用户名: 密码: 验证码:
荒漠戈壁区光伏电站建设的环境效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,我国大部分省市出现的拉闸限电的现象,间接地反映出我国目前面临严峻的能源危机。传统的火力发电以煤炭为主要燃料,煤炭作为一种不可再生的化石燃料,不仅开采和挖掘难,而且污染空气。因此需要调整我国能源利用的结构,大力发展清洁能源。太阳能作为最有潜力的清洁能源,因其储量丰富、普遍、经济等越来越受到人们的关注。
     我国西北地区有广袤的荒漠化土地,土地因其肥力下降或是沙化严重而被弃置,可以利用其丰富的太阳能在这些荒漠戈壁上建设光伏电站。这一措施不仅可以缓解我国的能源危机,而且还能充分利用广阔的土地和丰富的太阳能资源,达到治理环境的目的。
     本文以酒泉市东洞滩百万千瓦光伏示范基地为例,通过实地考察和收集资料,对示范基地每年的发电量进行预测,在此基础上对示范基地进行减排预测,根据热力学公式估算出地表温度每年的变化量。再根据蒸发量的计算公式,预测示范基地建成后土壤水分蒸发率的变化趋势,进而预测出相对湿度的变化趋势。根据相对湿度和降水量的相关关系,推求示范基地建成后降水量的变化趋势。最后根据植被覆盖度与风速和输沙率的关系,推求风速和输沙率的变化趋势。
     通过分析,得到如下结论:
     (1)东洞滩百万千瓦光伏示范基地建成运行后,年均发电量1.54×1010kW'h,在光伏组件25a的生命周期内发电量为3.85×1011kW.h。与传统的火力发点相比,示范基地每年的发电量相当于节约5.19×105万t标准煤,减排常规污染物:炭粉灰1.563×105t,SO24.62×104t, NOx2.31×104t;减排重金属:As2.58×109mg、Cr6.18×109mg、Pb6.667×109mg、Hg7.54×107mg、Ni7.22×109mg、 Cd1.03×108mg;此外示范基地每年可以减少1.18×1011kgCO2的排放。因此示范基地的建设不但可以节约大量的煤炭,还能减少相应的环境污染治理费用。因二氧化碳是导致全球气候变暖的主要成分,因此示范基地的建设对于气候变暖也具有积极的作用。
     (2)东洞滩百万千瓦光伏示范基地正式运行后,由于将太阳能转化为电能,使地表接收的太阳辐射降低,地表温度会随之降低,根据热力学公式计算得出,地表日平均温度降低0.049℃,这对于减缓气候变暖具有积极的作用。此外,示范基地建成后当地的日较差和年较差减少,蒸发率减少,空气相对湿度和降水量一定程度上会有微量增加,缓解了荒漠戈壁区久旱的危机。
     (3)示范基地建成后,大面积的电池板覆盖在地表,不但起到了沙障的作用,还使地表水分蒸发率降低,植被的恢复率增加。再加上人工绿化措施,示范基地植被覆盖度增加。植被覆盖度增加对于降低风速和输沙率具有一定的作用,从而起到防风固沙的作用,达到治理荒漠化的目的。
In the past few years, the phenomenon of power rationing emerged in many places in our country, which indirectly showed that our country has been facing severe energy crisis.Traditional thermal fire generation take coal as its main fuel, but coal is a kind of non-renewable fossil fuel, therefore it not only difficult in exploiting, but also polluting the air. Consequently, the energy utilization structure of our country needs to be changed and should develop clean energy vigorously. Solar power being the most potential clean energy, has been payed more and more attention by people because of its abundant restoration and generality as well as ecnomomic factors.
     There are vast desertification land in the northwest of China, which has been dicarded because of its fertility declination or desertification, therefore we can make use of its abundant solar power and build PV power plant on the desert gobbi. This solution not only can relieve the energy crisis in our country, but also make foll use of the vast land and finally reach the goal of managing the environment.
     This article takes the million kilowatt solar power demonstration base of Dong dong Tan, Jiuquan city as an example, through field study and collecting information, predicted the generated energy every year of the demonstration base, as well as the emission reduction, and finally estimate the every year ground temperature variation using thermodynamics formular. According to the fomular of evaporation capacity, we can predict the changing trend of soil moisture evaporation rate and relative humidity after the demonstration base is built. Base on the correlativity of relative humidity and precipitation, caculate the changing trend of precipation after the demonstration base is built. Finally according to the relativity ofvegetation cover and wind speed as well as the transport rate, we can find out the changing trend of wind speed and transport rate.
     Throughout analysis, we can have following conclusion:
     After the Dong Dong Tan million kilowatt solar power demonstration base is built and has been in motion, the average generating capacity every year is1.54billion kW-h, in the other hand is38.5billionkW-h in the25years life cycle of PV module. Comparing with the traditional thermal power generation, the demonstration base can reduce1.785billion kg CO2emission. As CO2is the main substance of causing global warming, so the construction of the demonstration base can mitigate global warming effectively. Solar power generation has crucial impact on controlling heavy metal pollution. Comparing with traditional thermal power generating, the demonstration base can reduce2.58×109mgAs,6.18×109mg Cr,6.667×109mg Pb,7.54×107mg Hg,7.22× 109mg Ni,1.03×108mgCd every year. In addition, the demonstration base can save5.19×108kg standard coal,1.563×108kg carbon dust, reduce4.62×104tSO2emmision as well as2.31×104kgNOx, moreover, it can also save large amount of thermal power generating water, and reduce the environment pollution manage expenses, therefore, the construction of Dong Dong Tan million kilowatt solar power demonstration base is of great significance in relieving energy crisis and protecting the environment.
     Large area of solar panels cover the ground and increase the roughness of the surface ground, which can play the role of sand-protecting barrier, and weaken the wind force near the ground surface. Moreover, as the vegetation cover will increase after the demonstration base is put into use, the vegetation will weaken the wind force and can finally prevent the wind from affecting the ground. With the reduce of the wind speed in the demonstration base, the transport rate also reduce, and the sediment in the wind-drift sand reduce either. The vegetation in the base in some extend played a role in stablization of sand, with the increasing of vegetation cover, the ability of stabling the sand increase, thus decrease the transport rate. When the wind speed and transport rate decreased, the times of sandstorm and the sand in sandstorm will decrease, which in the end attain the goal of managing desert.
     After Dong Dong Tan million kilowatt solar power demonstration base has put into use, as solar power transform into electricity, the ground surface will receive less solar radiation, and the ground surface temperature will decrease either. The surface temperature decrease4.3℃, the local daily range and annual range, evaporation rate decrease, and air relative humidity, precipation increase. It is of positive affect in mitigating global warming and the crisis of long time drought in the desert gobbi.
     After the demonstration base is built, large area of solar panels cover the ground surface, which make the evaporation rate of surface moisture decrease, vegetation recovery rate increase. When carrying out labour greening measure, the vegetation cover in the demonstration base will increase. The increase of vegetation cover to some extend can help decreasing wind speed and transport rate, thus effectively prevents wind storms and fastens sands in the land, and reach the goal of controlling desertification.
引文
[1]杨金焕,于化丛,葛亮.太阳能光伏发电应用技术[M].北京:电子工业出版社,2009.
    [2]王长贵.新能源和可再生能源的现状和展望[J].太阳能光伏产业发展论坛论集.2003,9:4-17.
    [3]国家林业局.第二次全国荒漠化、沙化土地监测结果.2002.01.28公布.
    [4]唐振华,苏亚欣,毛玉如.关于开发新能源替代化石能源的思考[J].能源与环境.2005,2:10-14.
    [5]崔荣强,喜文华,魏一康等.太阳能光伏发电[J]。太阳能.2004(4):72-76.
    [6]张琪祁.大型光伏电站接入电网的技术和特性研究[D].浙江大学.2011.
    [7]日本光伏产业的发展及其启示.http://www.docin.com/p-871467.html.
    [8]ThomasB,Johansson.Policies for renewable energy in the European Union and its member states:an ovwe[J].Energy for Sustainable development,2004(8):85-96.
    [9]P.Khvostikov.Photovoltaie Cells Based on Gasband Ge for Solar and ThermoPhotovoltaie APPlications[J].Solar Energy Engineering.2007(129):291-297.
    [10]王长贵.并网光伏发电系统综述(上)[J].太阳能.2008(2):15-17.
    [11]昌金铭.国内外光伏发电的新进展[J].光伏技术与工程.2006,8-31.
    [12]刘伟,彭冬,卜广全等.光伏发电接入智能配电网后的系统问题综述[J].电网技术.2009,33(19):1-6.
    [13]冯垛生,张淼,赵慧等.太阳能发电技术与应用[M].北京:人民邮电出版社,2009.
    [14]2012年国内光伏电站拟建在建项目一览[J].太阳能.2012(6):52.
    [15]崔琰.库布齐沙漠土地荒漠化动态变化与旅游开发研究[D].中国科学院研究生院.2010.
    [16]赵举.阴山北麓农牧交错带风蚀荒漠化治理的保持耕作模式研究[D].中国农业大学.2002.
    [17]张丽荣,赵京献,李夕军.河北省土地沙化和荒漠化现状分析及综合治理措施[J].河北林业科技.2009,5:42-45.
    [18]李文杰.美国沙尘暴危害及治理措施[J].环境保护.2001(9):58.
    [19]冯长红,马志友.印度怎样治理荒漠化[J].河北林业.2000(3):24-25.
    [20]陈克勤,徐惠喜.以色列、埃及的治沙方略[J].中国减灾,2007(7):36-37.
    [21]胡培兴,杨维西,李梦先等.澳大利亚荒漠化状况及防治[J].中国林业.2002(6):36-37.
    [22]左忠,季文龙,温淑红等.日本的沙地利用技术与研究情况简介[J].中国农学通报.2010,26(24):264-269.
    [23]黄月艳.荒漠化治理效益与可持续治理模式研究[D].北京林业大学,2010.
    [24]米晖.内蒙古草原荒漠化治理及对策研究[D].内蒙古大学,2011.
    [25]潘声洲,刘震.从埃及的治沙工程看我国水利防沙治沙[J].中国水利.2001(2):55-56.
    [26]盖志毅.全球视野下的中国.草原生态系统可持续发展[J].中国林业草原与草坪.2009,4:68-72.
    [27]刘瑛心.我国不同地带固沙植物种的选择[J].中国科学院兰州沙漠研究所集刊.1982,第一号:39-62.
    [28]Ali Akbar et al.伊朗荒漠开发中的社会经济问题[J].水土保持科技情报.1993(4):49-50.
    [29]王国强.沙漠化与沙产业[M].银川:宁夏人民出版社,2009:107-109.
    [30]马丁丑,王生林.绿洲农业可持续发展的生态安全评价与实现方式选择——以甘肃临泽为例[J].干旱区资源与环境.2010,24(11):18-22.
    [31]苏来满·伊布拉音.和田绿洲土地沙化及其防治措施[J].干旱区研究.1994,11(4):52-57.
    [32]刘恕.试论沙漠化过程及其防治措施的生态学基础[J].中国沙漠.1986,6(1):6-12.
    [33]雷加强,李生宇,靳正忠.塔里木沙漠公路防护林生态工程的综合生态环境效应[J].科学通报.2008,53:169-178.
    [34]张伟,杨金恒,岳太青.科尔沁沙地治理问题及对策[J].林业经济.2006(7):51-54.
    [35]王仁德,吴晓旭.毛乌素沙地治理的新模式[J].水土保持研究.2009,16(5):176-180.
    [36]高承兵,李永兵,聂雪花.民勤流沙治理中机械沙障的防风固沙效益分析[J].甘肃林业科技.2010(3):35-39.
    [37]王刚。酒泉盆地地下水系统数值模拟研究[D].兰州大学,2011.
    [38]李栋梁,刘德祥.甘肃气候[M].北京:气象出版社.2009年9月.
    [39]甘肃发展年鉴编委会.甘肃发展年鉴2011[M].北京:中国统计出版社.2011年10月.
    [40]刘淑敏,国文学,范莉娟等.零排放煤基发电及其技术发展[J].东北电力学院学报.2004,24(6):56-61.
    [41]上海电力设计院有限公司.阳光电源酒泉市肃州区东洞滩二期50MW光伏发电项目可行性研究报告[D].2012年5月
    [42]杨美英.光伏发电在变电站中的应用[J].科技情报开发与经济.2011,21(2):203-205.
    [43]卢静,王忠柯,叶和清等.燃煤重金属污染抑制的研究进展[J].环境科学与技术.2002,25(5):40-42.
    [44]侯明山,李士琦,刘超等.光伏发电清洁度分析[J].太阳能.2011,23:18-22.
    [45]马忠海.中国几种主要能源温室气体排放系数的比较评价研究[D].中国原子能科学研究院.2002.
    [46]狄向华,聂祚仁,左铁镛.中国火力发电燃料消耗的生命周期排放清单[J].中国环境科学.2005,25(05):632-635.
    [47]Spadaro J V, Lucille L, Burce H.不同电力产业链的温室气体排放评估差异[J].国际原子能机构通报.2000,42(02):19-24.
    [48]郑楚光.温室效应及其控制对策[M].北京:中国年鉴出版社.2010:154-157.
    [49]特伦布莱A.水库水质与温室气体排放的关系[J].马元埏,译.水利水电快报.2006,27(15):19-21.
    [50]Asakura,Keiichiroy,Collins,et al. CO2 emission from solar power satellite through its life cycle:comparison of power generation systems using Japanese input-output tables[R/OL].2000[2011-03-15].http://policy.rutgers.edu/cupr/iioa/AsakuraCollinsNomuraHayam i&Yoshioka_LifeCycleC02.pdf.
    [51]Jungbluth N,Baucer C,Dones R,et al.Life cycle assessment for emerging technologies:case studies for photovoltaic and wind power[J]. Energy Supply,2005,10(1):1-11.
    [52]刘胜强,毛显强,邢有凯.中国新能源发电生命周期温室气体减排潜力比较和分析[J].气候变化研究进展.2012,8(1):48-53.
    [53]王静.沙尘暴发生的频次与气候因子的关系[D].南京信息工程大学.2007.
    [54]高绪华.贝叶斯网络在土壤蒸发量计算中的应用[D].电子科技大学.2011.
    [55]马士龙.植被覆盖对土壤风蚀影响机理的研究[D]_北京林业大学.2006.
    [56]贺山峰,蒋德明,阿拉木萨.植被的防治风蚀作用[J].生态学杂志.2007,26(5):743-748.
    [57]刘芳.乌兰布和绿洲植物防护体系防风阻沙效益研究[D].西北农林科技大学.2008.
    [58]Bressolier C,Thomas YF.Studies on wind and plant interactions on French Atlantic coastal dunes[J]. Journal of Sedinentary Petrology.1997,47(1):331-338.
    [59]Wolfe SA,Nickling WG.The protective role of sparse vegetation in wind erosion[J]. Progress in Physical Geography.1993,17:50-68.
    [60]程洪,谢涛,唐春等.植物根系力学与固土作用机理研究综述[J].水土保持通报.2006,26(1):97-102.
    [61]李晓莉,申向东.结皮土壤的抗风湿性分析[J].干旱区资源与环境.2006,20(2):203-207.
    [62]马军杰,张信,王思琦等.并网光伏发电价值的综合评价[J].水电能源科学.20112,9(6)
    [63]http://www.solar001.com/infomation/showinfo.aspx?id=16012
    [64]姚兴佳,刘国喜,朱家玲等.可再生能源及其发电技术[M].北京:科学出版社,2010:86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700