用户名: 密码: 验证码:
区域客户端能源综合需求侧管理理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2009年底,我国政府制定了2020年降低碳强度的目标:即单位国内生产总值二氧化碳排放比2005年下降40%-45%。基于我国发展低碳经济的战略规划和近期提出的节能减排政策,本文对区域客户端能源综合需求侧管理进行了理论研究和实证分析,力图提高能源利用效率,减少碳排放,促进低碳经济发展。主要研究内容如下:
     (1)提出了区域客户端能源综合需求侧管理(ECDSM,Energy Comprehensive Demand-Side Management)的基本概念,就是从需求侧的角度去研究市场对于冷、热、电的生产和消费,从更高层次上处理好需求侧和供应侧的关系,根本上做到节约能源,保护环境;指明了实施ECDSM的目的,界定了实施ECDSM的条件,提出了实施ECDSM的手段,并分析了实施ECDSM的价值。
     (2)分析了区域客户端能源冷热电市场需求水平与消费结构。通过分析区域客户端市场对冷、热、电的需求及消费结构,找出了三者之间存在的内在联系,并通过三者之间的比例关系所体现出的能源消耗水平,找到了降低能源消耗的关键环节。
     (3)通过研究影响客户端能源需求的各项因素,建立了基于蚁群优化的支持向量机客户端能源需求预测模型,该模型有效克服了区域客户端能源需求历史资料搜集难度大,样本少,影响因素多,各影响因素与客户端能源需求变化的关联关系比较难掌握等难点。并以北京市为例,进行预测分析,预测精度与单独的SVM和BP神经网络相比分别提高了1.19%和1.92%,得到了很好的预测效果。
     (4)建立了基于节能减排的客户端能源运行机制,提出了客户端能源冷热电需求侧管理的技术机制、经济机制、激励机制以及行政机制,给出了相应的实施方案,并对政府在实施ECDSM过程中的作用给出了相应的政策建议。
     (5)结合能源消费、电力需求、建筑能耗、建筑节能、综合资源规划、国家能源政策等,分析了实施ECDSM涉及到的各方面因素和关键环节,构建了一套完整的客户端能源需求侧管理运行机制效果评价指标体系,并对相应的评价方法进行了分析。
     (6)以客户端能源需求侧运行机制效果评价指标体系为依据,结合三联供系统自身的特点构建了冷热电三联供技术的效益评价指标体系,建立了基于Elman神经网络模型的区域冷热电三联供评价模型,对冷热电三联供技术的实施效益进行了分析与评价。通过案例分析,验证了该评价模型较其他模型具有更高的评价精度,并具有广泛的实用性。
By the end of 2009, Chinese Government has enacted the goal of 2020 to reduce carbon intensity: carbon dioxide emissions per unit of GDP will be reduced 40%-45% compared to 2005. Basing on the national policy of energy conservation and the strategic planning of low-carbon economy in China, and analyzing the long-term goal of improving energy efficiency, reducing pollution and emissions, this paper presents a effective measures. It is the theory and application research of regional client energy comprehensive demand-side management. It is hoped that through this research to achieve the purpose of saving energy consumption and improving energy efficiency.
     This paper proposes the concept of Energy Comprehensive Demand-Side Management (ECDSM), that is: studying the market’s demand for the production and consumption of cold, heat and power from the view of demand-side, and handling the relationship on the demand-side and the supply-side from a high level, which can fundamentally achieve the purpose of saving the energy and protecting the environment. This paper also proposes the involved contents, conditions, means and purposes of the implementation in the process of conducting ECDSM; and analyses the value of conducting ECDSM.
     This paper analyses the demand level and consumption structure of regional client energe cool heat power market. Through the analysis of the demand and consumption structure of the cool, heat and power in the regional client market, this paper discovers the inherent link of cool, heat and power, and finds the key to reducing energy consumption through the analysis of the energy consumption level, which can be deeply reflected in the analysis of the three’s proportional relationship.
     This paper studies all the factors that affected the client-side energy demand, and builts client-side energy demand forecast model based on Support Vector Machine and Ant Colony Optimization. This model overcomes these difficulties including the difficulties in the collection of the data for the local client-side demand, small sample, several of multiple factors, and hard to master the relationship between the affections and the change for the client-side energy demand. In this paper, take the case of Beijing for example, forecast and analyze the data, and get a good prediction at last.
     Based on Energy saving and emission reduction ,this paper establishes the client energy operation mechanism, presents technology, economic, incentives and administrative mechanisms on the management of client-side energy demand for heating and power, and proposes the corresponding implementation plans. In addition, corresponding policy proposals are given to government in the implementation process of the role of ECDSM.
     The client energy operation mechanism is proposed based on Energy saving and emission reduction, and a complete set of effectiveness evaluation index system for the client-side energy demand management and operating mechanism is constructed. During the process of index system, analyze the various of factors and links during the operation of ECDSM, taking consideration of the energy consumption, electricity demand side, building consumption, building saving, the integrated resource planning, national energy policies, and so on. In addition, the corresponding evaluation methods are also analyzed in this paper.
     This paper proposed the analysis and evaluation of the benefit of CCHP (combined cooling heating and power). According to the evaluation index system of the operational mechanism on the client-side energy demand, and the features of CCHP system, this paper established index system about benefit evaluation. It proposed the evaluation model, which is based on Elman neural network model for regional CCHP system. Through case studies, it is proved that the evaluation based on Elman neural network model is much more accurate. Besides the results come out to be very well, the evaluation model can be applied widely.
引文
[1]王金南,曹东等.能源与环境中国2020[M].北京:中国环境科学出版社,2004.
    [2]马强,刘冰.世界主要国家能源消费实证分析[J].中国能源2007,29(7):20-23.
    [3]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [4]陈甲斌,贾文龙,殷俐娟.能源消费结构分析及政策研究[J].中国煤炭,2007,33(5):21-24.
    [5]朱成章.从热电联产走向冷热电联产[J].国际电力,2000,2:10-16.
    [6]华贲,龚婕.发展以分布式冷热电联供为核心的第二代城市能源供应系统[J].建筑科学,2007,23(4):5-8.
    [7]刘晓丹.冷热电联产系统分析与运行优化[D].大连:大连理工大学,2007.
    [8]尚金成,张立庆.电力节能减排与资源优化配置技术的研究与应用[J].电网技术,2007,31(22):58-63.
    [9]韩文科,胡秀莲,高世宪等.中国能源消费结构变化趋势及调整对策[M].北京:中国计划出版社,2007.
    [10]林峰,于文涛.中国电源结构优化的政府管制改革的探讨[J].中国能源,2006,28, (7):30-37
    [11]崔可山,张秋菊,段平.论建筑节能技术保障体系建设[J].建筑科学,2006, (3):54-55.
    [12]刘玉庆.促进我国建筑节能事业发展的财税政策研究[D].长沙:湖南大学,2008.
    [13]武涌.关于充分发挥政府公共管理职能,推进建筑节能工作的思考.建筑节能[M].北京:中国建筑工业出版社,2002.
    [14]张积太,张伟.东北方地区城镇住宅采暖与空调的模式及经济技术分析[J].技术交流,2005,5:78-80.
    [15]夏一哉,赵荣义,江亿.北京市住宅环境热舒适研究[J].暖通空调,1999,29(2):1-5.
    [16]扈晓庆,牛庆照,方修睦等.不同气候区典型城市采暖热计量的节能率分析[J].山东暖通空调,2007,2:45-54.
    [17]李先瑞,郑晓亮,田继民等.住宅供暖.与空气调节(二)[J].中国建设信息供热制冷,2002,3:63-72.
    [18]杨薇,张国强.湖南某大学校园建筑环境热舒适调查研究[J].暖通空调,2006,36(9):95-101.
    [19]严德隆,张维君.空调制冷及热电冷联产系统的能耗分析[J].暖通空调,1998,28(6):18-22.
    [20]付林,耿克,成江亿.热电冷联供系统方案综合评价[J].暖通空调,2008,38(4):108-111.
    [21]钟婷,龙惟定.上海市住宅空调的相关调查及其耗电量的估算[J].建筑热能通风空调,2003,3:22-24.
    [22]王荣,盛晓文,季阿敏.夏热冬冷地区居住建筑空调方式的能耗评价[J].暖通空调,2005,35(9):103-106.
    [23]徐建中.分布式供电和冷热电联产的前景[J].节能与环保,2002,3:10-14.
    [24]赵延德,张慧.城市能源消费结构变动的环境效应探析[J].水土保持研究,2007,14(2):327-332.
    [25]王春清,韦新东,高伟俊,尹军.吉林省生活用能源消费结构及环境负荷的预测研究[J].长春工业大学学报(自然科学版),2007,28(7):24-28.
    [26]王泽生.天津市能源消费结构与环境空气质量的现状分析[J].中国能源,2009,31(2):35-37.
    [27]陈鹏.中国能源消耗与国内生产总值关系的实证分析[J].国土与自然资源管理,2006,(3):15-16.
    [28]陈卫东,陆海波,顾培亮.中国能源需求长期均衡和短期波动的协整分析[J].天津大学学报,2006,6(39):268-273.
    [29]车树芹.我国区域GDP与能源消费关系的实证研究[J].大连:东北财经大学,2007.
    [30]郭建新.我国天然气城市输配运营市场结构_行为_绩效与投资机会研究[D].同济大学,2006.
    [31] Shyamal Paul, Rabindra N. Bhattacharya, Causality between energy and consumption economic growth in India: a note on conflicting results [J]. Energy Economics. 2004, 26: 977-983.
    [32] Wankeun Oh, Kihoon Lee. Energy consumption and economic groth in Korea: testing the causality relation[J]. Journal of Policy Modeling, 2004, 26: 973-981.
    [33]倪键民.国家能源安全报告[M].北京:人民出版社,2005.
    [34]韩智勇、魏一鸣等.中国能源消费与经济增长的协整性与因果关系分析[J].系统工程,2004,(12):17-21.
    [35]马舒曼,吕永波,韩晓雷.浅析我国经济发展与能源消费[J].能源研究与利用,2004,1:22-24.
    [36]韩智勇,魏一鸣,范英.中国能源强度与经济结构变化特征研究[J].数理统计与管理,2004,23(1):1-6.
    [37]林艳君.上海市能源消费特征及影响因素研究[D].上海:华东师范大学,2006.
    [38]王革华.能源与可持续发展[M].北京:化学工业出版社,2005.
    [39]裴晓梅,江明,张亚雷.中国能源的问题与未来[J].冶金能源,2005,24(1):3-9.
    [40]梁巧梅,魏一鸣,范英等.中国能源需求和能源强度预测的情景分析模型及其应用[J].管理学报,2004,1(1):62-66.
    [41] Fabrioglu M, Alvarado F L. Using utility information to calibrate customer demand mangagement behavior models. IEEE Transcation on Power System, 2001, 16(2): 317-322.
    [42] Kirschen D. Demand-side view of electricity market. IEEE Transcation on Power Systems, 2003, 18(2): 520-527.
    [43] Sharma, D. Parameswara etc. Analytical search of problems and prospects of power sector through Delphi study: case study of Kerala State, India[J]. Energy Policy, 2003, 31(9): 1245-1255
    [44] Fahrioglu M, Alvarado F L. Designing incentive compatible contracts for effective demand management. IEEE Transcation on Power Systems, 2000, 15(4): 1255-1260.
    [45] W.L. Lee, F.W.H. Yik. Framework for formulating a performance-based incentive-rebate scale for the demand side energy management scheme for commercial buildings in Hong Kong[J]. Applied Energy, 2002, 73(8):139-166.
    [46]张晓梅.能源消费预测及其在能源管理中应用的研究[D].大连:大连理工大学,2006.
    [47]张立宏,蔡九菊.沈阳市能源消费状况分析与清洁能源对策[J].研究与进展,2004,(5):37-39.
    [48]李亮,孙廷容,黄强等.灰色GM(1,1)和神经网络组合的能源预测模型[J].能源研究与利用,2005,1:10-13.
    [49]牛东晓,曹树华,卢建昌,赵磊等.电力负荷预测技术及其应用(第二版)[M].北京:中国电力出版社,2009.
    [50]李媛媛,牛东晓,刘达.一种中长期负荷预测多模型筛选新方法[J].华东电力,2007,35(11):23-25.
    [51]康重庆,夏清,沈瑜等.电力系统负荷预测的综合模型[J].清华大学学报(自然科学版),1999,39(1):8-11.
    [52]金龙,吴建生,林开平等.基于遗传算法的神经网络短期气候预测模型[J].高原气象,2005,24(6):981-987.
    [53]牛东晓,陈志业,邢棉等.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报,2002,22(1):29-32.
    [54]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11.
    [55]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004.
    [56]张庆宝.基于粗糙集属性约简算法和支持向量机的短期负荷预测[J].电网技术,2006,30(8):56-59.
    [57]郑永康,陈维荣,戴朝华.小波支持向量机与相空间重构结合的短期负荷预测研究[J].继电器,2008,36(7):29-33.
    [58]康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11.
    [59]牛东晓,陈志业,邢棉等.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报,2002,22(1):29-32.
    [60]顾洁.电力系统中长期负荷的可变权综合预测模型[J].电力系统及其自动化学报,2003,15(6):56-60.
    [61]高峰,康重庆,夏清等.负荷预测中多模型的自动筛选方法[J].电力系统自动化,2004,28(6):11-13.
    [62]梁强,范英,魏一鸣.基于小波分析的石油价格长期趋势预测方法及其实证研究[J].中国管理科学,2005,13(1):30-36.
    [63]祝志慧,孙云莲,季宇.基于经验模式分解和最小二乘支持向量机的短期负荷预测[J].继电器,2007,35(8):37-40.
    [64]袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113.
    [65]李祚泳,彭荔红.BP网络学习能力与泛化能力满足的不确定关系式[J].中国科学(E辑),2003,33(10):887-895.
    [66]张颖璐.基于遗传算法优化支持向量机的网络流量预测[J].计算机科学,2008,35(5):177-179.
    [67]李良敏,温广瑞,王生昌.基于遗传算法的回归型支持向量机参数选择法[J].计算机工程与应用,2008,44(7):23-26.
    [68]王春林,周昊,周樟华等.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-76.
    [69] Nahi Kandil, Rene Wamkeue, Maarouf Saad, et al. An efficient approach for short term load forecasting using articial neural networks[J]. Electrical Power and Energy Systems. 2006, 28: 525-530.
    [70] Zhi Xiao, Shi-Jie Ye, Bo Zhong, et al. BP neural network with rough set for short term load forecasting[J]. Expert Systems with Applications. 2009, 36(1): 1-7.
    [71] J. P. S. Catalao, S. J. P. S. Mariano, V. M. F. Mendes, L. A. F. M. Ferreira, Short-term electricity prices forecasting in acompetitive market: Aneural network approach[J]. Electric Power Systems Research. 2007, 77(10): 1297-1304.
    [72] PAI Ping-feng, HONG Wei-chang. Support vector machines with simulated annealing algorithms in electricity load forecasting[J]. Energy Conversion and Management, 2005, 46: 2669-2688.
    [73] NIU Dong-xiao, WANG Yong-li, WU De-sheng. Power load forecasting using support vector machine and ant colony optimization[J]. Expert Systems with Applications, 2010, 37(3): 2531?2539.
    [74] NIU Dong-xiao, WANG Yong-li, DUAN Chun-ming, XING Mian. A new short-term power load forecasting model based on chaotic time series and SVM[J]. Journal of Universal Computer Science, 2009, 15(13): 2726?2745.
    [75] NIU Dong-xiao, WANG Yong-li, MA Xiao-yong. Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents[J]. Journal of Central South University of Technology. 2010, 17(2): 406-412.
    [76] Richard Jensen, Qiang Shen. Fuzzy-rough data reduction with ant colony optimization. Fuzzy Sets and Systems, 2005, 149: 5-20.
    [77] Peng-Yeng Yin, Jing-Yu Wang.Ant colony optimization for the nonlinear resource allocation problem,Applied Mathematics and Computation, 2006, 174: 1438-1453.
    [78]曾鸣.电力需求侧管理的激励机制及其应用[M].北京:中国电力出版社,2002.
    [79]曾鸣.电力需求侧管理[M].北京:中国电力出版社,2001.
    [80]曾鸣,孙听,张启平等.我国电力需求侧管理的激励机制及政策建议[J].电力需求侧管理,2003,5(2):3-6.
    [81]王明俊.市场环境下的负荷管理和需求侧管理[J].电网技术,2005,29(5):1-5.
    [82]杨志荣,劳德容.需求方管理(DSM)及其应用[M].北京:中国电力出版社,1999.
    [83]胡兆光,韩新阳.综合资源战略规划与需求侧管理理论方法与实践[J].北京:中国电力出版社,2008.
    [84]国家发展和改革委员会,国家电网公司.电力需求侧管理工作指南[M].北京:中国电力出版社,2007.
    [85]王成文,李莉,谭忠富,候建英.输配分开后供电公司DSM风险分析的ISM模型[J].华东电力,2008,36(1):57-59.
    [86]高雪慧.东北地区建筑节能措施研究[D].长春:吉林大学,2006.
    [87]陆跃文.建筑节能新技术推广现状分析与对策研究[D].重庆:重庆大学,2008.
    [88]张洪峰.山东省建筑节能管理研究[D].天津:天津大学,2005.
    [89]梁晓群.论建筑节能政府管理的状况及其改善[D].武汉:华中师范大学大学,2005.
    [90]彭雅丽.上海市建筑节能管理研究[D].天津:天津大学,2008.
    [91]吴晶.我国实施电力需求侧管理的问题与对策研究[D].武汉:华中科技大学大学,2006.
    [92]吴明燕.重庆市电力需求侧管理研究[D].重庆:重庆大学,2006.
    [93]蔡午江.电力需求侧管理与营销战略研究[D].长春:吉林大学,2006.
    [94]龙惟定.建筑节能与建筑能效管理[M].北京:中国建筑工业出版社,2005.
    [95]卢双全.建筑节能改造的外部性分析与激励政策[J].建筑经济,2007.4:43-46.
    [96]张强.北方采暖地区既有居住建筑节能改造及考核评价体系研究[D].北京:北京建筑工程学院,2008.
    [97]许文发.建筑冷热源节能使建筑节能的重要组成部分[J].建筑节能,2006,46:48-53.
    [98]张琦.北京市建筑节能规划管理研究[D].天津:天津大学,2007.
    [99]陈顺治.推进建筑节能的政府行为与政策研究[D].成都:西南财经大学大学,2006.
    [100]曹玉成.引导激励居住建筑节能的政策研究[D].西安:西安建筑科技大学学,2008.
    [101]武涌.中国建筑节能经济激励政策研究,当代建筑节能理论与政策论从书[M].北京:中国建筑工业出版社,2007.
    [102]叶玲.浅谈建筑节能途径及其政策[J].能源与环境,2006,4:71-72.
    [103]吕兆敏.我国电力需求侧管理激励机制及政策建议[D].北京:华北电力大学学,2004.
    [104]韩晓娜.我国建筑节能公共政策环境分析及对策研究[D].天津:天津大学,2008.
    [105]陈超,渡边俊行,谢光亚.日本的建筑节能概念与政策[J].暖通空调,2002, (6):40-43.
    [106]涂逢祥.战略节能——节能的战略重点中国建筑节能形势与政策建议[J].建筑,2005,(10):10-15.
    [107]刘志伟.深圳市建筑节能管理[D].天津:天津大学,2008.
    [108]彭小云.自然通风与建筑节能[J].工业建筑,2007,37(3):5-9.
    [109]袁冰.住宅建筑节能综合评价体系研究[D].西安:西安建筑科技大学,2008.
    [110]刘爱芳,张彩庆,段铷.建筑节能评价指标体系的构建[J].电力需求侧管理,2006,8(1):39-42.
    [111]邹云峰,王立久.建筑节能体系的经济评价与选择[J].绥化师专学报,2004,24(11):4-6.
    [112]杨红霞.建筑节能评价体系的探讨与研究[J].暖通空调,2006,36(9):42-44.
    [113]尹文浩.基于灰色系统理论的住宅建筑节能评估综合研究[D].西安:长安大学,2008.
    [114]崔江涛.我国建筑节能政策绩效评价研究[D].南京:南京航空航天大学,2008.
    [115]曾辉.浙江省居住建筑节能技术经济评价体系研究[D].杭州:浙江大学,2008.
    [116]绿色奥运建筑研究课题组.绿色奥运建筑评估体系[M].北京:中国建筑工业出版,2003.
    [117]日本可持续建筑协会.建筑物综合环境性能评价体系[M].北京:中国建筑工业出版社,2005.
    [118]王志辉,舒服华.改进的支持向量机在煤矿安全评价系统中的应用[J].矿业安全与环保,2007,34(1):82-87.
    [119]许树柏.层次分析法原理[M].天津:天津大学出版社,1988.
    [120]陆书玉.环境影响评价[M].北京:高等教育出版社,2001.
    [121]吴开亚,何琼,孙世群.区域生态安全的主成分投影评价模型及应用[J].中国管理科学,2004,12(1):106-109.
    [122]刘军.需求侧管理评价指标体系及评价模型[J].华北电力技术, 2003, (7):10-12.
    [123]余良.基于DSM的节能项目投资效益评价与激励机制研究[J].重庆:重庆大学,2003.
    [124]祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,(5):6-9
    [125]张辉,张浩,陆剑蜂.SVM在数据挖掘中的应用[J].计算机工程,2004,(3):7-9.
    [126] Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim,Sung Yang Bang. Constructing support vector machine ensemble.Pattern Recognition, 2003,(36):2757-2767
    [127] Kok Seng Chua. Efficient computations for large least square support vector machine classifiers, Computing, Pattern Recognition Letters,2003,(24):75-80
    [128]江辉等.需方用电管理的电价策略与效益评估[J].电力自动化设备,2001,21(3):29-32.
    [129]戴彦德,朱跃中.加强节能和提高能源效率保证社会经济可持续发展[J].电力需求侧管理,2003,5(1):2-6.
    [130]万咸武.可行性研究与项目评价[M].西安:西安交通大学出版社,1998.
    [131]胡永宏,贺思辉.综合评价方法[M].北京:科学出版社,2000.
    [132]沈毅,吴丽娜,王红瑞,晏晓林.环境影响后评价的进展及主要问题[J].长安大学学报(自然科学版),2005,25(1):56-59.
    [133]陆书玉.环境影响评价[M].北京:高等教育出版社,2001.
    [134]冉鹏,张树芳,郭江龙等.分布式能源系统的研究现状与应用前景[J].热力发电,2005,(3):1-3.
    [135]胡文斌,华责.分布式能源站在我国的推广前景及对策分析[J].科技进步与对策,2004(12):119-120.
    [136] Agnew B, Talbi M, Mostafavi M. Combined power and cooling, an analysis of the combined Diesel-absorption cycle[J]. Applied Thermal Engineering, 1999(19): 1097-1105.
    [137] Maidment G, Tozer R M. Combined cooling heat and power in supermarket[J]. Applied Thermal Engineering, 2002(22): 653-665.
    [138]朱成章.美国冷热电联产纲领及启示[J].中国电力,2000,33(9):29-30.
    [139]张万坤,陆震,陈子煌等.天然气热、电、冷联产系统及其在国内外的应用现状[J].流体机械,2002,30,(12):50-53.
    [140]李芳芹,魏敦崧.天然气冷热电联供的热经济性分析[J].煤气与动力,2002, (6):494-499.
    [141]朱成章.从小型热电联产走向冷热电联产[J].能源技术2000, (1):29-31.
    [142] Cao Jia-tong, Liu Feng-qiang, Qin Zhi-hong,et al. Energy and exergy analysis, and thermoeconomic performance of a BCHP system [J]. J.of Donghua University, 21(5): 36-41.
    [143]安青松.基于燃气轮机的冷热电三联供系统优化模拟[D].天津:天津大学,2004.
    [144]吴红梅.浙江省发展分布式能源的若干问题探讨[J].能源工程,2007(4):1-4.
    [145]王振铭.中国热电联产与分布式能源的新发展[J].沈阳工程学院学报(自然科学版),2006,2(1):1-5.
    [146]张永顺.关于分布式能源电力并网问题的探讨[J].沈阳工程学院学报(自然科学版),2006,2(1):6-9.
    [147]欧阳培,熊旭.节能新路:推进分布式能源发展[J].需求侧管理,2006(10):19-20.
    [148]黄东风.分布式能源发展的影响因素分析[J].能源工程,2005(1):7-10.
    [149]冉鹏,张树芳,郭江龙等.分布式能源系统的研究现状与应用前景[J].能源工程,2005,(3):1-3.
    [150] Himmel M E, Baker J O. Glvcosvl hvdrolases for hiomass conversion[M]. Oxford University Press, 2001.
    [151]吴军.我国利用天然气发展分布式能源技术的探讨[J].化工技术经济,2005,23,(4):4-7.
    [152]郭世伟.前途看好的分布式能源[J].电力需求侧管理,2005,7(3):62-63.
    [153]何源.分布式能源系统的分析及优化[D].天津:天津大学,2007.
    [154]吴大为,王如竹.分布式能源定义及其与冷热电联产关系的探讨[J].制冷与空调,2005,5(5):2-3.
    [155]刘殿海,杨勇平,杨昆等.分布式发电优化配置研究[J].工程热物理学报,2006,27(1):9-10.
    [156] Andreas Poullikkas, Implementation of distributed generation technologies in isolated power systems,Electricity Authority of Cyprus,2006,23(7):158-160
    [157] Jarmo Soderman,Frank Pettersson,Structural and operational optimisation of distributed energy systems, Applied Thermal Engineering,2005,18(9):200-205
    [158] Hongwei Li,Razi Nalim,Thermal-economic optimization of a distributed multi-generation energy system—A case study of Beijing, Applied Thermal Engineering,2005,(6):130-133
    [159]蔡小舒,戴韧.以微型燃气轮机为核心的热电冷三联供系统-上海理工大学“能源岛”研究进展[J].能源研究与信息,2005,21:62-63.
    [160]刘殿海.电源优化规划理论研究及应用[D].北京:华北电力大学,2006.
    [161]张洪伟,高岳峰,李海兵.分布式能源冷热电三联供系统的应用[J].燃气轮机技术,2005,18(3):26-30.
    [162]赵黛青,王伟.清洁发展机制与我国天然气分布式能源站的发展[J].天然气工业,2005,25(11):119-122.
    [163]程明.新能源与分布式电源系统[J].电力需求侧答理.2003,5(3):44-46.
    [164]李永兵,岳建华,沈炳耘.冷热电分布式供能系统的应用和发展[J].燃气轮机技术,2008,21(3):4-7.
    [165]刘向阳.智能电网分布式能源系统集成及基础科学[J].电器工业,2009,11:48-53.
    [166]华贲.我国发展分布式能源的迫切性、意义及前景[J].沈阳工程学院学报(自然科学版),2005,1(2):1-6.
    [167]刘妮,邬志敏,欧阳新萍.燃气热电冷三联产总能系统的热经济性分析[J].暖通空调,2004,34(7):108-110.
    [168]王志伟,张泰岩,云曦,刘作良.微型燃气轮机冷热电联供系统的评价指标比较[J].电力科学与工程,2006,3:34-37.
    [169]赵玺灵,付林,张兴梅,段常贵.燃料电池冷热电联供系统的技术评价指标研究[J].华北电力大学学报,35(4):44-47.
    [170]谢诺琳,孙志高.燃气冷热电联产系统节能特性研究[J].科学技术与工程,2008,8(3):629-632.
    [171]谢诺琳,孙志高.冷热电联产系统性能评价指标研究[J].2008,27(4):81-83.
    [172]李先瑞.分布式能源与建筑的融合(上)[J].节能与环保,2004,(9):6-8.
    [173]李先瑞.分布式能源与建筑的融合(下)[J].节能与环保,2004,(10):10-13.
    [174] P.A.Pilavachi. Power generation with gas turbine systems and combined heat and power[J]. Applied Thermal Engineering,2000,(20): 1421-1429.
    [175] H.Lund.E.Munster. Modelling of energy systems with high percentage of CHP and wind power[J]. Renewable Energy, 2003(28): 7179-7193.
    [176] Alexandre Salem Szklo, jeferson Borghetti Soares, Mauricio Tiomno Tolmasquim. Energy consumption indicators and CHP technical potential in the Brazilian hospital sector[J]. Energy Conversion and Management, 2004 (40): 2075-2091.
    [177] Thomas G. Bourgeois, Bruce Hedman, Fred Zalcman. Creating markerts for combined heat and power and clean distributed generation in New York State[J]. Environmental Pollution, 2003 (123):451-462.
    [178] C.hing-Tzong Su, Chao-Lung Chiang. An incorporated algorithm for combined heat and power economic dispatch[J],Electric Power Systems Research, 2004(69): 187-195.
    [179] Jorgen Sjodin, Dag Henning. Calculating the marginal costs of district-heating utility[J]. Applied Energy, 2004 (78): 1-18.
    [180] Mone C. D, Chau D. S, Phelan P.E. Economic feasibility of combined heat and power and absorption refrigeration with commercially available gas turbines[J]. Energy Conversion and Management, 2001(42): 1559-1573.
    [181] Au S F, Hemmes K. Flowsheet calculation of a combined heat and power fuel cell plant with a conceptual molten carbonate fuel cell with separate CO2 supply[J]. Journal of Power Sources, 2003(122):19-27.
    [182] J.L.Silveria, E.M.Leal,L.F. Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water[J]. Energy, 2001(26): 891-904.
    [183] Sweetser,R.,Devault,R.,Foley, G. Absorption&technologies for Building: Cooling,Heating,and Power(BCHP)systems, HPAC Heating, Piping[J]. Air Conditioning Engineering, 2000(7): 51-56.
    [184] Pi lavachi,P.A. Power Generation with Gas Turbine Systems and Combined Heat and Power[J]. Applied Thermal Engineering, 2000, 20(15): 1421-1429.
    [185] S.Harvey, C.Carcasci.T.Berntsson. Gas turbines in district heating combined heat and power systems: influence of performance on heating costs and emissions[J]. Applied Thermal Enginccring, 2000 (20):1070-1103.
    [186] H.Lund, E.Munster. Modelling of energy systems with a high percentage of CHP and wind power[J]. Renewable Energy, 2003(28): 7179-7193.
    [187] Eriksen. Economic and environmental dispatch of power/CHP production systems[J]. Electric Power Systems Research, 2001(07): 33-39.
    [188] Henrik Lund, Poul Alherg. Electric grid and heat planning scenarios with centralized and distributed sources of conventional CHP and wind generation[J]. Energy 2000 (25): 299-312.
    [189] G.G.Viaidment, G.Prosser. The use of CHP and absorption cooling in cold storage[J]. Applied Thermal Rngineering, 2000(20): 1009-1073.
    [190] Risto Lahdelma, Henri Hakonen. An efficient linear programming algorithm for combined heat and power production[J]. European Journal of Operational Research, 2003(148): 141-151.
    [191] Cowie,M. Characterizing combined heating, cooling and power system for buildings through theory and testing[J]. M. Sci. Thesis, 2002: 13-25.
    [192] Manuel Valders, Jose L.Rapun. Optimization of heat recovery steam generators for combined cycle gas turbines power plants[J]. Applied Thermal Engineering, 2000(11): 1149-1159.
    [193]张巧.基于改进免疫算法和Elman神经网络的超声马达速度辨识与控制[D].长春:吉林大学,2006.
    [194]时小虎.Elman神经网络与进化算法的若干理论研究及应用[D].长春:吉林大学,2006.
    [195]杨凌,宋军,金强.一种引入混沌机制的新型Elman神经网络及其应用[J].2009,29(2):549-553.
    [196]梁木梁,吴德胜,王志强等.基于ANFIS和Elman网络的信用评价研究[J].2005,19(1):69-73.
    [197]薛冰.基于ELMAN神经网络的潜油电机速度辨识研究[D].哈尔滨:哈尔滨工业大学,2007.
    [198]杨祥妹,徐明.基于ELMAN网络的交通流量差值预测模型[J].2009,27,(1):48-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700