用户名: 密码: 验证码:
大型聚酯生产过程智能建模、控制与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酯(聚对苯二甲酸乙二酯)是一种广泛应用于生产和日常生活的高分子聚合物,其生产过程具有高度非线性、慢时变性及分布参数的特点。随着聚酯产品市场竞争的加剧,聚酯工业生产过程的优化运行在提高企业效益方面的优越性逐渐体现出来。以支持向量机、高斯过程、进化算法等为代表的智能方法已在化工领域得到了应用,解决了复杂化工系统的控制与优化问题。然而,高斯过程作为一种统计建模方法,当样本增加时,其参数计算复杂性增长很快,难以用于工业现场实际;以分布估计算法为研究热点的进化算法在优化过程中,面临着如何更好地估计进化过程中的概率模型、跳出局部最优等问题。因此,智能方法在化工领域的广泛应用仍需要进一步研究和拓展。
     鉴此,本文围绕大型聚酯生产过程的工业实际问题,应用智能方法,对其建模、控制与优化的若干理论和技术进行研究,开发了聚酯过程的智能建模技术、预测控制与智能优化技术,形成了具有实际应用价值的聚酯生产过程优化运行软件,为聚酯生产过程优化提供了新方法和新技术,包括:
     针对分布估计算法求解连续优化问题时数据分布概率模型不易确定的问题,提出了基于核密度估计的单目标和多目标分布估计算法,讨论了算法中核宽度的选择准则,通过数值仿真验证了算法的有效性。该类算法被用于聚酯过程反应动力学参数的优化问题,获得了符合工业装置实际操作工况的工业聚酯过程模型,进而实现了基于工艺机理的聚酯生产过程全流程模拟与工业验证。
     研究了聚酯原料乙二醇生产过程的智能建模问题,采用先验知识与支持向量机的融合方法,提出了表达输入变量单调性的支持向量机模型,用于乙二醇生产氧化反应过程的催化剂失活建模,实现了氧化反应过程的智能机理建模。采集工业装置运行数据,对乙二醇水合反应过程的模型参数进行了优化,获得了符合工业装置实际操作工况的水合反应动力学模型,实现了SD技术的乙二醇生产过程全流程模拟与工业验证。
     针对聚酯过程波动、干扰以及条件的变化对时间的累积效应问题,分别研究了聚酯生产酯化过程和终缩聚过程的动态建模问题。对酯化过程建立了集中参数动态模型,分析了端羧基浓度、气相乙二醇流量等对进料摩尔比、温度、压力等的阶跃响应动态特性,得到了酯化段反应器、工艺塔相互作用下系统的动态变化规律。采用多反应器串连的方式建立了终缩聚反应器的动态模型,分析了特性粘度对真空度、温度等的阶跃响应动态特性,得到了终缩聚过程的动态变化规律。
     研究了高斯过程的软测量建模方法。针对大样本导致高斯过程计算复杂度增加的问题,提出了基于聚类的稀疏高斯过程方法,建立了聚酯酯化反应过程的端羧基浓度软测量模型,降低了模型的计算复杂性,得到了模型预测结果及均方差。研究了拟似输入稀疏高斯过程,增加了在线校正方法,建立了机理不明确的聚酯产品色值模型。研究了基于高斯过程的非线性系统预测控制方法,对聚酯终缩聚过程的特性粘度进行了预测控制仿真。
     基于对聚酯过程运行优化的需要,提出了分布估计算法与柯西分布、粒子群算法相结合的混合智能优化算法,以聚酯生产过程的能量消耗最小为目标,对聚酯过程工艺机理模型进行了过程优化,找出了装置最优工作点,实现了工业过程的节能。
     基于面向服务和多智能体框架,对聚酯生产过程的建模、控制和优化的研究成果进行了集成,建立了工业过程优化运行系统框架。详细讨论了流程行业信息系统中基本服务的定义,服务之间的交互,搭建了基于WEB SERVICE的过程优化运行平台,开发了大型聚酯生产过程的建模、控制与优化的运行优化集成平台。
Poly (Ethylene-Terephthalate) (PET) is a kind of polymers which is widely used in industrial process and daily life. Production process of PET is highly non-linear, slow time-varying and with distributed parameters. With severe competition in PET market, profit improvements of running optimization in industrial processes attract much attention. Artificial intelligence methods such as support vector machines, Gaussian processes and evolutionary algorithms have been applied in the domain of chemical process engineering. These methods solved some control and optimization problems of complex chemical system. However, as a statistic method, optimizations of Gaussian process parameters have complex computation; estimation of distribution algorithm, a hot spot of evolutionary algorithm, is faced with the selection of probability model and easiness to trap into local optimals. The wide application of intelligence methods still needs further research and development.
     This paper focuses on industrial problems of large-scale PET production process and emphasizes on the theoretical and technical research on applying artificial intelligence method to modelling, control and optimization. Running optimization software of PET process has been developed. All of these provide a new way for PET process operation optimization. This paper covers the following parts:
     For the problem that probability model of population is hard to be determined during evolution of estimation of distribution algorithm, single and multi-objective kernel density estimation of distribution algorithms were proposed. The selection criterial of kernel width has also been discussed. Numerical simulation results validated the effectiveness of the algorithms. The algorithms were applied to optimize kinetic parameters of PET process with plant operating data. The industrial kinetic model has been obtained and its efficiency were validated via comparing with industrial data. Based on mechanism, whole process model of PET was developed and certificated with industrial data.
     In this paper intelligent modeling method of ethylene glycol which is raw material of PET was discussed. Priori knowledge was used into support vector machine and support vector model with input variables monotone was proposed. This method was used for modeling of catalyst deactivation and intelligence modeling of oxidation reactor was implemented. Kinetic parameters were optimized with plant data and model of hydration reactor was developed. Whole process of ethylene glycol were simulated and validated with industrial data.
     In order to find cumulative effection of process fluctuations, disturbance and mutative conditions, dynamic model of esterification and final polycondensation process were developed. Step responses of end carboxyl concentration and ethylene flow rate to feed molar ratio, temperature, pressure were discussed and dynamic characteristics of esterification process were obtained. Dynamic model of polycondensation process was established using series reactors and step responses of intrinsic viscosity to vacuum, temperature were analyzed.
     This paper discussed gaussian process for soft sensor modeling. Clustering based sparse gaussian process was proposed in order to reduce the complex computation of gaussian process. It was used in soft sensor modeling of end carboxyle concentration in esterification process and the model gave the prediction and mean variance. Pseudo-input sparse gaussian process was used in this paper and online learning method was added. It is used in the modeling of b value of PET. Also gaussian process was also used in prediction control. Prediction control based on gaussian process was used for the control of instrinsic viscosity in final polycondensation process.
     For the optimization of PET process, hybrid optimization algorithms based on estimation of distribution algorithm, Cauchy distribution and particle swarm optimization were proposed. Based on the whole process model of PET, energy consumption was optimized using hybrid optimization algorithm. The optimal operation were obtained and used in industrial process for energy-saving.
     Based on service-oriented architecture and multi-agent, modeling, control and optimization were integrated into running optimization framework. Basic services in industry information system were defined and interactions between services were discussed. The platform of running optimization was developed and integration software of PET modeling, control and optimization were established.
引文
[1]张少波.我国聚酯工业的发展现状及对策.合成技术及应用,2004,19(3):39-41.
    [2]徐用懋杨尔辅.石油化工流程模拟、先进控制与过程优化技术的现状与展望.工业控制计算机,2001,14(9):21-27.
    [3]牟盛静.石化工业过程建模与优化若干问题研究.浙江大学博士论文,2004,2.
    [4]商利容.PET聚合反应器的建模及在聚合流程动态模拟中的应用.北京化工大学硕士论文,2000,5
    [5]K.Ravindranath and R.A.Mashelkar. Modling of Poly(Ethylene Terephthalate) Reactors: 4. A Continuous Esterification Process. Polymer Engineering and Science,1982,22(10): 610-618.
    [6]T. Yamada and Y. Imamura. Simulation of Continuous direct esterification process between terephthalic acid and ethylene glycol. Polymer plastic techonologe engineering, 1989,28(7-8):811-876.
    [7]武荣瑞.PET合成反应的化学平衡.合成纤维工业,1983,(2):44-48.
    [8]武荣瑞.PET合成中的化学动力学.合成纤维工业,1983,(4):41-48.
    [9]武荣瑞.聚酯(PET)合成中二甘醇生成动力学的研究,1983,(1):44-49.
    [10]沈瀛坪,赵玲.聚酯(PET)反应过程研究:Ⅰ对苯二甲酸和乙二醇直接酯化反应过程分析及主反应化学平衡研究.化学反应工程与工艺,1997,13(2):173-178.
    [11]沈瀛坪,赵玲.聚酯(PET)反应过程研究:Ⅱ酯化反应过程动力学研究.化学反应工程与工艺,1997,13(2):179-183.
    [12]沈瀛坪,赵玲.聚酯(PET)反应过程研究:Ⅲ酯化反应过程中传质研究.化学反应工程与工艺,1997,13(3):251-256.
    [13]沈瀛坪,赵玲.聚酯(PET)反应过程研究:Ⅳ酯化反应过程数学模拟.化学反应工程与工艺,1997,13(3):257-262.
    [14]K.Ravindranath and R.A.Mashelkar. Modeling of Poly(Ethylene Terephalate)Reactors: 5. A Continuous Prepolymerization Process. Polymer Engineering and Science,1982, 22(10):619-627.
    [15]沈瀛坪,赵玲.聚酯(PET)反应过程研究:Ⅴ预缩聚反应过程分析和反应动力学研究.化学反应工程与工艺,1997,13(4):377-382.
    [16]沈瀛坪,赵玲.聚酯(PET)反应过程研究:Ⅵ预缩聚反应过程的数学模拟.化学反应工程与工艺,1997,13(4):383-388.
    [17]K.Ravindranath and R.A.Mashelkar. Modeling of Poly(Ethylene Terephalate)Reactors: 6. A Continuous Process for Final Stage of Polycondensation. Polymer Engineering and Science,1982,22(10):628-636.
    [18]Claude Laubriet, Brice Lecorre, Kyu Yong Choi. Two-Phase Model for Continuous Final Stage Melt Polycondensation of Poly(ethylene terephthalate).1. Steady-State Analysis. Industrial Engineering of Chemical Research,1991,30(1):2-12.
    [19]Claude Laubriet, Brice Lecorre, Kyu Yong Choi. Two-Phase Model for Continuous Final Stage Melt Polycondensation of Poly(ethylene terephthalate).2. Analysis of Dynamic Behavior. Industrial Engineering of Chemical Research,1991,30(8): 1712-1718.
    [20]In Sun Kim, Boo Gon Woo, Kyu Yong Choi, Chang Kiang. Two-Phase Model for Continuous Final-Stage Melt Polycondensation of Poly(ethylene terephthalate). III. Modeling of Multiple Reactors with Multiple Reaction Zones. Journal of Applied Polymer Science,2003,90:1088-1095
    [21]Amon M, Denson C.D. Simplified Analysis of the Performance of Wiped-Film Polycondensation Reactors. Ind. Eng. Chem. Fundam.,1980,19:415-420.
    [22]K.H.Yoon, O.O.Park. Analysis of a Reactor With Surface Renewal for Poly(Ethylene Terephthalate) Synthesis. Polymer Engineering and Science,1994,34(3):190-200.
    [23]H.Yokoyama, T.Sano, T.Chijiiwa and R.Kajiya. A Simulation Method for Ethylene Glycol Terephthalate Polycondensation Process. J.Japan Petrol Inst.,1978, 21(4):271-276.
    [24]史文波.聚酯终缩聚过程模型化.浙江大学硕士论文,1996.
    [25]沈瀛坪,赵玲.聚酯(PET)反应过程研究:Ⅶ后缩聚反应过程研究和数学模拟.化学反应工程与工艺,1997,13(4):389-393.
    [26]赵玲.聚酯缩聚反应与脱挥.华东理工大学博士论文,1999.
    [27]王良生.旋转圆盘上的液膜运动与物质传递.华东理工大学博士论文,1999.
    [28]吴家全,李富荣.聚酯预缩聚反应动力学研究.聚酯工业,2001,14(6):14-17,59.
    [29]陈军,张素贞.聚对苯二甲酸乙二醇酯生产中终缩聚反应过程模型及其工业应用.华东理工大学学报,1994,20(6):802-808.
    [30]张素贞,叶心宇.聚酯工业生产过程模型及仿真.计算机与应用化学,1994,11(4):258-268.
    [31]Aspen Technology Inc. Polymers Plus 11.1 user's manual for windows.2001
    [32]Rieckmann Th., Volker S. Micro-kinetics and mass transfer in poly(ethylene terephthalate) synthesis. Chemical Engineering Science,2001,56:945-953.
    [33]王金堂.聚酯终缩聚过程研究.上海:华东理工大学硕士论文,2000.
    [34]钱瑛.聚酯三釜流程模型开发及应用.上海:华东理工大学硕士论文,2003.
    [35]曹柳林,陶斌军.基于对角递归神经网络的粘度软测量模型.北京化工大学学报,2001,28(2):70-76.
    [36]曹柳林,吴海燕.利用B样条神经网络实现聚合反应分子量分布的建模与控制.化工学报,2004,55(5):742-746.
    [37]司雪芬.工业聚酯生产装置的先进控制方法和应用研究.浙江大学硕士论文,2001.
    [38]陈兰星.基于RBF神经元网络的聚酯工业软测量软件包的研究及开发.北京化工 大学硕士论文,2005.
    [39]陈文杰,王晶.基于支持向量机的聚酯粘度在线软测量.控制工程,2005,12(5):492-495.
    [40]Lightbody G., O'Reilly P., Irwin G.W., Kelly K.&McCormick J. Neural modelling of chemical plant using MLP and B-spline networks. Control Engineering Practice,1997, 5(11),1501-1515.
    [41]Zhang J., Martin E. B., Morris A. J.& Kiparissides C. Inferential estimation of polymer quality using stacked neural networks. Computers and Chemical Engineering,1997, 21(Suppl.):1025-1030.
    [42]Zhang J., Morris A. J., Martin, E. B.,& Kiparissides, C. Prediction of polymer quality in batch polymerisation reactors using robust neural networks. Chemical Engineering Journal,1998,69:135-143.
    [43]J.C.B. Gonzagaa, L.A.C Meleirob, C. Kianga, R. Maciel Filho. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Computers and Chemical Engineering,2009,33:43-49.
    [44]Chang-Kwon Kang, Byoung Chul Lee, Dae Woo Ihm, David A. Tremblay. A simulation study on continuous direct esterification process for poly(ethylene terephthalate) synthesis. Journal of Applied Polymer Science,1997,63(2):163-174.
    [45]于光明.瓶基聚酯终缩聚过程动态行为分析与控制方案设计.华东理工大学硕士论文,2002.
    [46]刘济,顾幸生,张素贞.PET固相缩聚反应器动态模型.化工学报,2008,59(7):1727-1731.
    [47]Carlo Algeri and Maurizio Rovaglio. Dynamic modeling of a poly(ethylene terephthalate) solid-state polymerization reactor I:Detailed model development. Industrial & Engineering Chemical Research,2004,43(15):4253-4266.
    [48]Bruce Lucas, Kevin C. Seavey, and Y. A. Liu. Steady-State and Dynamic Modeling for New Product Design for the Solid-State Polymerization of Poly(Ethylene Terephthalate). Industrial & Engineering Chemical Research,2007,46(1):190-202.
    [49]许超,陈治纲,邵惠鹤.预测控制技术及应用发展综述.化工自动化及仪表,2002,29(3):1-10.
    [50]Marcelo Embiruc U, Enrique L. Lima and Jose Carlos Pinto. A Survey of Advanced Control of Polymerization Reactors. Polymer Engineering and Science,1996,36(4): 433-447.
    [51]孙烨,曹柳林,吴海燕.聚合物分子量分布的多变量建模与闭环控制研究.仪器仪表用户,2006,(4):21-23.
    [52]李宏光.基于实时推理的工业聚酯粘度智能控制系统.北京化工大学学报:自然科学版,1999,26(3):57-60.
    [53]范文兵,张素贞,陶振麟.聚酯生产过程质量指标软测量和优化控制系统.计算机与应用化学,2003,20(3):221-224.
    [54]徐顺喜,张素贞.酯化反应过程多指标多自由度优化控制.华东理工大学学报,1996,22(4):467-473.
    [55]范文兵,张素贞.聚酯缩聚反应过程分子量分布的优化控制.华东理工大学学报,2003,29(3):303-305,310.
    [56]孙京诰.工业聚酯生产过程智能控制系统研究.北京化工大学硕士论文,2000.
    [57]魏光恩.聚酯装置负荷控制回路的改进.石油化工自动化,2003,1:80-81.
    [58]司雪芬.工业聚酯生产装置的先进控制方法和应用研究.浙江大学硕士论文,2001.
    [59]司雪芬,苏宏业,褚健.大型聚酯装置的先进控制.自动化技术与应用,2001,(1):1-3.
    [60]张春雨.管式聚合反应温度分布建模及控制方法的研究.北京化工大学硕士论文,2005.
    [61]Carlo Algeri and Maurizio Rovaglio. Dynamic Modeling of a Poly(ethylene terephthalate) Solid-State Polymerization Reactor II Model Predictive Control. Industrial & Engineering Chemical Research,2004,43(15):4267-4277.
    [62]徐顺喜,张素贞.酯化反应过程多指标多自由度优化控制.华东理工大学学报,1996,22(4):467-473.
    [63]石伟.基于多目标遗传算法的酯化过程优化.华东理工大学硕士论文,2003.
    [64]江沛,曹柳林.聚酯工业生产缩聚过程的多目标优化.计算机与应用化学,2007,24(11):1493-1496.
    [65]刘高才.杜邦聚酯高负荷生产的工艺优化.聚酯工业,2004,17(5):37-39.
    [66]Kumar, A., Sharma, S. N.,& Gupta, S. K. Optimization of polycondensation step of PET formation with continuous removal of condensation products. Polymer Engineering Science,1984,24:1205.
    [67]Kumar, A., Sharma, S. N.,& Gupta, S. K. Optimization of polycondensation stage of PET reactor. Journal of Applied Polymer Science,1984,29:1045.
    [68]Kumar, A., Sukthankar, V. K., Vaz, C. P.,& Gupta, S. K. Optimization of the transesterification of PET reactor. Polymer Engineering and Science,1984,24:185.
    [69]Bhaskar V., Gupta Santosh K. and Ray Ajay K. Multiobjective optimization of an industrial wiped film poly(ethylene terephthalate) reactor:some further insights. Computers & Chemical Engineering,2001,25(2-3),391.
    [70]Ha K.S, Rhee H.K. Optimal reaction conditions for the minimization of energy consumption and by-product formation in a poly(ethylene terephthalate) process. Journal of Applied Polymer Science,2002,86(4),993.
    [71]Flavio Manenti, and Maurizio Rovaglio. Integrated Multilevel Optimization in Large-Scale Poly(Ethylene Terephthalate) Plants. Industrial & Engineering Chemistry Research,2008,47:92-104.
    [72]H.Muhlenbein and G.Paaβ. From recombination of genes to the estimation of distributions Ⅰ. Binary Parameters. Parallel Problem Solving from Nature-PPSN V,1999: 78-187.
    [73]钟润添.分布估计算法及其应用研究.中国科学技术大学硕士论文,2006.
    [74]Baluja S. Population-Based Incremental Learning:A Method for Integrating Genetic Search Based Function Optimization and competitive Learning. Technical Report CMU-CS-94-163, Pittsburgh, PA:carnegie Mellon University,1994.
    [75]G.R. Harik, F.G. Lobo, and D.E.Goldberg, The compact genetic algorithm. in Proceedings of the International Conference on Evolutionary Computation(ICEC) 1998: 523-528.
    [76]H.Muhlenbein. and Paass G. From recombination of genes to the estimation of distributions I. Binary parameters. Paramllel Problem Solving from Nature--PPSN IV. Berlin,1996:178-187.
    [77]J. S. D. Bonet, C. L. Isbell, and P. Viola. MIMIC:Finding oPtima by estimating probability densities. Adv. Neural Inform. Process. Syst..1997,9:424-.
    [78]Baluja and Davies,1997 Baluja, S., Davies, S.,1997. Combining multiple optimization with optimal dependency trees. Technical Report CMU-CS-97-157, Carnegie Mellon University, Pittsburgh.
    [79]M.Pelikan and H.Miihlenbein. The bivariate marginal distribution algorithm. Advanced Soft Computation:Engineering Design and Manufacturing,1999:521-535.
    [80]G. Harik. Linkage Learning via Probabilistic Modeling in the ECGA. IlliGAL Report No.99010, University of Illinois at Urbana-Champaign, Urbana, IL, January 1999.
    [81]M.Pelikan, D.E.Goldberg and E. Cantu-Paz. BOA:The Bayesian optimization algorithm. In Proc. Genetic and Evolutionary Computation Conf.(GECCO-99),1999,Ⅰ: 525-532.
    [82]H.Muhlenbein. and Mahnig T. Convergence theroy and applications of the factorized distribution algorithm. Journal of Computing and Information Technology,1999,7(1): 19-32
    [83]P. A. N. Bosman and D. Thierens. Expanding from discrete to continuous estimation of distribution algorithms:The IDEA.in PPSN VI, M.Schoenauer, K.Deb, G.Rudolph, X.Yao, E.Luton, J.J.Merelo, and H.-P. Schwefel, Eds. New York:Springer-Verlag, 2000:767-776.
    [84]Shigeyoshi Tsutsui, Martin Pelikan, and David E. Goldberg. Evolutionary Algorithm using Marginal Histogram Models in Continuous Domain. in Continuous Domain, Proc. of the 2001 Genetic and Evolutionary Computation Conference Workshop Program, 2001.
    [85]屈文建,熊国经.非参数密度估计法比较分析及应用.沈阳农业大学学报,2008,39(4):468-472.
    [86]K.E.PARSOPOULOS and M.N.VRAHATIS. Recent approaches to global optimization problems through Particle Swarm Optimization. Natural Computing,2002:235-306.
    [87]K Deb, A Pratap, S Agarwal et al. A fast and elitist muhiobjeetive genetic algorithm: NSGA-Ⅱ[J]. Trans on Evolutionary Computation,2002:6(2):182-197.
    [88]K.E.Parsopoulos, M.N.Varhatis. Particle swarm optimization method in multiobjective problems. In:Proc. ACM Symp on Applied Computing, Madrid, Spain,2002: 603-607.
    [89]Sujin Bureerat and Krit Sriworamas. Population-Based Incremental Learning for Multiobjective Optimisation. A. Saad et al. (Eds.):Soft Computing in Industrial Applications, ASC 39,2007:223-232.
    [90]Laumanns, M. and Ocenasek, J.. Bayesian Optimization Algorithms for Multi-objective Optimization[C]. In Merelo Guerv6s, J. J. el al., editors. Proceedings of Parallel Problem Solving from Nature Ⅶ,2002:298-307,
    [91]Thierens, D. and Bosmann, P. A. N., Multi-Objective Mixture based Iterated Density Estimation Evolutionary Algorithm. In Spector, L. et al., editors, Proceedings of Generic and Evolutionary Computation Conference,2001:663-670.
    [92]Costa. M. and Minisci, E.. MOPED:A Multi-objective Parzen based Estimation of Distribution Algorithm for Continuous Problems. In Fonseca C. M. et al.. editors, Proceedings of the Second Internaitional Conference on Evolutionory Multi-Critrion Optimization,2003:282-294.
    [93]P. Larranaga, R. Etxeberria, J.A. Lozano, J.M. Pena, Optimization in continuous domain by learning and simulation of Gaussian networks, in:The Proceeding of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, Las Vegas, Nevada,2000:201-204.
    [94]张师民.聚酯的生产及应用.中国石化出版社,北京,1997.
    [95]钱瑛Polymer Plus软件及其在丙烯腈聚合过程模拟中的应用.金山油化纤,2004,23(1):59-62.
    [96]钱瑛.聚酯三釜流程模型开发及应用.华东理工大学硕士论文,2003.
    [97]V. Vapnik, The Nature of Statistical Learning Theory. Second Edition, Springer, New York,2001.
    [98]Aly Farag and Refaat M Mohamed Regression Using Support Vector Machines:Basic Foundations. Technical Report,2004.
    [99]L. Kaufman, Solving the quadratic programming problem arising in support vector classification. Advances in Kernel Methods-Support Vector Learning, Bernhard Scholkopf, Chrisopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA,1998
    [100]E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, in:Proc. of the IEEEWorkshop on Neural Networks for Signal Processing, Amelia Island, FL, USA, IEEE Press, Cambridge, MA, USA,1997:276-285.
    [101]J. C. Platt, Fast training of support vector machines using sequential minimal Optimization. Advances in Kernel Methods-Support Vector Learning, Bernhard Scholkopf, Chrisopher J.C. Burges and Alexander J. Smola (eds.), MIT Press, Cambridge, MA,1998
    [102]Chen Chongwei, Chen Dezhao. Design Hybrid Methods for Encoding Prior Knowledge in Feedforward Network with Application in Chemical Engineering. Chinese Journal of Chemical Engineering,2002,10(4):427-434.
    [103]Klugherz P D, Harriot P. Kinetics of ethylene oxidation on a supported silver. AICHE J.,1971,17(4):856-866.
    [104]Metcalf P I, Harriot P. Kinetics of silver-catalyzed ethylene oxidation. Industrial & Engineering Chemistry, Process Design and Development,1972,11(4):478-484.
    [105]Stoukides M, Pavlou S. Ethylene oxidation on silver catalysts:effect of ethylene oxide and of external transfer limitations. Chemical Engineering Communication,1986,44: 53-61.
    [106]AI-Saleh M A, AI-Ahmadi M S, Shalabi M A, Kinetic study of ethylene oxidation in a berty reactor. Chemical Engineering Journal and the Biochemical Engineering Journal, 1988,37:35-41.
    [107]Borman P C, Westerterp K R. An experimental study of the kinetics of the selective oxidation of ethene over asilver on a-Alumina catalyst. Industrial & Engineering Chemistry Reviews,1995,34(1):49-58.
    [108]LiangRuJun, Li Jianwei, Chen Biaohua, Na Yingzi. Macrokineties of Epoxidation of Ethylene over YS-7 Ag-based Catalyst. Journal of Henan University(Natural Science), 2007,37(2):141-146.
    [109]Gan Lin, Wang Hongshi, Zhu Bingehen, Xu Maosheng, Wang Zhongliang. Global kinetics and deactivation of silver catalyst for ethylene oxide synthesis. Journal of Chemical Industry and Engineering(China),2001,52(11):969-973.
    [110]Dai Li, Zheng Yafeng, Yan Wei, Gao XiaoFang, Xin Feng. Epoxidation of Ethylene in a Capillary Microreactor. Petrochemical Technology,2007,36(2):156-160.
    [111]黄琦.环氧乙烷合成反应器的模拟及温度——时间优化策略.华东理工大学,硕士论文,2003,12.
    [112]AI-Saleh M A, AI-Ahmadi M S, Shalabi M A, Kinetic study of ethylene oxidation in a berty reactor. Chemical Engineering Journal and the Biochemical Engineering Journal, 1988,37:35-41.
    [113]Georges A. Melhem, Arturo Gianetto, Marc E. levin, Harold G. Fisher, Simon Chippett, Surendra K. Singh,and Peter I. Chipman. Kinetics of the reactions of ethylene oxide with water and ethylene glycols. Process Safety Progress,2001,20(4):231-246
    [114]史文波,潘勤敏,孙建中,聚酯终缩聚过程模型化进展.合成纤维工业,1996:48-51.
    [115]C. Kiparissides, Polymerization reactor modeling:a review of recent developments and future directions. Chemical Engeering Science,1996,51:1637-1659
    [116]In Sun Kim, Boo Gon Woo, Kyu Yong Choi, Chang Kiang. Two-Phase Model for Continuous Final-Stage Melt Polycondensation of Poly(ethylene terephthalate).Ⅲ. Modeling of Multiple Reactors with Multiple Reaction Zones. Journal of Applied Polymer Science,2003,90:1088-1095.
    [117]C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, Cambridge, MA,2006.
    [118]D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor, Neural Networks and Machine Learning, volume 168 of NATO ASI Series,1998:133-165.
    [119]C. K. I. Williams. Gaussian processes. In M. A. Arbib, editor, Handbook of Brain Theory and Neural Networks,2002:466-470.
    [120]C. K. I. Williams. Gaussian processes. In M. A. Arbib, editor, Handbook of Brain Theory and Neural Networks,2002:466-470.
    [121]Wahba G. Spline models for observational data. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM,1990.
    [122]Anderieu C, de Freitas N, Doucet A et al. An introduction to MCMC for machine learning.Machine Learning,2003,50(1-2):5-43
    [123]Williams, C. K. I. and M. Seeger. Using the Nystrom method to speed up kernel machines. In Leen, T. K., T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13. MIT Press,2001:682-688.
    [124]Seeger, M., Williams, C. K. I., and Lawrence, N. (2003). Fast Forward Selection to Speed Up Sparse Gaussian Process Regression. In Bishop, C. and Frey, B. J., editors, Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence andStatistics,2003.
    [125]Ping Sun and Xin Yao. Greedy forward selection algorithms to Sparse Gaussian Process Regression.2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21,2006.
    [126]Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y.Weiss, B. Scholkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, Cambridge, Massachusetts,2006.
    [127]Edward Snelson, Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. Advances in Neural Information Processing Systems,2006:1257-1264.
    [128]L. Csato and M. Opper. Sparse online Gaussian processes. Neural Computation,2002, 14(2):641-669.
    [129]Ananth Ranganathan and Ming-Hsuan Yang. Online Sparse Matrix Gaussian Process Regression and Vision Applications, Lecture Notes In Computer Science; Vol.5302, Proceedings of the 10th European Conference on Computer Vision:Part Ⅰ,2008,5302: 468-482.
    [130]C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, Cambridge, MA,2006.
    [131]Joaquin Quinonero-Candela. Carl Edward Ramussen, Christopher K. I. Williams. Approximation Methods for Gaussian Process Regression. Microsoft Research Technical Report,2007
    [132]Joaquin Quinonero-Candela. Carl Edward Ramussen, A Unifying View of Sparse Approximate Gaussian Process Regression. Journal of Machine Learning Research, 2005:1939-1959.
    [133]阎威武,常俊林,邵惠鹤.基于滚动时间窗的最小二乘支持向量机回归估计方法及 仿真.上海交通大学学报,2004,38(4):524-532.
    [134]王华忠.高斯过程及其在软测量建模中的应用.化工学报,2007,58(11):2840-2845.
    [135]SVM with polynomial kernel function based nonlinear model one-step-aheadpredictive control. Chinese journal of chemical engineering,2005,13(3):373-379.
    [136]Support vector machine based nonlinear model multi-step-ahead optimizing predictivec ontrol. Journal of central south university of technology,2005,12(5):591-595.
    [137]Kocijan J., Girard A., Banko B., Murray-Smith R., Dynamic Systems Identification with Gaussian Processes, Proceedings of 4th Mathmod, Vienna,2003:776-784.
    [138]Kocijan J., Likar B., Banko B., Girard A., Murray-Smith R., Rasmussen C.E., A case based comparison of Identification with neural network and Gaussian process models, Preprints of IFAC ICONS Conference, Faro,2003:137-142.
    [139]Gregorcic G., Lightbody G., Internal model control based on a Gaussian process prior model, Proceedings of ACC'2003, Denver, CO,2003:4981-4986.
    [140]Murray-Smith R. and Sbarbaro D., Nonlinear adaptive control using nonparametric Gaussian process prior models, In:Pmc. IF AC Congess, Barcelona,2002.
    [141]Ju S Kocijan, Roderick Murray-Smith, Carl Edward Rasmussen, Agathe Girard. Gaussian Process Model Based Predictive Control. Proceeding of the 2004 American Control Conference, Boston, Massachuselts June 30 -July 2,2004:2214-2219.
    [142]Kumpati S. Narendra, Kannan Parthasarathy. identification and control of dynamic systems using neural networks. IEEE Transaction on Neural Networks.1990,1(1): 4-27.
    [143]R. V. Kulkarni and G. K. Venayagamoorthy. An Estimation of Distribution Improved Particle Swarm Optimization Algorithm. ISSNIP 2007:539-544.
    [144]Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelligence,1997,8(3):323-364.
    [145]Minsky, Marvin. The Society of Mind. New York:Simon and Schuster,1986.
    [146]M. Wooldridge, N. Jennings. Intelligents:Theory and pratice. Knowledge Engineering Review,1995,10(2):115-152.
    [147]Yu Qian, Qiming Huang, Weilu Lin, Xiuxi Li. An object/agent based environment for the Computer Integrated Process Operation System. Computers and Chemical Engineering,2000, (24):457-462.
    [148]Bergenti Federico, Blake M.Brian, Cabri Giacomo. Agent-based computing for enterprise collaboration-human-agent and agent-agent collaboration. Proceedings of the Workshop on Enabling Technologies:Infrastructure for Collaborative Enterprises. WET ICE,2004,13:11-12.
    [149]Wang Shuying, Shen Weiming, Hao Qi. An agent-based Web service workflow model for inter-enterprise collaboration. Expert Systems with Applications,2006,31(4): 787-799.
    [150]Zhang W.J., Xie S.Q. Agent technology for collaborative process planning:A review. International Journal of Advanced Manufacturing Technology,2007,32(3-4):315-325.
    [151]Li Li, Qiao Fei, Wu Qidi. Agent-based dynamic scheduling for semiconductor wafer fab. 2005 IEEE Networking, Sensing and Control, ICNSC2005-Proceedings,2005: 163-168.
    [152]T. Wittig. ARCHON:An architecture for multi-Agent systems. Ellis Horwood,1992
    [153]N.N. Chokshi and D.C. McFarlane. Rationales for Holonic Applications in Chemical Process Industries. MASA.2002:336-350.
    [154]杨涛,刘锦德Web Services技术综述——一种面向服务的分布式计算模式.计算机应用,2004,24(8):1-4.
    [155]屈婷婷,毛新军.集成Agent技术和面向服务计算技术:现状和展望.计算机科学,2008,35(1):5-8.
    [156]Bill Evjen, Kent Sharkey, Thiru Thangarathinam. XML高级编程.清华大学出版社,北京,2009,2.
    [157]Jan Morbach, Aidong Yang, Wolfgang Marquardt. OntoCAPE-A large-scale ontology for chemical process engineering. Engineering Applications of Artificial Intelligence, 2007 (20):147-161.
    [158]Yang, A., et al., A multi-agent system to facilitate component-based process modeling and design, Computers & Chemical Engineering,2008,32(10):2290-2308.
    [159]王海东,朱文华,王宇颖.面向服务的化工行业能效管理系统研究.微型电脑应用,2009,25(5):19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700