合物层在焊缝边缘生成;透胶胶焊接头中金属间化合物层主要分布在气孔下方的镁/铝熔池中。力学性能分析结果显示:胶焊接头中焊缝边缘为应力集中部位,焊缝从焊缝边角处起裂并沿镁侧焊缝边缘扩展断裂。间隙胶焊接头从焊缝边角处的金属间化合物层起裂,而透胶胶焊接头从焊缝边角处的以a-Mg为主的富镁组织起裂,胶层的加入改变了接头应力集中位置的组织形态,提高了试件的力学性能。
     (5)提出了MIG胶接点焊新工艺,对接头的微观组织以及力学性能进行了研究。微观组织研究结果显示,接头中金属间化合物以两种方式存在:在焊点内部,网状Mg2A13与α-A1形成枝晶组织;在熔合线附近,Mg2A13与Mg17A112混合形成厚度为30-60μm的金属间化合物层。MIG胶接点焊技术实现了焊接与胶接优势互补,接头获得了相比于单独点焊更高的拉伸剪切失效载荷(提高200%以上)及比胶接更高的剥离性能(提高75%)。而且,MIG胶接点焊中焊点的剪切强度(130MPa)远高于激光焊接的剪切强度(30MPa),接头中金属间化合物层平面处于非应力集中位置,主要受到垂直于其平面的正应力作用,并且变形受到焊点与母材的限制,从而降低了金属间化合物对力学性能的影响。综上,采用MIG胶接点焊技术实现了镁/铝异种金属的优质可靠连接。
Weld bonding is an advanced hybrid joining technology which combines welding with adhesive bonding. Weld bonding can offer many benefits of both welding and adhesive bonding:increased in-plane tensile shear and/or compressive buckling load-carrying capability, enhanced out-of-plane load-carrying capability compared to adhesive bonding only, improved load and stress distribution (uniformity) compared to welding alone, and so on. Hence, this technology has been used in many industries such as spaceflight and automobiles. Many weld bonding technologies has been investigated by researchers, including laser weld bonding, plasma weld bonding, resistance spot weld bonding and YAG laser-tungsten inert gas hybrid weld bonding. The research on these technologies most focues on the mechanical property tests and numerical simulation, but only a few work of joint structure desion and the influence of the adhesive on the welding have been reported.
     Thus, laser weld bonding and MIG spot weld bonding processes are carried out in this paper, and they are used to join Mg alloy to Mg alloy and Mg alloy to Al alloy. In this paper, through anylizing the stress distributing, the joint structure is optimized, so that the mechanical properties improved. The influence of the adhesive on the molten pool structures and laser induced plasma have been anylized to ensure the interaction of the adhesive and the welding process.Laser weld bonding is applied in joining Mg alloy to Al alloy, and the influence of the adhesive on the microstructures and the mechanical properties are discussed. MIG spot weld bonding is novelly carried out to joining Mg to Al, and the influence of the intermetallic phases on the mechanical properties are researched. The main research contents are as follows:
     1. In overlap laser welding, the joint fractures at the interface between the sheets, and maximum shear strength can reach 85% of that of the base metal. Off-center moment during tensile shear test can lead to the strength loss, and the weld edge can also influence the strength as a cracking source. Adhesive bonded joint can offer high tensile shear failure force but low peel strength. Laser weld bonded joint offers higher tensile shear failure force than either laser welded joint or adhesive bonded joint, and the improved failure load is due to combined contribution of the weld seam and the adhesive.
     2. The weld seam can block the adhesive crack propagation, and the adhesive improves the stress distribution, so they can offer synergistic effect. LWB-PA joint offers better performance than LWB-PE joint. This is because the weld seam can increase the peel resistance at the free end of the adhesive bonded part, where a stress concentration exists. Maximum T-peel strengths of LWB joints depend on the laser seam weld. The LWB-PA joint has both the advantages of maximum failure force caused by laser weld and the peel displacement caused by adhesive, so a synergistic effect is obtained in energy absorption.
     3. Compared with the partial penetration of 2.1mm in laser welding of magnesium direct, a total penetration of 3.0mm can be obtained in laser weld bonding. The adhesive-induced gas caused by the former pulses can make the upper sheet thinner where the next laser pulses interact with the material, so the molten pool structure is changed. This new molten pool structure can result in less energy required for laser keyhole through the upper sheet, so that the surface power density of the lower sheet can be high enough to form keyholes, leading to deeper penetration. The simulation comparison experiments can indirectly verify that this molten pool structure variance can help penetration increase. In LWB, the adhesive between the sheets can generates a mass of gas in front of the keyhole, and when the gas expands and escapes rapidly from the fusion zone, high recoil pressure can be exerted to influence welding process. Compared with the recoil pressure only caused by the evaporation of the target material in laser welding direct, the additional recoil pressure caused by the adhesive-induced gas can enhance the recoil pressure to the lower sheet molten pool to help the depth of melting increase. the adhesive-induced gas in front of the keyhole can influence the plasma behaviors, and the change the plasma traveling direction, and as a result the plasma absorption effect to laser reduces.
     4. Adhesive can influence the elements distribution. When laser does not interact with adhesive in LWB through gap, intermetallic phase layers form at the weld edge. But the intermetallic phase layers only form in the Al side fusion zone after adhesive is added where laser radiation is incident in LWB through adhesive. Adhesive bonding can change the fracture mode. In laser welding the joint fractures at the Mg-Al interface in the Al side, but in LWB, adhesive bonding changes the mechanics characteristic so that the joint fractures in Mg side, and the fracture mode also changes from brittle fracture to mixture fracture.Adhesive can influence microstructures at the fracture source. LWB through adhesive can show higher strength than LWB through gap. In LWB through adhesive the adhesive-induced gas can prevent mixing of Mg and Al at the weld edge, so that the microstructures at the fracture source are Mg-rich structures, which can give much better performance than intermetallic phase layers in LWB through gap.
     5. Intermetallic phases are formed in two forms by MIG spot welding:network Al3Mg2 surrounding the a-Al dendritic in the fusion zone and interlayer of Al12g2 and Al12Mg17 at the fusion line. In tensile shear test, the MIG spot welded joint fractures in the region of Al-rich dendritics in the FZ, and the shear strength is determined by the content of Al3Mg2 and maximum shear strength can reach 130 MPa,.Increased heat input can result in large amount of Al3Mg2 in the FZ and deteriorate the shear strength. Adhesive can help increase the failure force of the joint. IMPs can significantly influence the peel strength of the joint. When small amount of network IMPs in the FZ are formed, the joint fractures in the interlay er of IMPs, leading to a relatively high failure force. Severe formation of network IMPs in the FZ can result in the interfacial fracture with a low failure force. The MIG spot welded joint offers low torsion strength, because high shear stress is loaded on the interlayer of IMPs. Adhesive can be added to increase in-plane load-carrying capability in MIG spot weld bonding.
引文
[1]曾荣昌,柯黎明,徐永波.Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [2]Robert E. Magnesium Alloys and Their Applications [J]. Light Metal Age,2001:54-58.
    [3]翟春泉,曾小勤,丁文江,王渠东,吕宜振,徐小平.镁合金的开发与应用[J].机械工程材料,2001(25):6-10.
    [4]耿浩然,滕新营,王艳,王桂青.铸造铝、镁合金[M].北京:化学工业出版社,2007.
    [5]黎梅.AM60镁合金焊接工艺及组织性能研究[D].长沙:湖南大学,2006.
    [6]余琨,黎文献,王日初.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13:277-288.
    [7]吉泽升.日本镁合金研究进展及新技术[J].中国有色金属学报,2004,14:1977-1984.
    [8]Liu L, Dong D. Gas tungsten-arc filler welding of AZ31 magnesium alloy [J].Materials Letters,60:2194-2197.
    [9]慕伟.AZ31镁合金焊接接头疲劳性能及改善方法研究.太原:太原理工大学,2007.
    [10]Tianping Zhua, Zhan W. Chenb, Wei Gaoa. Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy [J]. Materials Science and Engineering A, 2006,416:246-252.
    [11]Jun Shena, Guoqiang Youa, Siyuan Longa, Fusheng Panb. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy [J].Materials characterization,2008,59:1059-1065.
    [12]Dong Min, Jun Shen, Shiqiang Lai, Jie Chen. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates [J].Materials characterization,2009,60:1583-1590.
    [13]A. Munitz, C. Cotler, A. Stern, G. Kohn. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates [J]. Materials Science and Engineering A,2001,302:68-73.
    [14]Tianping Zhua, Zhan W. Chenb, Wei Gaoa. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy [J].Materials characterization,2008,59:1550-1558.
    [15]LM Liu, ZD Zhang, G. Song, L. Wang. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy [J]. Mtallurgical and materials transactions A,38:2007-649.
    [16]Liming Liu, Zhaodong Zhang, Gang Song and Yong Shen. Effect of Cadmium Chloride Flux in Active Flux TIG Welding of Magnesium Alloys [J]. Materials Transactions,47:446-449.
    [17]ZD. Zhang, LM. Liu, Y. Shen, L. Wang. Welding of magnesium alloys with activating flux [J]. Science and Technology of Welding and Joining,2005,10:737-743.
    [18]LM. Liu, DH. Cai, ZD. Zhang. Magnesium alloy weld using manganese chloride coated wire [J]. Science and Technology of Welding and Joining,2008,57:44-48.
    [19]LM. Liu, DH. Cai, ZD. Zhang. Gas tungsten arc welding of magnesium alloy using activated flux-coated wire [J]. Scripta Materialia,2007,57:695-698.
    [20]M. Rethmeier and S. Wiesner. Characteristic features of MIG welding of magnesium alloys [J]. Zeitschrift fur Metallkunde,2001,3:281-285.
    [21]H. Wohlfahrt, M. Rethmeier, Brunswick and Belkacem Bouaifi. Metal-inert gas welding of magnesium alloys [J]. Welding and Cutting,2003,55:80-84.
    [22]M. Rethmeier, B. Kleinpeter, H. Wohlfahrt. MIG welding off magnesium alloys metallographic aspects [J]. Welding In The World,2004,48:28-33.
    [23]王鹏.镁合金MIG焊焊接工艺研究[D].大连,大连理工大学,2010.
    [24]YJ. Quan, ZH. Chen, XS. Gong, ZH. Yu, C02 laser beam welding of dissimilar magnesium-based alloys [J] Materials Science and Engineering A,2008,496:45-51.
    [25]YJ. Quan, ZH. Chen, XS. Gong, Z. H. Yu. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31 [J]. Materials characterization,2008,59:1491-1479.
    [26]Pawel Kolodziejczaka, Wojciech Kalitab. Properties of C02 laser-welded butt joints of dissimilar magnesium alloys [J]. journal of materials processing technology, 2009,209:1122-1128.
    [27]Yajie Quan, Zhenhua Chen, Zhaohui Yu, Xiaosan Gong, Mei Li. Characteristics of laser welded wrought Mg-Al-Mn alloy [J]. Materials characterization,2008,59:1799-1804.
    [28]HY Wang, ZJ Li. Investigation of laser beam welding process of az61 magnesium-based alloy [J]. Acts Metall. Sin,,2008,19:287-294.
    [29]ZH. Yu, HG. Yan, XS. Gong, YJ. Quan, JH. Chen, Q. Chen. Microstructure and mechanical properties of laser welded wrought ZK21 magnesium alloy [J]. Materials Science and Engineering A,2009,523:220-225.
    [30]Kamel Abderrazak, Wacef Ben Salem, Hatem Mhiri, Georges Lepalec, Michel Autri. Modeling of C02 laser welding of magnesium alloys [J]. Optics & Laser Technology, 2008,40:581-588.
    [31]A. Kouadri, L. Barrallier. Texture characterisation of hexagonal metals:Magnesium AZ91 alloy welded by laser processing [J]. Materials Science and Engineering A, 2006,429:11-17
    [32]王红英,李志军.AZ61镁合金C02激光焊接工艺[J].焊接,2006,1:46-48.
    [33]王红英,李志军.AZ61镁合金激光焊接接头的组织与性能[J].中国有色金属学报,2006,16:1388-1393
    [34]Weisheit A, Galun R., Mordike B. L. C02 laser beam welding of magnesium-based alloys [J]. Welding journal,1998,77:149-154
    [35]Kamel Abderrazak, Wacef Ben Salem, HatemMhiri, Philippe Bournot, Michel Autric. Nd:YAG Laser Welding of AZ91 Magnesium Alloy for Aerospace Industries [J].Metallurgical and Materials Transactions B,2009,40B:54-61.
    [36]Lung Kwang Pan, Che Chung Wang, Ying Ching Hsiao, Kye Chyn Ho. Optimization of Nd:YAG laser welding onto magnesium alloy via Taguchi analysis [J]. Optics & Laser Technology 2004,37:33-42.
    [37]RS. Coelho, A. Kostka, H. Pinto, S. Riekehr, M. Kocak, A. R. Pyzalla. Microstructure and mechanical properties of magnesium alloy AZ31B laser beam welds [J]. Materials Science and Engineering A,2008,485:20-30.
    [38]X. Cao, M. Xiao, M. Jahazi, J. P. Immarigeon. Continuous Wave ND:YAG Laser Welding of Sand-Cast ZE41A-T5 Magnesium Alloys [J]. Materials and Manufacturing Processes, 2005,20:987-1004.
    [39]H. Kazzaz, M. Medraj, X. Cao, M. Jahazi. Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy:Modeling and experimental investigations [J]. Materials Chemistry and Physics,2008,109:61-76.
    [40]M. Bobby Kannan, W. Dietzel, C. Blawert, S. Riekehr, M. Kocak. Stress corrosion cracking behavior of Nd:YAG laser butt welded AZ31 Mg sheet [J]. Materials Science and Engineering A,2007,444:220-226.
    [41]Taichi Murakamia, Takuya Tsumura, Teruyuki Ikeda, Hideo Nakajima, Kazuhiro Nakata. Anisotropic fusion profile and joint strength of lotus-type porous magnesium by laser welding [J]. Materials Science and Engineering A,2007,456:278-285.
    [42]苗玉刚,刘黎明,赵杰等.变形镁合金熔焊接头组织特征分析[J].焊接学报,2003,24(2):63-66.
    [43]Liu Li-ming, Miao Yu-gang, Song Gang, et al. Effect of Heat Input on Microstructure and Properties of Welded Joint in Magnesium Alloy [J]. The Chinese Journal of Nonferrous Metals,2004,14:1-5.
    [44]刘黎明,苗玉刚.镁合金焊接技术探索[C].汽车焊接国际论坛,2003,11:232-236.
    [45]赵旭,宋刚,刘黎明.镁和钢异种金属熔焊接头微观组织分析 [J].焊接学报,2006,27(12):53-56.
    [46]柳绪静,刘黎明,王恒,宋刚.镁铝异种金属激光-TIG复合热源焊焊接性分析[J].焊接学报,2005,26(8):31-34.
    [47]Liming Liu, Zhaodong Zhang, Song, G. Mechanism and microstructure of oxide fluxes for Gas tungsten Arc welding of magnesium alloy [J]. Metallurgical and Materials Transactions A.2007,38:649-658.
    [48]Liu, Liming, Song, Gang, Liang, Guoli, Wang, Jifeng. Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B-Mechanism and remedy [J]. Materials Science and Engineering A.2005,390:76-80.
    [49]Xinfeng Hao, Gang Song. Spectral analysis of the plasma in low-power laser/arc hybrid welding of magnesium alloy [J]. IEEE Transactions on Plasma Science.2009,37:76-82.
    [50]Xinfeng Hao, Liming Liu. Effect of laser pulse on arc plasma and magnesium target in low-power laser/arc hybrid welding [J]. IEEE Transactions on Plasma Science.2009, 37:2197-2201.
    [51]Liu, LM,Hao XF, Song G. A new laser-arc hybrid welding technique based on energy conservation [J]. Materials Transactions,2006,47(6):1611-1614.
    [52]Liming Liu, Xinfeng Hao. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnose technique [J]. Journal of Physics D:Applied Physics.2008,41(20):205202-1-10
    [53]王德庆,刘日明,丁成钢,等.搅拌摩擦焊接技术的发展状况[J].大连铁道学院学报,2002,1:75-78.
    [54]史耀武,唐伟.搅拌摩擦焊的原理与应用[J].电焊机,2000,1:6-9.
    [55]WB Lee, YM Yeon, SB Jung. Joint properties of friction stir welded AZ31B-H24 magnesium alloy [J].Materials Science and Technology,2003,19:785-790.
    [56]N. Afrin, D. L. Chen, X. Cao, M. Jahazi.Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy [J]. Materials Science and Engineering A, 2008,472:179-186.
    [57]J. Yang, B. L. Xiao, D. Wang, Z. Y. Ma. Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg-3Al-1Zn alloy [J]. Materials Science and Engineering A,2010,527:708-714.
    [58]U. F. H. R. Suhuddin, S. Mironov, Y. S. Sato, H. Kokawa, C.-W. Lee. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy [J]. Acta Materialia, 2009,57:5406-5418.
    [59]M. Yamamoto, A. Gerlich, T. H. North, K. Shinozakil. Mechanism of cracking in AZ91 friction stir spot welds [J]. Science and Technology of Welding and Joining, 2007,12:208-216.
    [60]S.M. Chowdhury, D. L. Chen, S. D. Bhole, X. Cao, E. Powidajko, D. C. Weckman, Y. Zhou. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy [J]. Materials Science and Engineering A, 2010,527:2951-2961.
    [61]M. Abbasi Gharacheh, A. H. Kokabi, G. H. Daneshi, B. Shalchi, R. Sarrafi. The influence of the ratio of rotational speed/traverse speed on mechanical properties of AZ31 friction stir welds [J]. International Journal of Machine Tools & Manufacture,2006, 46:1983-1987.
    [62]Chao-Ting Chi, Chuen-Guang Chao, Tzeng-Feng Liu, Che-Chung Wang. A study of weldability and fracture modes in electron beam weldments of AZ series magnesium alloys [J]. Materials Science and Engineering A,2006,435-436:672-680.
    [63]S. F. Su, J. C. Huang, H. K. Lin, N. J. Ho. Electron-Beam Welding Behavior in Mg-Al-Based Alloys [J]. Metallurgical and Materials Transactions A,2002,33:1461-1473.
    [64]Chao-Ting Chi, Chuen-Guang Chao, Tzeng-Feng Liu, Chuan-Hu. Lee. Aluminum element effect for electron beam welding of similar and dissimilar magnesium aluminum zinc alloys [Jl.Scripta Materialia,2007,56:733-736.
    [65]S. H. Wu, J. C. Huang, Y. N. Wang. Evolution of Microstructure and Texture in Mg-Al-Zn Alloys during Electron-Beam and Gas Tungsten Arc Welding [J]. Metallurgical and Materials Transactions A,2004,35A:2455-2469.
    [66]C. T. Chi, C. G. Chao, T. F. Liu, C. C. Wang. Optimal parameters for low and high voltage electron beam welding of AZ series magnesium alloys and mechanism of weld shape and pore formation [J]. Science and Technology of Welding and Joining,2008,13:199-211.
    [67]Chao-Ting Chi, Chuen-Guang Chao, Tzeng-Feng Liu, Che-Chung Wang. Relational analysis between parameters and defects for electron beam welding of AZ-series magnesium alloys [J]. Vacuum,2008,82:1177-1182.
    [68]Z. SUN, J. C. ION. Laser welding of dissimilar metal combinations [J]. Journal of materials science,1995,30:4205-4214
    [69]Ben-Artzy, A.M., A.; Kohn, G.; Bronfin, B.; Shtechman, A. Joining of light hybrid constructions made of magnesium and aluminum alloys [J]. TMS Annual Meeting.2002.
    [70]李亚江. Mg/Al异种材料脉冲TIG焊接头的组织结构[J].焊接学报,2006,27(9):39-42.
    [71]Liu P. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials [J] materials Letters,2007,61(6):1288-1291
    [72]J. Wang, J. C. Feng, Y. X. Wang, Microstructure of Al-Mg dissimilar weld made by cold metal transfer MIG welding [J].Sci. Technol. Weld. Joi,2008,24:827-831.
    [73]李慧.镁铝异种金属激光焊接的研究.北京,北京工业大学:2007.
    [74]刘鹏,李亚江,耿浩然等.镁铝异种材料TIG焊接接头微观组织分析[J].焊接学报,2006,27(10):65-69.
    [75]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2004.
    [76]Wang Juana, Li Yajiang, Liu Peng, Geng Haoran. Microstructure and XRD analysis in the interface zone of Mg/Al diffusion bonding [J]. Journal of materials processing technology,2007,205:146-150
    [77]Liu P. A study of phase constitutuion near the interface of Mg/Al vacuum diffusion bonding [J]. Materials Letters,2005,59(16):2001-2005.
    [78]Y. J. Kwon, I. Shigematsu, N. Saito, Dissimilar friction stir welding between magnesium and aluminum alloys [J]. Materials Letters,2008,62:3827-3829.
    [79]YS. Sato, A. Shiota, H. Kokawa, K. Okamoto, Q. Yang, C. Kim. Effect of interfacial microstructure on lap shear strength of friction stir spot weld of aluminium alloy to magnesium alloy [J]. Science and Technology of Welding and Joining,2010,15:319-324.
    [80]Yutaka S. Sato, Seung Hwan C. Park, Masato Michiuchi, Hiroyuki Kokawa. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys [J]. Scripta Materialia,2004,50:1233-1236.
    [81]Don-Hyun Choi Byung-Wook Ahn, Chang-Yong Lee, Yun-Mo Yeon, Keun Song, Seung-Boo Jung. Formation of intermetallic compounds in Al and Mg alloy interface during friction stir spot welding [J]. Intermetallics,2011,19:125-130.
    [82]VAHID FIROUZDOR, SINDO KOU. Formation of Liquid and Intermetallics in Al-to-Mg Friction Stir Welding [J]. Metallurgical and Materials Transactions A,2010,41 3238-3251.
    [83]Y. C. Chen, K. Nakata. Friction stir lap joining aluminum and magnesium alloys [J]. Scripta Materialia,2008,58:433-436.
    [84]Jiuchun Yan, Zhiwu Xu, Zhiyuan Li, Lei Li, Shiqin Yang. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring [J] Scripta Materialia,2005,53:585-589.
    [85]A. C. Somasekharan, L. E. Murr. Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy [J]. Materials Characterization,2004,52:49-64
    [86]Jones B. A Future for Weldbonding Sheet Steel [J]. Welding and Fabrication,1978, 46(7/8):415-420.
    [87]Robert W. Messler. Weld-bonding:the best or worst of two processes? [J] Industrial Robot,2002,29:138-148.
    [88]M M舍瓦尔兹著.袁文钊等译.金属焊接手册.北京:国防工业出版社,1988.
    [89]Yazantisev I, Shavyrin V N. Strength characteristics of welded and bonded-welded joints [J]. Welding Production,1979,26(9):19-21.
    [90]Jones B, Williams N T. Fatigue in adhesive and weldbonded steel joints [J]. SAE,1986, 97(7):48-53.
    [91]常宝华,史耀武,董仕节.胶焊技术及其应用[J].焊接技术,1998,1:9—11.
    [92]常宝华,史耀武,卢良清.胶焊搭接接头的应力分布和疲劳行为研究[J].机械工程学报,2000,36(2):106-110.
    [93]Baohua Chang, Yaowu Shi, Liangqing Lu. Studies on the stress distribution and fatigue behavior of weld-bonded lap shear joints [J]. Journal of Materials Processing Technology, 2001,108:307-313.
    [94]常宝华,史耀武,董仕节.胶黏剂厚度和弹性模量对胶焊接头应力分布的影响[J].材料工程,1998,5:19-23.
    [95]常宝华,李菊,史耀武,卢良清,董仕节。胶焊单搭接头静拉伸力学行为的研究[J].焊接,1999,11:12-14.
    [96]常宝华,史耀武,董仕节.厚对不同胶黏剂胶焊单搭接头中应力分布影响的数值分析[J].中国机械工程,1999,10(3):341-343.
    [97]常宝华,史耀武,陈建忠,董仕节.边缘定位胶焊接头的应力应变分布和强度研究[J].材料科学与工艺,2000,8(1):63-67.
    [98]Yong Xia, QingZhou, P. C. Wang, N. L. Johnson, X. Q. Gayden, J. D. Fickes. Development of a high-efficiency modeling technique for weld-bonded steel joints in vehicle structures, Part Ⅱ Dynamic experiments.and simulations [J]. International Journal of Adhesion and Adhesives,2009,29:427-433.
    [99]Yong Xia, QingZhou, P. C. Wang, N. L. Johnson, X. Q. Gayden, J. D. Fickes. Development of high-efficiency modeling technique for weld-bonded steel joints in vehicle structures Part Ⅰ Static experiments and simulations [J]. International Journal of Adhesion and Adhesives,2009,29:414-426.
    [100]赵波,吕振华.多焊点情况下胶焊单搭接头的静力分析[J].应用力学学报2009,26(2):239-242.
    [101]殷勇,涂善东,朱进.胶焊单搭接头长时力学性能分析[J].航空材料学报,2001,21(3):57-62.
    [102]S. M. H. Darwisha, A. Ghanya. Critical assessment of weld-bonded technologies [J].Journal of Materials Processing Technology,2000,05:221-229
    [103]S. M. Darwish. Characteristics of weld-bonded commercial aluminum sheets [J]. International Journal of Adhesion & Adhesives,2003,23:169-176.
    [104]I.0. Santos a, W. Zhang b, V. M. Gonc.alvesa, N. Bay b, P. A. F. Martins. Weld bonding of stainless steel [J]. International Journal of Machine Tools & Manufacture, 2004,44:1431-1439.
    [105]S. M. Darwish, A.M. Al-Samhan. Peel and shear strength of spot-welded and weld-bonded dissimilar thickness joints [J]. Journal of Materials Processing Technology, 2004,147:51-59.
    [106]Darwish. Weldbonding strengthens and balances the stress in spot-weldeded dissimilar thickness joints [J]. Journal of Materials Processing Technology,2003,134:352-362.
    [107]Darwish. Analysis of weld-bonded dissimilar materials [J]. International Journal of Adhesion & Adhesives,2004,24:347-354.
    [108]Darwish, A. Al-Samhan. Design rationale of weld-bonded joints [J]. International Journal of Adhesion & Adhesives,2004,24:367-377.
    [109]Samhann, S. M. H. Darwish. Strength prediction of weld-bonded joints [J]. International Journal of Adhesion & Adhesives,2003,23:23-28.
    [110]Darwish, A. Al-Samhan. Thermal stresses developed in weld-bonded joints [J]. Journal of Materials Processing Technology,2004,153-154:971-977.
    [111]I. D.Harris. The Latest Advances in Welding and Joining for Aerospace [J]. AeroMat, the 20th ASM Aerospace Materials Conference and Expo in Dayton,2009, June:7-11.
    [112]W. Messler, J. Bell,0. Craigue. Laser Beam Weld Bonding of AA5754 for Automobile Structures [J]. Welding Journal,2003, June:151-159.
    [113]Robert W. Messier,Scot Bohnenstiehl, John Levene Erika Johnson, Luo Chen. A pressure-assisted approach for laser-beam weld-bonding Al alloy structure for automobiles [J]. Assembly Automation,2004,24:370-378.
    [114]Kemal Apalak, Kemal Aldas, Faruk Sen. Thermal non-linear stresses in an adhesively bonded and laser-spot welded single-lap joint during laser-metal interaction [J]. Journal of Materials Processing Technology,2003,142:1-19.
    [115]粘接技术手册.北京:中国轻工业出版社,2001
    [116]Sanders, J. S. Keske, K. H. Leong, G. Kornecki, High power Nd:YAG and C02 laser welding of magnesium [J], J. Laser Applicain,1999,11:96-103.
    [117]Leong, G. Kornecki, P.G. Sanders, J. S. Keske, Laser beam welding of AZ31B-H24 alloy [J], ICALEO 98:Laser Materials Processing Conference, Orlando, FL,16-19 November 1998:28-36.
    [118]Weisheit, R. Galun, B. L. Mordike, Weldability of various magnesium alloys using a C02-laser IIW Seminar [J], Trends Weld. Light Weight Automobile Railroad Vehicles, 1997.28-41.
    [119]Haferkamp, F. von Alvensleben, I. Burmester, M. Niemeyer, The characteristics of laser beam welded magnesium alloys [J], in:Proceedings of the Laser Materials Processing Conference ICALEO, Part 2,1997:140-149.
    [120]Cao, W. Wallace, C. Poon, J. P. Immarigeon, Research and progress in laser welding of wrought aluminum alloys [J]. I. Laser welding processes, Mater. Manufact. Processing, 2003,18:1-22.
    [121]X. Cao, W. Wallace, J. P. Immarigeon, C. Poon, Research and progress in laser welding of wrought aluminum alloys [J]. Ⅱ. Metallurgical Microstructures, defects and mechanical properties, Mater. Manufacture. Processing,2003,18,23-49.
    [122]Sanders, J. S. Keske, K. H. Leong, G. Kornecki, High power Nd:YAG and C02 laser welding of magnesium [J], J. Laser Appl,1999,11:96-103.
    [123]Leong, G. Kornecki, P. G. Sanders, J. S. Keske, Laser beam welding of AZ31B-H24 alloy, ICALEO 98:Laser Materials Processing Conference[C], Orlando, FL,16-19 November 1998:28-36.
    [124]Pastor, H. Zhao, T. DebRoy, Continuous wave-Nd:yttrium-aluminium-garnet laser welding of AM60B magnesium alloys[J], J. Laser Appl,2000,12:91-100.
    [125]Poueyo-Verwaerde, B Dabezies, R Fabbro. Thermal coupling inside the keyhole during welding process [J]. Proceedings of SPIE,2207:175-184.
    [126]Fabbro. Beam-plasma coupling in laser material processing [J]. Proc. I. AMP'92, 1992:305-310.
    [127]Kolowski, G Herziger, E Beyer. Spectral plasma diagnostics in welding with C02 lasers [J]. Proc. SPIE,1020:96-102.
    [128]Carmignani, R Mares, G Toselli. Transient finite element analysis of deep penetration laser welding process in a singlepass butt-welded thick steel plate [J]. Computer Methods in Applied Mechanics and Engineering.2006,179:197-214.
    [129]Kore, J. Imbert, M. J. Worswick, Y. Zhou, Electromagnetic impact welding of Mg to Al sheets [J], Sci. Technol. Weld. Join,2009,14:549-553.
    [130]Ben-Artzy, A. Stern, N. Frage2, V. Shribman. Interface phenomena in aluminium-magnesium magnetic pulse welding [J]. Science and Technology of Welding and Joining,2008,13:402-408
    [131]Y.B.Yan, Z. W. Zhang, W. Shen, J. H. Wang, L. K. Zhang, B. A. Chin. Microstructure and properties of magnesium AZ31B-aluminum 7075 explosively welded composite plate [J]. Materials Science and Engineering A,2010,527:2241-2245
    [132]Y. J. Kwon, I. Shigematsu, N. Saito, Dissimilar friction stir welding between magnesium and aluminum alloys, Mater. Letter,2008,62:3827-3829
    [133]Don-Hyun Choi Byung-Woo kAhn, Chang-Yong Lee, Yun-Mo Yeon, Keun Song, Seung-Boo Jung. Formation of intermetallic compounds in Al and Mg alloy interface during friction stir spot welding [J]. Intermetallics,2011,19:125-130.
    [134]Vahid Firouzdor, Sindo Kou. Formation of Liquid and Intermetallics in Al-to-Mg Friction Stir Welding [J]. Metallurgical and.Materials Transactions A, 2010,41:3238-3251.
    [135]Y.C.Chen, K. Nakata. Friction stir lap joining aluminum and magnesium alloys[J]. Scripta Materialia,2008,58:433-436.
    [136]Jiuchun Yan, Zhiwu Xu, Zhiyuan Li, Lei Li, Shiqin Yang. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring [J]. Scripta Materialia,2005,53:585-589.
    [137]A. C. Somasekharan, L. E. Murr. Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy [J]. Materials Characterization,2004,52:49-64.
    [138]M. Zhao, Z. D. Zhang, Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints [J],Scripta Mater,2008,58:283-286.
    [139]Liming Liu, Jinhong Tan, Xujing Liu. Reactive brazing of Al alloy to Mg alloy using zinc-based brazing alloy [J]. Materials Letters,2007,61:2373-2377.
    [140]Liming Liu, Xujing Liu, Shunhua Liu. Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer [J]. Scripta Materialia, 2006,55:383-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700