用户名: 密码: 验证码:
RNAi抑制Cx43基因表达对星形胶质细胞缺氧/再复氧后凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑卒中是最常见的脑血管疾病,由于脑血流减少以及缺血后再灌注造成神经细胞的损伤,脑缺血发生后多种因素和途径在神经细胞死亡过程中发挥重要作用。星形胶质细胞与神经元有着密切的关系,在缺血发生后对神经元具有一定的保护作用。在星形胶质细胞中大量存在着缝隙连接,它由两个在相互对应的细胞膜上的半通道组成,每个半通道由六个连接蛋白亚单位组成。缝隙连接通过参与细胞间物质交换的代谢偶联和电信号传递的电偶联,进行细胞间信息传递(gap junction intercellular communication,GJIC),从而在神经细胞的生长、分化、生理功能的调节中发挥作用。缝隙连接蛋白由许多成员组成,其中Cx43在神经系统中分布尤为广泛。近年来的研究表明,在脑缺血发生后,缝隙连接、半通道及连接蛋白对神经细胞起到了有害或有益的作用,并且它们与凋亡之间又存在着一定的关系,目前国内对这方面研究少见报道,尤其是半通道和连接蛋白以及与凋亡信号通路的关系研究甚少。因此,我们希望通过特异性抑制缝隙连接蛋白表达的方法来研究Cx43蛋白、半通道、缝隙连接与凋亡以及相关的凋亡信号转导通路之间的关系。
     本实验通过原代培养Wistar大鼠大脑皮层星形胶质细胞,运用连续传代法建立了星形胶质细胞的体外纯化培养体系;化学合成针对大鼠Cx43基因的小干扰RNA及其阴性对照,通过脂质体转染星形胶质细胞后,采用Western blot和染料传输实验来检测干扰效果。采用缺氧孵箱法成功建立了星形胶质细胞缺氧/再复氧模型,通过流式细胞术观察siRNA干扰对细胞凋亡的影响,通过免疫组化和Western blot观察其对Caspase-3以及对ERK信号转导通路的影响。结果表明:siRNA干扰能够明显抑制缝隙连接蛋白表达及其胞间通讯功能;抑制缝隙连接蛋白,星形胶质细胞缺氧/再复氧后细胞凋亡明显减轻;抑制缝隙连接蛋白,星形胶质细胞缺氧/再复氧后p-ERK蛋白表达明显减低。表明抑制缝隙连接蛋白,能够减轻凋亡发生,起到细胞保护作用,而且影响了ERK信号转导通路。本实验将缝隙连接蛋白作为干预靶点,应用RNA干扰技术,深入探讨连接蛋白对凋亡的影响及其可能机制,丰富了脑梗死后凋亡传导途径的理论,为临床治疗脑梗死提供了理论和实验基础。
Cerebrovascular disease (CVD) refers to brain lesions caused by various cerebrovascular diseases. CVD is one of the three diseases which threaten human health and is one of the main reasons leading to human’s death and disabilities. Ischemic stroke is the most common in CVD, and is mainly related to the reduction of cerebral blood flow and its ischemic injury. There are evidences that there is a close relationship between astrocytes and neurons, which is important for the survival and protection of neurons after ischemia to some extent. Astrocytes form functional syncytium by gap junctions, realize the synchronization among the information transmission, metabolic substrates changes and ionic balance. Not only can gap junctions adjust the cell functions by low selective permeability of the second messagers such as calcium, cAMP and IP3 and energy substances, but also can they allow harmful substances transfer between cells and cause the transmission of death signals. After the cerebral ischemia occurs, gap junctions are still open making metabolites and harmful substances communication between astrocytes and resulting in more cell damages. In addition, connexin and semi-channels have certain effects on cell survival. Under this background, our experiments establish the hypoxia/ reoxygenation model which is based on the successfully primary culture of the rat cortex astrocytes, discuss the effects of the inhibitive Cx43 on apoptosis of astrocytes and its related transduction signals by applying RNAi technology, and we hope to provide theoretical and experimental foundation for clinical researches on ischemic cerebrovascular diseases.
     Objective: To prepare primary culture model of rat cortical astrocytes, to identify purity, to transfect astrocytes by siRNA and to test interference effect. To establish astrocytes hypoxia/reoxygen model, to observe the influence of inhibitive Cx43 to astrocytes apoptosis and ERK transduction pathway. Methods: Astrocytes in primary culture were prepared from the cortex of 1-day-old newborn Wistar rats to establish astrocytes purification system in vitro. The cells were cultured in DMEM with 20% newborn calf serum. The cells were cultured in a 95% air and 5% CO2 humidified incubator at 37℃. After 3-4 replatation procedure, the cultured cells morphous were observed and GFAP immunological cells were identified chemically. Small interfering RNA and its negative RNA aim to rat Cx43 gene were synthesized chemically, transfected astrocytes by liposomes, detected Cx43 expression and gap junction intracellular communication by Western blot and dye coupling method. Then the interfering effects of siRNA to Cx43 were observed. The toxic effects of siRNA transfection to cells were detected by MTT. When the cells reached 80% confluent, the cultures were transferred into oxygen-poor incubator of O27%/CO25%/N288% for 12 hours and reoxygen were undertaken for respectively 6 hours, 12 hours, 24 hours, 48 hours and 72 hours. Flow cytometry was applied to detect the change of apoptosis rate of cell hypoxia/reoxygen at different time. Western blot was applied to observe the change of caspase-3 and ERK expression at 12 hours after hypoxia and different time of reoxygen, and then the most obvious time of expression was chose to be the proving time for next interfering experiments. At proving time, the influences of inhibitive Cx43 to astrocytes apoptosis rate, caspase-3 and p-ERK1/2 were observed by flow cytometry, immunocytochemical method and western blot. Results: 1. The primary culture cell bodies were large and flat, cytoplasms were rich, cytoplasmic processes were distinct, the branches were slender and intensive, crossed to each other and had uniform appearance. GFAP cell purity was 97.63%. According to Western blot, Cx43 expression began to inhibit 12 hours after siRNA transfection and was inhibited the most 48 hours later. According to dye coupling method, siRNA transfection group was negative, while the control group was positive. MTT results showed that, the cell activities of siRNA group and liposome group were much lower than that of untransfection group (p<0.05), what’s more, the activities of different groups increased gradually along with time. 2. The morphous of cultured astrocytes were normal 12 hours after hypoxia, but the morphous changed along with the beginning of reoxygen. The cell bodies changed to be round and protrude cell surface, and vacuoles appeared in part cytoplasm 6 hours after reoxygen. The gaps between fusion cell layers became larger, cell protuberances decreased and the network among cells were destroyed 12 hours after reoxygen. Part cell bodies became round and cell protuberances decreased or broke 24 hours after reoxygen. The destruction became worse 48 hours after reoxygen. At 12 hours after hypoxia and reoxygen, the apoptosis rate increased gradually and the apoptosis rate was highest at 48 hours after reoxygen, what’s more, siRNA group was obviously lower than control group(p<0.05). The expression of caspase-3 increased after reoxygen and was the most obvious at the 48-hour, siRNA group was obviously lower than control group(p<0.05). The expression of p-ERK1/2 increased after reoxygen and was the most obvious at the 6-hour, siRNA group was obviously lower than control group(p<0.05). TUNEL results showed that the apoptosis rate of siRNA group was obviously lower than that of control group(p<0.05). Conclusions: 1. The astrocytes purification system was established successfully. 2. siRNA transfection could inhibit Cx43 expression and GJIC effectively and RNAi technique is an effective method to research the functions of Cx43. 3. The cytotoxicity of siRNA transfection was from liposome. 4. The astrocytes hypoxia/reoxygen model in vitro was established successfully. 5. Cx43 inhibited by siRNA could distinctly lessen the apoptosis after astrocytes hypoxia/reoxygen. 6. Cx43 inhibited by siRNA could distinctly lessen the increasing expression of p-ERK1/2 after astrocytes hypoxia/ reoxygen and affected its transduction pathway.
引文
[1] Alonso PM. Connexin phosphorylation as a regulatory event linked to channel gating[J]. Biochim Biophys Acta, 2005,1711(2):164-171.
    [2] Parthasarathi K, Ichimra H, Monma E, et al. Connexin43 mediates spread of Ca2+ dependent proinflammatory responses in lung capillaries[J].J Clin Invest, 2006,116(8): 2193-2200.
    [3] Weidmann S. The electrical constants of Purkinje fibres[J]. J Physiol, 1952,118(3): 348-360.
    [4] Furshpan E J, Potter D D.Transmission at the giant motor synapses of the crayfish[J]. J Physiol (Lond), 1959,145(2):326-335.
    [5] Kanno I Y, Ito Y, Katakura Y, et al. Effects of X-Irradiation on the Ribotides Metabolism in Guinea Pigs[J]. Sci Rep Res Inst Tohoku Univ [Med], 1964,11:433- 437.
    [6] Tomasetto C M, Neveu M J, Daley J, et al. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture[J]. J Cell Biol, 1993,122(1):157-167.
    [7] Thompson R J, Zhou J N, MacVicar B A. Ischemia opens neuronal gap junction hemichannels[J]. Science, 2006,312(5775):924-927.
    [8] Bennett M R, Burnstock G. Application of the sucrose-gap method to determine the ionic basis of the membrane potential of smooth muscle[J]. J Physiol, 1966,183(3): 637-648.
    [9] Bennett MVL. Permeability and structure of electronic junctions and intercellular movement of tracers. In: Kater S, Nicholson C (Eds), Intracellular staining Techniques in Nuerobiology[J]. Springer, New York, 1973,pp:115-133.
    [10] Sotelo C, Korn H. Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system[J]. Int Rev Cytol, 1978,55:67-107.
    [11] Nicholson B J. Gap junctions- from cell to molecule[J]. J Cell Sci, 2003,116(Pt22): 4478-4481.
    [12] S?hl G, Maxeiner S, Willecke K. Expression and functions of neuronal gap junctions [J]. Nat Rev Neurosci, 2005,6(3):191-200.
    [13] Shestopalov VI, Panchin Y. Pannexins and gap junction protein diversity[J]. Cell Mol Life Sci, 2008,65(3):376-394.
    [14] Kuffler S W, Nicholls J G, Orkand R K. Physiological properties of glial cells in the central nervous system of amphibian[J]. J Neurophysiol, 1966,29(4):768-787.
    [15] Dermietzel R, GaoY, Scemes E, et al. Connexin43 null mice reveal that astrocytes express multiple connexins[J]. Brain Res Brain Res Rev, 2000,32(1):45-46.
    [16] Retamal M A, Cortés C J, Reuss L, et al. S-nitrosylation and permeation through connexin43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents[J]. Pric Natl Acad Sci USA, 2006,103(12):4475-4480.
    [17] Litvin O, Tiunova A, Connell-Alberts Y, et al. What is hidden in the pannexin treasure trove: the sneak peek and the guesswork[J]. J Cell Mol Med, 2006,10(3):613-634.
    [18] Barbe M T, Monyer T H, Bruzzone R, et al. Cell-cell communication beyond connexins: the pannexin channels[J]. Physiology (Bethesda), 2006,21:103-114.
    [19] Rozental R, Giaume C, Spray D C. Gap junction in the nervous system[J]. Brain Res Brain Res Rev, 2000,32(1):11-15.
    [20] Manthey D, Bukauskas F, Lee C G, et al. Molecular cloning and functional expression of the mouse gap junction gene connexin-57 in human Hela Cells[J]. J Biol Chem, 1999,274(21):14716-14723.
    [21] Condorelli D F, Parenti R, Spinella F, et al. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons[J]. Eur J Neurosci, 1998,10(3):1202-1208.
    [22] Sohl G, Degen J, Teubner B, Willecke K. The murine gap junction gene connexin36 is highly expressed inmouse retina and regulated during brain development[J]. FEBS Lett, 1998,428(1-2):27-31.
    [23] Herve J C, Phelan P, Bruzzone R, et al. Commexins, innexins and pannexins: bridging the communication gap[J]. Biochim Biophys Acta, 2005,1719(1-2):3-5.
    [24] Scemes E, Suadicani S O, Dahl G, et al. Connexin and pannexin mediated cell-cell communication[J]. Neuron Glia Biol, 2007,3(3):199-208.
    [25] Yen M R, Saier M H. Gap junctional proteins of animals: The innexin/pannexin superfamily[J]. Jr Prog Biophys Mol Biol, 2007,94(1-2):5-14.
    [26] Panchin Y, Kelmanson I, Matz M, et al. A ubiquitous family of putative gap junction molecules[J]. Curr Biol, 2000,10(13):R473-474.
    [27] Bruzzone R, Hormuzdi S G, et al. Pannexins a family of gap junction proteins expressed in brain[J]. Proc Natl Acad Sci USA, 2003,100(23):13644-13649.
    [28] Bruzzone R, Barbe M T, et al. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes[J]. J Neurochem, 2005,92(5):1033-1043.
    [29] Deans M R, Gibson J R, Sellitto C, et al. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing cinnexin36[J]. Neuron, 2001,31 (3):477-485.
    [30] Hormuzdi S G, Pais I, LeBeau F E, et al. Impaired electrical signaling disrupts gamma frequency oscillations in connexin36-deficient mice[J]. Neuron, 2001,31(3):487-495.
    [31] Buhl D L, Harris K D, Hormuzdi S G, et al. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo[J]. J Neurosci, 2003, 23(3):1013-1018.
    [32] Weickert S, Ray A, Zoidl G, et al. Expression of neural connexins and pannexin1 in the hippocampus and inferior olive: aquantitative approach[J]. Mol Brain Res, 2005,133(1):102-109.
    [33] Kardami E, Dong X, Iacobas D A, et al. The role of connexins in controlling cell growth and gene expression[J]. Prog Biophys Mol Biol, 2007,94:245-264.
    [34] Chang Q, Pereda A, Pinter M J, et al. Nerve injury induces gap junctional couplingamong axotomized adult motor neuron[J]. J Neurosci, 2000,20(2):674-684.
    [35] Nagy J I, Rash J E. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS[J]. Brain Res Rev, 2000,32:29-44.
    [36] Kacem K, Lacombe P, Seylaz J, et al. Structural prganization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study[J]. Glia, 1998,23(1):1-10.
    [37] Blanc E M, Bruce-Keller A J, Mattson M P.Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death[J]. J Neurochem, 1998,70(3):958-970.
    [38] Ozog M A, Sishansian R, Naus C C. Blocked gap junctional coupling increases glutamate-induced neurotocixity in neuron-astrocyte co-cultures[J]. J Neuropathol Exp Neurol, 2002,61(2):132-141.
    [39] Siushansian R, Bechberger J F, Cechetto D F, et al. Connexin43 null mutation increases infarct size after stroke[J]. J Comp Neurol, 2001,440(4):387-394.
    [40] Rawanduzy A, Hansen A, Hansen T W, et al. Effective reduction of infarct volume by gap junction bolckade in a rodent model of stroke[J]. J Neurosurg, 1997,87(6): 916-920.
    [41]邓方,冯加纯,饶明俐,等.抑制缝隙连接胞间通讯对大鼠实验性局灶性脑梗死的保护作用[J].中风与神经疾病杂志, 2008,25(3):285-288.
    [42] Lin J H, Weigel H, Contrina ML, et al. Gap-junction-mediated propagation and amplification of cell injury[J]. Nat Neurosci, 1998,1(6):494-500.
    [43]焦莉,徐莎贝,唐荣华,等.缝隙连接胞间通讯对大脑中动脉缺血后海马迟发性神经元死亡的影响[J].中国现代医学杂志, 2008,18(18):2625-2631.
    [44] Blomstrand F, Venance L, Siren A L, et al. Endothelins regulate astrocyte gap junction in rat hippocampal slices[J]. Eur J Neurosci, 2004,19(4):1005-1015.
    [45] Charles A. Intercellular calcium waves in glia[J]. Glia, 1998,24(1):39-49.
    [46] Walker F D, Hild W J. Neuroglia electrically coupled to neurons[J]. Science, 1969,165(393):602-603.
    [47] Morales R, Duncan D. Specialized contacts of astrocytes with astrocytes and witn other cell types in the spinal cord of the cat[J]. Anat Rec, 1975,182(2):255-266.
    [48] Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells[J]. Science, 1994,263(5154):1768-1771.
    [49] Nadarajah B, Jones A M, Evans W H, et al. Differential expression of cinnexins during neocortical development and neuronal circuit formantion[J]. J Neurosci, 1997,17(9): 3096-3111.
    [50] Rash J E, Yasumura T, Dudek F E, et al. Cell-specific pxpression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons[J]. J Neurosci, 2001,21(6):1983-2000.
    [51] Quist A P, Rhee S K, Lin H, et al. Physiological role of gap-junctional hemichannels: Extracellular calcium-dependent isosmotic volume regulation[J]. J Cell Biol, 2000, 148(5):1063-1074.
    [52] Evans W H, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight[J]. Biochem J, 2006,397(1):1-14.
    [53] Gomes P, Srinivas S P, Van Driessche W, et al. ATP release through connexin hemichannels in corneal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2005,46(4): 1208-1218.
    [54] Stridh M H, Tranberg M, Weber S G, et al. Stimulated ef?ux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels[J]. J Biol Chem, 2008, 283(16): 10347-10356.
    [55] Takeuchi H, Jin S, Wang J, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner[J]. J Biol Chem, 2006,281(30):21362-21368.
    [56] Kang J, Kang N, Lovatt D, et al. Connexin 43 hemichannels are permeable to ATP[J].J Neurosci, 2008,28(18):4702-4711.
    [57] Li F, Sugishita K, Su Z, et al. Activation of connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition[J]. J Mol Cell Cardiol, 2001,33(12):2145-2155.
    [58] Kalvelyte A, Imbrasaite A, Bukauskiene A, et al. Connexins and apoptotic transformation[J]. Biochem Pharmacol, 2003,66(8):1661-1672.
    [59] Spray D C, Ye Z C, Ransom B R. Functional connexin“hemichannels”: a critical appraisal[J]. Glia, 2006,54(7):758-773.
    [60] Rodriguez-Sinovas A, Cabestrero A, Lopez D, et al. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling[J]. Prog Biophys Mol Biol, 2007,94(1-2):219-232.
    [61] Yawata I, Takeuchi H, Doi Y,et al. Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors[J]. Lif Sci, 2008,82(21-22):1111-1116.
    [62] Bruzzone S, Franco L. A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracelluar calcium in 3T3 fibroblasts[J]. J Biol Chem, 2001,276(51):48300-48308.
    [63] Stout C E, Costantin J L, et al. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels[J]. J Biol Chem, 2002,277(12):10482-10484.
    [64] Saez JE, Contreras JE, et al. Gap junction hemichannels in astrocytes of the CNS[J]. Acta Physiol Scand, 2003,179(1):9-22.
    [65] Kamermans M, Fahrenfort I, et al. Hemichannel-mediated inhibition in the outer retina[J]. Science, 2001,292(5519):1178-1180.
    [66] Ye ZC, Wyeth MS, et al. Functional hemichannels in astrocytes: a novel mechanism of glutamate release[J]. J Neurosci, 2003,23(9):3588-3596.
    [67] Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels [J]. Nat Rev Mol Cell Biol, 2003,4(4):285-294.
    [68] Zipfel GJ, Babcock DJ, Lee JM, et al. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium[J]. J Neurotrauma, 2000,17:857-869.
    [69] Jorgensen NR,Henriksen Z, Sorensen OH, et al. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2x7 receptors[J]. J Biol Chem, 2002,277(9):7574-7580.
    [70] Tsukimoto M, Harada H, Ikari A, et al. Involvement of chloride in apoptotic cell death induced by activation of ATP-sensitive purinoceptor[J]. J Biol Chem, 2005,280(4): 2653-2658.
    [71] Ramachandran S, Xie L H, John S A, et al. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury[J]. PLoS ONE, 2007,2(1):e712.
    [72] Contreras J E, Sanchez H A, Eugenin E A, et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture[J]. Proc Natl Acad Sci USA, 2002, 99(1):495-500.
    [73] Decrock E, De Vuyst E, Vinken M, et al. connexin43 hemichanels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model[J]. Cell Death Differ, 2009,16(1):151-163.
    [74] Plotkin L I, Manolagas S C, Bellido T. Transduction of cell survival signals by connexin-43 hemichannels[J]. J Biol Chem, 2002,277(10):8648-8657.
    [75] Lin J H, Yang J, Liu S, et al. Connexin mediates gap junction-independent resistance to cellular injury[J]. J Neurosci, 2003,23(2):430-441.
    [76] Huang R P, Hossain M Z, Huang R, et al. Connexin 43 (cx43) enhances chemotherapy -induced apoptosis in human glioblastoma cells[J]. Int J Cancer, 2001,92(1):130-138.
    [77] Dang X, Doble B W, Kardami E. The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth[J]. Mol Cell Biochem, 2003,242(1-2):35-38.
    [78] Doble B W, Dang X., Ping P, et al. Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact formingcardiomyocytes [J]. J Cell Sci, 2004,117(Pt 3):507-514.
    [79] Imaizumi K, Hasegawa Y, Kawabe T, et al. Bystander tumoricidal effect and gap junctional cimmunication in lung cancer cell lines[J]. Am J Respir Cell Mol Biol, 1998,18(2):205-212.
    [80] Menko A S, Boettiger D. Inhibiton of chicken embryo lens differentiation and lens junction formation in culture by pp60v-src[J]. Mol Cell Biol, 1988,4:1414-1420.
    [81] Gu S, Yu X S, Jiang J X. Stimulation of lens cell differentiation by gap junction protein connexin45.6[J]. Invest Ophthalmol Vis Sci, 2003,44(5):2103-2111.
    [82] Warn-Cramer B J, Cottrell G T. Regulation of cinnexin-43 gap junctional intercellular communication by mitogen-activated protein kinase[J]. J Biol Chem, 1998,273(15): 9188-9196.
    [83] Kim D Y, Kam Y, et al. Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation [J]. J Biol Chem, 1999, 274(9): 5581-5587.
    [84] Li H, Liu T F, et al. Properies and regulation of gap junctional hemichannels in the plasma membranes of cultured cells[J]. J Cell Biol, 1996,134(4):1019-1030.
    [85] Herve J C, Bourmeyster N, Sarrouilhe D, et al. Gap junctional complexes: from partners to functions[J]. Prog Biophys Mol Biol, 2007,94:29-65.
    [86] De Vuyst E, Decrock E, Cabooter L, et al. Intracellular calcium changes trigger connexin 32 hemichannel opening[J]. EMBO J 2006,25:34-44.
    [87] Thimm J, Mechler A, Lin H, et al. Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels[J]. J Biol Chem, 2005,280: 10646-10654.
    [88] Kondo RP, Wang SY, John SA, et al. Metabolicinhibition activates a non selective current through connexin hemichannels in isolated ventricular myocytes[J]. J Mol Cell Cardiol, 2000,32:1859-1872.
    [89] Contreras J E, Sáez J C, Bukauskas FF, et al. Gating and regulation of connexin 43(Cx43) hemichannels[J]. Proc Natl Acad Sci USA, 2003,100(20):11388-11393.
    [90] John S A, Kondo R, Wang S Y, et al. Connexin-43 hemichannels opened by metabolic inhibition[J]. J Biol Chem, 1999,274(1):236-240.
    [91] Taylor H J, Chaytor A T, Edwards D H, et al. Gap junction-dependent increases in smooth muscle cAMP underpin the EDHF phenomenon in rabbit arteries[J]. Biochem Biophys Res Comm, 2001,283(3):583-589.
    [92] Allen T, Iftinca M, Cole W C, et al. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions [J]. J Physiol, 2002,545(Pt3):975-986.
    [93] Evans W H, Boitano S. Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication[J]. Biochem Soc Trans, 2001,29(Pt4): 606-612.
    [94] Qi X, Varma P, Nenman D, et al. Gap junction blockers decrease defibrillation thresholds without changes in ventricular refractoriness in isolated rabbit hearts[J]. Circulation, 2001,104(13):1544-1549.
    [95] He DS, Burt J M. Mechanism and selectivity of the effects of halothane on gap junction channel function [J]. Circ Res, 2000,86(11):E104-E109.
    [96] Guerra J M, Everett T H, Lee K W, et al. Effect s of the gap junction modifier rotigaptide (ZP123) on at rial conduction and vulnerability to atrial fibrillation [J]. Circulation, 2006,114(2):110-118.
    [97] Contreras J E, Sánchez H A, Véliz L P, et al. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue[J]. Brain Res Brain Res Rev. 2004,47(1-3):290-303.
    [98] Nakase T, Fushiki S, Naus CC. Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia[J]. Stroke, 2003,34(9): e163-166.
    [99] Russell-Jones G, McTavish K, McEwan J, et al. Vitamin-mediated targeting as apotential mechanism to increase drug uptake by tumours[J]. J Inorg Biochem, 2004,98 (10):1625-1633.
    [100] Cotrina ML, Kang J, Lin J H, et al. Astrocytic gap junctions remain open during ischemic conditions[J]. J Neurosci, 1998,18(7):2520-2537.
    [101] Perez Velazquez J L, Kokarovtseva L, Sarbaziha R, et al. gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage[J]. Eur J Neurosci, 2006,23(1):1-10.
    [102] Hossmann K. Viability thresholds and the penumbra of focal ischemia[J]. Ann Neurol, 1994,36(4):557-565.
    [103] Martinez A D, Saez J C. Regulation of astrocytes gap junctions by hypoxia- reoxygenation[J]. Brain Res Brain Res Rev, 2000,32(1)250-258.
    [104] Watts SW, Webb RC. Vascular gap junctional communication is increased in mineralocoriocoid-salt hypertension[J]. Hypertention, 1996,28(5):888-893.
    [105] Haefliger JA, Meda P. Chronic hypertension alters the expresseion of Cx43 in cardiovascular muscle cells[J]. Braz J Med Biol Res, 2000,33(4):431-438.
    [106] Rummery N M, Hill C E. Vascular gap junctions and implications for hypertension[J]. Clin Exp Pharmacol Physiol, 2004,31(10):659-667.
    [107] Mather S, Dora KA, Sandow SL, et al. Rapid endothelial cell-selective loading of connexin40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries[J]. Circ Res, 2005,97(4):399-407.
    [108] de Wit C, Hoepfl B, Wolfle SE. Endothelial mediators and communication through vascular gap junctions[J]. Biol Chem, 2006,387(1):3-9.
    [109] de Wit C, Roos F, Bolz S S, et al. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion[J]. Physiol Genomics, 2003,13(2): 169-177.
    [110] Wong C W, Christen T, Roth I, et al. Connexin37 protects against atherosclerosis by regulating monocyte adhesion [J]. Nat Med, 2006,12(8):950-954.
    [111] Yeh H I, Lu C S, Wu Y J, et al. Reduced expression of endothelial connexin37 and connexin40 in hyperlipidemic mice: recovery of connexin37 after 7-day simvastatin treatment [J]. Arterioscler Thromb Vasc Biol, 2003,23(8):1391-1397.
    [112] Ebong E E, Kim S, DePaola N. Flow regulates intercellular communication in HAEC by assembling functional Cx40 and Cx37 gap junctional channels [J]. Am J Physiol Heart Circ Physiol, 2006,290(5):H2015-2023.
    [113] Dai G, Kaazempur-Mofrad M R, Natarajan S, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis- susceptible and resistant regions of human vasculature [J]. Proc Natl Acad Sci USA, 2004,101(41):14871-14876.
    [114] van Rijen H V, van Kempen M J, Postma S, et al. Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells [J]. Cytokine, 1998,10(4):258-264.
    [115] Matsushita T, Rama A, Charolidi N, et al. Relationship of connexin43 expression to phenotypic modulation in cultured hunman aortic smooth muscle cells[J]. Eur J Cell Biol, 2007,86(10):617-628.
    [116] Deglise S, Martin D, Probst H, et al. Increased connexin43 expression in human saphenous veins in culture is associated with intimal hyperplasia[J]. J Vasc Surg, 2005, 41(6):1043-1052.
    [117] Chagjichristos C E, Morel S, Derouette J P, et al. Targeting connexin43 prevents platelet-derived growth factor-BB-induced phenotypic change in porcine coronaty artery smooth muscle cells[J]. Circ Res, 2008,102(6):653-660.
    [118] Jia G H, Cheng G, Gangahar D M, et al. Involvement of connexin43 in angiotensinⅡ-induced migration and proliferation of saphenous vein smooth muscle cells via the MAPK-AP-1 signaling path[J]. J Mol Cel Cardio, 2008,44:882-890.
    [119] Murry C E, Jennings R B, Reimer K A, et al. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986,74:1124-1136.
    [120] Kitagawa K, Matsumoto M, Tagaya M, et al. Ischeic tolerance phenomenon found inthe brain[J]. Brain Res, 1990,528(1):21-24.
    [121] Li G, Whittaker P, Yao M, et al. The gap junction uncoupler heptanol abrogates infarct size reduction with preconditioning in mouse hearts[J]. Cardiovasc Pathol, 2002,11(3): 158-165.
    [122] Schwanke U, Li X, Schulz R, et al. No ischemic preconditioning in heterozygous connexin 43-deficient mice-a further in vivo study[J]. Basic Res Cardiol, 2003,98(3): 181-182.
    [123] Lin J H, Lou N, Takano T, et al. A central role of connexin 43 in hypoxic preconditioning[J]. J Neurosci, 2008,28(3):681-695.
    [124] Dunwiddie T V, Masino S A. The role and regulation of adenosine in the central nervous system[J]. Annu Rev Neurosci, 2001,24:31-55.
    [125] Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature[J]. Nat Neurosci, 2007,10(11):1369-1376.
    [126] VanSlyke J K, Musil L S. Cytosolic stress reduces degradation of connexin43 internalized from the cell surface and enhances gap junction formation and function [J]. Mol Biol Cell, 2005,16(11):5247-5257.
    [127] Mehta S L, Manhas N, Raqhubir R. Molecular targers in cerebral ischemia for developing novel therapeutics[J]. Brain Res Rev, 2007,54(1):34-66.
    [128] Cui W, Allen N D, Skynner M, et al. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain[J]. Glia, 2001,34(4):272-282.
    [129] Pavelko K D, Hiwe C L, Drescher K M, et al. Interleukin-6 protects anterior horn neurons from lethal virus-induced injury[J]. J Neurosci, 2003,23(2):481-492.
    [130] Gabriel C, Ali C, Lesene S, et al. Transforming growth factor alpha-induced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity[J]. FASEB J, 2003,17(2):277-279.
    [131] Min K J, Yang M S, Jou I, et al. Protein kinase Amediates microglial activation induced by plasminogen and gangliosides[J]. Exp Mol Med, 2004,36(5):461-467.
    [132] Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection[J]. Prog Neuro Biol, 2004,72(2):111-127.
    [133] Pekny M, Nilsson M. Astrocyte activation and reactive gliosis [J]. Glia, 2005, 50(4): 427-434.
    [134] Panicker K S, Norenberg M D. Astrocytes in cerebral ischemic injury: morphological and general considerations[J]. Glia, 2005,50(4):287-298.
    [135] Crair M C, Malenka R C.A critical period for long-term potentiation at thalamoco rtical synapses[J]. Nature, 1995,375(6529):325-328.
    [136] Had-Aissouni L, RéDB, Nieoullon A, et al. Importance of astrocytic inactivation of synaptically released glutamate for cell survival in the central nervous system are astrocytes vulnerable to low intracellular glutamate concentrations [J]. J Physiol Paris, 2002,96(3-4):317-322.
    [137] Swanson R A, Farrell K, Simon R P. Acidosis causes failure of astrocyte glutamate uptake during hypoxia[J]. J Cereb Blood Flow Metab, 1995,15(3):417-424.
    [138] Ito U, Hanyu S, Hakamala Y, et al. Ultrastructure of astrocytes associated with selective neuronal death of cerebral cortex after repeated ischemia[J]. Acta Neurochir Suppl, 1997,70:46-49.
    [139] Gottlieb M, Matute C. Expression of nerve growth factor in astrocytes of the hippocampal CA1 area following transient forebrain ischemia[J]. Neurosi, 1999, 91(3): 1027-1034.
    [140] Oderfeld-Nowak B, Orzylowska-SLiwinska O, Soltys Z, et al. Concomitant up-regulation of astroglial high and low affinity nerve growth factor receptors in the CA1 hippocampal area following global transient cerebral ischemia in rat [J]. Neuroscience, 2003,120(1):31-40.
    [141] Abiru Y, Katoh-semba R, Nishio C, et al. High potassium enhances secretion of neurotrophic factors from cultured astrocytes [J]. Brain Res, 1998,809(1):115-126.
    [142]刁士元,袁颖,郭海涛,等.神经生长因子对大鼠脑缺血再灌注损伤的保护作用及其对Bax表达的影响[J].临床神经病学杂志, 2005,18(4):299-301.
    [143] Wei G, Wu G , Cao X. Dynamic expression of glial cell line-derived neurotrophic factor after cerebralischemia[J]. Neuroreport, 2000,11(6):1177-1183.
    [144] Miyazaki H, Okuma Y, Fujii Y, et al. Glial cell line-derived neurotrophic factor protects against delayed neuronal death after transient forebrain ischemia in rats[J]. Neuroscience, 1999,89(3):643-647.
    [145] Kitagawa H, Hayashi T, Mitsumoto Y, et al. Reduction of ischemic brain injury by topical application of glial cell line-derived nurotrophic factor after permanent middle cerebral artery occlusion in rats[J]. Stroke, 1998,29(7):1417-1422.
    [146]冯加纯,王晓梅,邵延坤,等.胶质细胞源性神经营养因子对大鼠局灶脑缺血损伤的保护作用[J].中国神经精神疾病杂志, 2002,28(6):424-426.
    [147] Wang Y, Chang C F, Morales M, et al. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury [J]. Ann N Y Acad Sci, 2002,962: 432-437.
    [148] Espejo M, Cutillas B, Arenas TE, et al. Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophin factor[J]. Cell Transplant, 2000,9(1):45-53.
    [149] Henrich-Noack P, Prehn JH, Krieglstein J. TGF-β1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms[J]. Stroke, 1996,27(9):1609-l614.
    [150] Dhandapani K M, Hadman M, De Sevilla L, et al. Astrocyte Protection of Neurons: role of transforming growth factor-beta signaling via a c-Jun-AP-1 protective pathway [J]. J Biol Chem, 2003,278(44):43329-43339.
    [151] Mahesh V B, Dhandapani K M, Brann D W. Role of astrocytes in reproduction and neurprotection[J]. Mol Cell Endocrinol, 2006,246(1-2):1-9.
    [152] Beraudin M, Martil H H, Roussel S, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice[J]. J Cereb Blood Flow Metab, 1999, l9(6):643-651.
    [153] Amantea D, Russo R, Bagetta G, et al. From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens [J]. Pharmacol Res, 2005,52(2):119-132.
    [154] Noel F, Tofilon P J.Astrocytes protect against X-ray-induced neuronal toxicity in vitro[J]. Neuroreport, 1998,9(6):1133-1137.
    [155] Wang X F, Cynader M S. Astrocytes provide cystreine to neurons by releasing glutathione[J]. J Neurochem, 2000,74:1434-1442.
    [156]莫永炎,陈瑷,周玫.星形神经胶质细胞条件培养液对活性氧致的神经元毒的保护作用[J].细胞生物学杂志, 2000,22(1):39-42.
    [157] Behl C. Oestrogen as a neuroprotective hormone[J]. Nat Rev Neurosci, 2002,3(6): 433-442.
    [158] Madden K S, Kim W T, Comell-Bell A. Glutamate, arachidonic acid, and calcium regulation in cultured hippocampal astrocytes: involvement in ischemia[J]. Adv Neurol, 1996,71:53-59.
    [159] Brune T, Deitmer JW. Intracellular acidification and Ca2+ transients in cultured rat cerebellar astrocytes evoked by glutamate agonists and noradrenaline [J]. Glia, 1995, 14(2):153-161.
    [160] Stoll G, Jander S, Schrceter M. Inflammation and glia responses in ischemic brain lesions[J]. Prog Neurobiol, 1998,56(2):149-171.
    [161] Bernaudin M, Nouvelot A, MaeKenzie E T, et al. Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia[J]. Exp Neurol, 1998,150(1):30-39.
    [162]张敬军,邱玉芳,张鲁泉,等. L-NAME对沙土鼠脑缺血再灌流后海马区星形胶质细胞活化的作用机制研究[J].中国微循环, 2003,7(4):232-233.
    [163] Nedergaard M, Dirnagl U. Role of glial cells in cerebral ischemia [J]. Glia, 2005,50, (4):281-286.
    [164] Aschner M, Sonnewald U, Tan K H. Astrocyte modulation of neurotoxic injury[J]. Brain Pathol, 2002,12(4):475-481.
    [165] Swanson R A, Ying W, Kauppinen T M. Astrocytes influences on ischemic neuronal death[J]. Curr Mol Med, 2004,4(2):193-205.
    [166] Giffard RG, Swanson RA. Ischemia-induced programmed cell death in astrocytes[J]. Glia, 2005,50(4):299-306.
    [167] Popov V I, Medvedev N I, Rogachevski? V V. Three-dimentional organization of synapses and astroglia in the hippocampus of rats and ground squirrels: new structural and functional paradigms of the synapse function[J]. Biofizika, 2003,48(2):289-308.
    [168] Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411(6839): 494-498.
    [169] Giardina S F, Mikami M, Goubaeva F, et al. Connexin 43 confers resistance to hydrogen peroxide-mediated apoptosis[J]. Biochem Biophys Res Commun, 2007,362 (3):747-752.
    [170] Barbin G, Selak I, Manthorpe M, et al. Use of central neuronal cultures for the detection of neuronotrophic agents [J]. Neuroscience, 1984,12(1):33-43.
    [171] Ullian E M, Sapperstein S K, Christopherson K S, et al. Control of synapse number by glia[J]. Science, 2001,291(5504):657-661.
    [172]周欣,明晓云,康颂建,等.差速贴壁技术对大鼠脑皮层星形胶质细胞纯化率的影响[J].中国组织工程研究与临床康复, 2007,11(15):2829-2631.
    [173] Manthorpe M, Adler R, Varon S. Development,reactivity and GFA immun of luorescnce of astroglia-containing monolayer cultures from rat cerebrum[J]. J Neurocytol, 1979,8(5):605-621.
    [174]黄柏胜,刘发益,曹莉,等.星形胶质细胞培养方法的改进[J].实用预防医学, 2007,14(4):981-983.
    [175] R?rig B, Klausa G, Sutor B. Intracellular acidification reduced gap junction couplingbetween immature rat neocortical pyramidal neurones [J]. J Physiol,1996, 490(Pt1): 31-49.
    [176] Puil E, el-Beheiry H, Baimbridge K G. Anesthetic effects on glutamate- stimulated increase in intraneuronal calcium[J]. J Pharmacol Exp Ther, 1990,255(3):955-961.
    [177] Pocock G, Richards C D. Excitatory and inhibitory synaptic mechanisms in anaesthesia[J]. Br J Anaesth, 1993,71(1):134-147.
    [178] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998,391(6669):806-811.
    [179] Ramaswamy G, Slack F J. SiRNA: A guide for RNA silencing[J]. Chem Biol, 2002,9(10):1053-1055.
    [180] Hannon G J. RNA interference[J]. Nature, 2002,418(6894):244-251.
    [181] Caplen N J, Parrish S, Imani F, et al. Specific inhition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems[J]. Proc Natl Acad Sci USA, 2001,98(17):9742-9747.
    [182] Schütze N. siRNA technology. Mol Cell Endocrinol, 2004,213(2):115-119.
    [183] Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA- triggered gene siliencing[J]. Cell, 2001,107(4):465-476.
    [184] Valiunas V, Polosina Y Y, Miller H, et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions[J]. J Physiol, 2005,568(Pt2):459-468.
    [185] Yu J Y, DeRuiter S L, Turner D L, et al. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells[J]. Proc Natl Acad Sci USA, 2002,99(9):6047-6052.
    [186] Yang D, Buchholz F, Huang Z, et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNaseⅢmediate effective RNA interference in mammalian cells[J].Proc Natl Acad Sci USA, 2002, 99(15):9942-9947.
    [187] Sui G, Soohoo C, Affar el B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells[J]. Proc Natl Acad Sci USA, 2002,99(8):5515-5520.
    [188] Castanotto D, Li H, Rossi J J. Functional siRNA expression from transfected PCR products[J]. RNA, 2002,8(11):1454-1460.
    [189] Duxbury M S, Whang E E. RNA interference: A practical Approach.J Surg Res, 2004, 117(2):339-344.
    [190] Gaietta G, Deerinck TJ, Adams SR, et al. Multicolor and electron microscopic imaging of connexin trafficking.Science, 2002,296(5567):503-507.
    [191] Saez JC, Berthoud VM, Branes MC, et al. Plasma membrane channels formed by connexins: their regulation and functions[J]. Physiol Rev, 2003,83(4):1359-1400.
    [192]吕建瑞,马宏钟,薛荣亮.全脑缺血再灌注损伤后ERK在大鼠海马的表达及热休克预处理对其表达的影响[J].第四军医大学学报, 2006,27(16):1449-1452.
    [193] Stanciu M, Wang Y, Kentor R, et al. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in neuronal cell line and primary cortical neuron cultures[J]. J Biol Chem, 2000,275(16):12200-12206.
    [194] Stains J P, Civitelli R. Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription[J]. Mol Biol Cell, 2005,16(1):64-72.
    [195]颜小慧,陈雪梅,邹飞.缺氧对体外培养的大鼠脑星形胶质细胞存活的影响.第一军医大学学报, 2005,25(4):399-402.
    [196] Peuchen S, Duchen MR, Clark JB. Energy metabolism of adult astrocytes in vitro[J].Neuroscience, 1996, 71(3):855-870.
    [197] Das S, Lin D, Jena S, et al. Protection of retinal cells from ischemia by a novel gap junction inhibitor[J].Biochem Biophys Res Commun, 2008,373(4):504-508.
    [198] Krysko D V, Mussche S, Leybaert L,et al. Gap junctional communication and connexin43 expression in relation to apoptotic cell death and survival of granulosa cells[J]. J Histochem Cytochem, 2004,52(9):1199-1207.
    [199] Wilson M R, Close T W, Trosko J E. Cell population dynamics (apoptosis, mitosis, and cell-cell communication) during disruption of homeostasis[J]. Exp Cell Res, 2000,254(2):257-268.
    [200] Krutovskikh V A, Piccoli C, Yamasaki H. Gap junction intercellular communication propagates cell death in cancerous cells[J]. Oncogene, 2002,21(13):1989-1999.
    [201] Piper H M, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury[J]. Cardiovasc Res, 1998,38(2):291-300.
    [202] Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, et al. The end- effectors of preconditioning protection against myocardial cell death secondary to ischemia- reperfusion[J]. Cardiovasc Res, 2006,70(2):274-285.
    [203] Braet K, Vandamme W, Martin P E, et al. Photoliberating inositol-1,4,5 - trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap26[J]. Cell Calcium, 2003,33(1):37-48.
    [204] Szalai G, Krishnamurthy R, Hajnóczky G. Apoptosis driven by IP(3)-linked mitochondrial calcium signals[J]. EMBO J, 1999,18(22):6349-6361.
    [205] Jiang J X, Gu S. Gap junction- and hemichannel-independent actions of connexins[J]. Biochim Biophys Acta, 2005,1711(2):208-214.
    [206] Stout C, Goodenough D A, Paul D L. Connexins: functions without junctions[J]. Curr Opin Cell Biol, 2004,16(5):507-512.
    [207] Huang R P, Fan Y, Hossain M Z, et al. Reversion of the neoplastic phenotype of human glioblastoma cells by connexin43(cx43) [J]. Cancer Res, 1998,58:5089-5096.
    [208] Jiang Z, Zhang Y, Chen X, et al. Activation of ERK1/2 and Akt in astrocytes under ischemia[J]. Biochem and Biophys Res Commun, 2002,294(3):726-733.
    [209] Wang Z Q, Chen X C, Yang G Y, et al. U0126 Prevents ERK pathway phosphorylation and interleukin-1beta mRNA peoducion after cerebral ischemia[J]. Chin Med Sci, 2004,19(4):270-275.
    [210] Krupinski J, Slevin M, Marti E, et al.Time-course phosphorylation of the mitogen activated protein (MAP) kinase group of signalling proteins and related molecules following middle cerebral artery occlusion (MCAO) in rats[J]. Neuropathol ApplNeurobiol, 2003,29(2):144-158.
    [211] Wang X, Zhu C, Qiu L, et al. Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia[J]. J Neurochem, 2003,86(2):351-362.
    [212] Page C, Doubell A F. Mitogen-activated protein kinase (MAPK) in cardiac tissues[J]. Mol Cell Biochem, 1996,157(1-2):49-57.
    [213] Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia[J]. Mol Neurobiol, 2001,23(1):1-19.
    [214] Segal R A, Greeberg M E. Interacellular sinaling pathways activated by neurotrophic factor[J]. Annu Rev Neurosci, 1996,19:463-489.
    [215] Impey S, Obrietan K, Storm D R. Making new connections: role of ERK/MAK kinase signaling in neuronal plasticity[J]. Neuron, 1999,23(1):11-14.
    [216] Sgambato V, Pagès C, Rogard M, et al. Extracelluar signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation[J]. J Neurosci, 1998,18(21):8814-8825.
    [217] Vossler MR, Yao H, York RD, et al. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway[J]. Cell, 1997,89(1):73-82.
    [218] Li D W, Liu J P, Mao Y W, et al. Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation[J]. Mol Biol Cell, 2005,16(9):4437-4453.
    [219] Skaper S D, Facci L,Strijbos P J. Neuronal protein kinase signaling cascades and excitotoxic cell death[J]. Ann N Acad Sci, 2001,939:11-22.
    [220] Stanciu M, DeFranco D B. Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line[J]. J Biol Chem, 2002,277(6):4010-4017.
    [221] Irving E A, Barone F C, Reith A D, et al. Differential activation of MAPK/ERK and P38 /SAPK in neurons and glia following focal cerebral ischemia in the rat[J]. Brain Res Mol Brain Res, 2000,77(1):65-75.
    [222] Lennmyr F, Karlsson S, Gerwins P, et al. Activation of mitogen- activated protein kinases in experimental cerebral ischemia[J]. Acta Neurol Scand, 2002,106(6):333-340.
    [223] Alessandrini A, Namura S, Moskowitz M A, et al. MEK1 protein kinase inhibition protects against damage resulting from cerebral ischemia [J]. Proc Natl Acad Sci USA, 1999,96(22):12866-12869.
    [224] Lu K, Cho C L, Liang C L, et al.Inhibition of the MEK/ERK pathway reduces microglial activation and interleukin-1-beta expression in spinal cord ischemia/ reperfusion injury in rats[J]. J Thorac Cariovasc Surg, 2007,133(4):934-941.
    [225] Jo S K, Cho W Y, Sung S A, et al. MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis[J]. Kidney Int, 2005,67(2): 458-466.
    [226] Wang X, Wang H, Xu L, et al. Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis[J]. J Pharmacol Exp Ther, 2003,304(1):172-178.
    [227] Wang X, Martindale J L, Holbrook N J. Requirement for ERK activation in cisplatin-induced apoptosis[J]. J Biol Chem, 2000,275(50):39435-39443.
    [228] Kim Y K, Kim H J, Kwon C H, et al. Role of ERK activation in cisplatin- induced apoptosis in OK renal epithelial cells[J]. J Appl Toxicol, 2005,25(5):374-382.
    [229] Nowak G.Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells[J]. J Biol Chem, 2002,277(45):43377-43388.
    [230] Sinha D, Bannergee S, Schwartz J H, et al. Inhibition of ligand- independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis[J]. J Biol Chem, 2004,279(12):10962-10972.
    [231] Shonai T, Adachi M, Sakata K, et al. MEK/ERK pathway protects ionizing radiation-induced loss of mitochondrial membrane potential and cell death in lymphocytic leukemia cells[J]. Cell Death Differ, 2002,9(9):963-971.
    [232] Kim S J, Ju J W, Oh C D, et al. ERK1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differectiation status[J]. J Biol Chem, 2002,277(2):1332-1339.
    [233] Wang X, Martindale J L, Li Y, et al. The cellular response to oxidative stress: in?uences of mitogen-activated protein kinase signalling pathways on cell survival[J]. Biochem J, 1998, 333(Pt 2):291-300.
    [234] Di Mari J F, Davis R, Safirstein R L. MAPK activation determines renal epithelial cell survival during oxidative injury[J]. Am J Physiol, 1999,277(2 Pt2):F195-203.
    [235] Arany I, Megyesi J K, Kaneto H, et al. Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells[J]. Am J Physiol, 2004, 287(3): F543-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700