用户名: 密码: 验证码:
甲烷在内置多孔介质卷式反应器内富燃制氢的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类社会生存、经济发展以及提高人民生活水平的物质基础,是关系到国民经济命脉和国防安全的重要物质保障。我国能源消费结构仍属以煤炭为主的低质型能源消费结构,给我国带来严重的环境污染和能源危机问题,必须发展清洁能源,我国可利用的天然气资源量正在不断增加,天然气制氢将成为未来氢燃料的重要来源之一,多孔介质内的甲烷超绝热燃烧制氢属于甲烷自热重整制氢技术范畴,但由与传统的甲烷自热重整制氢技术有很大的不同,是一种新型的制氢方法国。国外学者对多孔介质内的超绝热燃烧开展了大量实验和理论研究工作,国内的研究者在双层、往复式及渐变型多孔介质燃烧器内的预混燃烧方面也开展了一定的实验和模拟研究,并取得了卓有成效的进展。
     为了解甲烷在内置多孔介质卷式反应器内超绝热富燃制氢特性,采用计算流体力学与详细的化学反应机理GRI1.2相结合的方法,对甲烷在该反应器的富燃制氢过程进行了数值模拟,研究当量比和预混气体流速对燃烧区峰值温度、合成气组分和甲烷转化效率的影响,并和试验值进行对比。结果表明,多孔介质内CH4的燃烧温度远超过其绝热燃烧温度,实现了超绝热条件下富燃制氢;在本文研究范围内,甲烷-氢气的转化效率随当量比和气体流速的增大而增大,数值模拟结果与试验值基本吻合。
It is well known that hydrogen is a very efficient and clean-burning fuel. It contains much more energy per unit mass than any other conventional fuel and produces very low pollution emissions.Recently, hydrogen energy has become the focus of scientific research field. The conversion of methane to hydrogen has become the major source of the future hydrogen production, which is the major component of natural gas. Natural gas has become the third largest energy source. The method of producing hydrogen through rich combustion of methane in porous media can meet the above needs.
     To understand the working features of hydrogen production from methane super-adiabatic combustion in the built-in porous media Swiss-roll reactor, the computational fluid dynamics and detailed chemical reaction mechanism GRI1.2 were combined to simulate the reaction process of hydrogen production from methane in this reactor. The effects of equivalence ratio and premixed gas velocity on the highest temperature of burning zone, the components of synthesis gas and methane conversion efficiency were studied and compared with the experimental results. The results show that CH4 combustion temperature inside the porous media far outweigh the adiabatic combustion temperature, and the hydrogen production on the condition of superadiabatic combustion is realized. Within the scope of this research, methane-hydrogen conversion efficiency rises with the increase of equivalence ratio and premixed gas velocity, and the numerical values are similar with the experimental results.
引文
[1]王素萍,候华丽.我国能源节约的潜力和对策探讨[J].能源与环境, 2005(1): 11-13.
    [2]世界银行《世界发展指标》2008 http://www.stats.gov.cn/tjsj/qtsj/gjsj/2008/
    [3]中国统计年鉴2005 http://www.stats.gov.cn/tjsj/ndsj/2005/indexch.htm
    [4]国家环境保护总局,2008年中国环境状况公报http://wenku.baidu.com/view/da25e118964bcf84b9d57b6d.html
    [5]张志,唐涛,陆光达.甲烷催化裂解制氢技术研究进展[J].化学研究与应用, 2007, 19(1): 1-9.
    [6]杨修春,韦亚南.甲烷重整制氢用催化剂的研究进展[J].材料导报, 2007, 21(5): 49-52.
    [7]张斌,李政,倪维斗.天然气自热重整器模拟及性能分析[J].天然气工业, 2003, 23(5): 95-99.
    [8]李国能,周昊,钱欣平,等.多孔介质内甲烷超绝热燃烧制氢联合概率密度模拟[J].天然气工业, 2007, 27(8):112-114.
    [9]马培勇,林其钊,唐志国,等.一种天然气现场制氢装置[P].实用新型已授权,发明公开号CN101434380A,2009.5.20
    [10]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社.
    [11]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社, 1995.
    [12] Pickenacker, K Pickenacker, K Wawrzinek, et al. Innovative ceramic materials for porous medium burners [J]. Interceram, 1999, 48: 5-6.
    [13] Prasad R, Kennedy L A, Ruckenstein E. Catalytic combustion[J]. Catal. Rev. Sci. Eng., 1984, 26(1):1-58.
    [14] Ringuede A, Bronine D, Frade J R. Assessment of Ni/YSZ anodes prepared by combustion synthesis [J]. Solid State Ionics, 2002, 146:219-224.
    [15] Eugene A O, Elizabeth R S, Marc A M. Characterization by indentation of combustion synthesized cermets[J]. Scripta mater, 2001, 44(7):1139-1146.
    [16] Durst F, Weclas M. A new type of intemal combustion engine based on the porous-medium combustion technique[J]. Proceedings of the Institute Mechanieal Engineers, Part D Journal of Automobile Engineering, 2001, 1(215)No.D1:63-81.
    [17] Weinberg, F J. Combustion temperature: the future? [J]. Nature, 1971, 233: 239-241.
    [18] Hardesy, D R, Weinberg, F J, Burners producing large excess enthalpies[J]. Combustion Sci. and Teac., 1974, 8:201-214.
    [19] Babkin V S, Korzhavin A.A, Bunev V A. Propagation of premixed gaseous explosion flamesin porous media[J]. Combustion and Flame, 1991, 87:182-190.
    [20] Zhdanok S, Kennedy L A, Koester G. Super-adiabatic combustion of methane-air mixtures under filtration in a packed bed J]. Combustion and Flame, 1995, 100:221-231.
    [21] Kennedy L A, Bingue J P, Saveliev A, et al. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions[J]. Proceeding of the combustion institute, 2000, 28:1431-1438.
    [22] Weinberg F J, Bartleet T G. Carleton F B. Partial oxidation of fuel-rich mixture in a spouted bed combustor[J]. Combust. Flame, 1988, 72(3): 235-239.
    [23] Gavrilyuk V V, Dmitrienko Y M, Zhdanok S A, et al. Conversion of Methane to Hydrogen under Super-adiabatic Filtration Combustion[J]. Theoretical Foundations of Chemical Engineering, 2001, 35(6):589-596.
    [24] Bingue J P, Saveliev A V, Kennedy L A. Optimization of hydrogen production by ultration combustion of methane by oxygen enrichment and depletion[J]. International Journal of Hydrogen Energy, 2004, 29(13):1365-1370.
    [25] Dhamrat R S, Ellzey J L. Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor[J]. Combustion and Flame, 2006, 144(4):698-709.
    [26] Mario Toledo, Valeri Bubnovich, Alexei Saveliev, et al. Hydrogen production in ultrarich combustion of hydrocarbon fuels in porous media[J]. International Journal of Hydrogen Energy, 2009,34:1818-1827.
    [27] Ioannides T, Verykios X E. Development of a novel heat-integrated wall reactor for the partial oxidation of methane to synthesis gas[J]. Catalysis Today, 1998, 46:71-81.
    [28] Dobregoa K V, Gnezdilova N N, Leeb S, et al. Partial oxidation of methane in a reverse flow porous media reactor. Water admixing optimization[J]. International journal of hydrogen energy, 2008, article in press.
    [29] Dixon M J, Schoegl I, Hull C B, et al. Experimental and numerical conversion of liquid heptane to syngas through combustion in porous media[J]. Combustion and Flame, 2008, 154:217–231.
    [30]凌忠钱多孔介质内超绝热燃烧及硫化氢高温裂解制氢的试验研究和数值模拟:[博士学位论文]杭州:浙江大学, 2008.
    [31]郑中青,李艳红,胡国新.惰性多孔介质内天然气预混燃烧的数学模拟评述[J].能源技术2007, 28(4):207-210.
    [32]吕兆华,Matthews R D, Howell J.多孔陶瓷材料中的预混合火焰[J].华东工学院学报, 1989, 3:25-29.
    [33]吕兆华,孙思诚.多孔泡沫陶瓷中预混合火焰燃烧速率的实验研究[J].燃烧科学与技术,1995, 1(2):129-134.
    [34]吕兆华,孙思诚.多孔介质中预混合燃烧速率的预示[J].燃烧科学与技术,1995, 4(3): 242-246.
    [35] Hsu P F, Howell J R. Measurements of thermal conductivity and optical properties of partially stabilized zirconia. Experimental Heat Transfer[J]. 1993, 5: 293-313.
    [36]吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报, 2001, 25(3): 257-261.
    [37] Fu X, Viskanta R, Gore J P. Modeling of Thermal Performance of a Porous Radiant Burner[J]. Pro-ceedings of the ASME Heat Transfer Division. 1998, 2: 11-19.
    [38]赵平辉,陈义良,刘明侯,等.多孔介质内层流预混燃烧的数值模拟[J].燃烧科学与技术, 2006, 12: 46-50.
    [39] Younis L B, Viskanta R. Experimental determination of volumetric heat transfer coefficient between stream of air and ceramic foam[J]. Int. J. Heat Mass Transfer, 36(6):1425-1434, 1993.
    [40] Hsu P F, Howell J R, Matthews R D. A numerical investigation of premixed combustion within porous inert media[J]. Journal of Heat Transfer, 1993,115: 744-750.
    [41] Echigo R. Effective energy conversion method between gas enthalpy and thermal radiation and application to industrial furnaces//Proc 7th Int Heat Transfer Conf Munich, 1982(Vl): 361-366
    [42] Mital R, Gore J P, Viskanta R, et al. Measurements of radiative properties of cellular ceramics at high temperature[J]. J. Thermophy. Heat Transfer, 1996, 10:33.
    [43] Malico I, Pereira J C F. Numerical Study on the Influ-ence of Radiative Properties in Porous Media Combustion[J]. Journal of Heat Transfer, 2001, 123: 951-957.
    [44]杜礼明,解茂昭.往复式多孔介质超绝热燃烧中辐射传热有限体积法[J].大连理工大学学报, 2006, 46(5): 673-678.
    [45] Bouma P H, Goey P H DE. Premixed combustion on ceramic foam burners. Combustion and Flame,1999,119:133-143
    [46] Zhou X, Pereira J C F. Comparison of Four Combustion Models for Simulating the Premixed Combustion in Inert Porous Media[J]. Fire and Materials, 1998, 22: 187-197.
    [47] Zhou X, Brenner G, Weber T, et al. Finite-rate chemistry in modeling of two-dimensional jet premixed CH4/air flame [J]. Heat and Mass Transfer, 1999, 42: 1757-1773.
    [48] Diamantis D J, Mastorakos E, Goussis D A. Simulations of premixed combustion in porous media[J]. Combustion Theory and Modelling, 2002, 6:383-411.
    [49]赵平辉惰性多孔介质内预混燃烧的研究:[博士学位论文],合肥:中国科学技术大学, 2007.
    [50]王恩宇,程乐鸣,骆仲泱,等.天然气在渐变型多孔介质中的预混燃烧启动特性[J].燃烧科学与技术,2007,13(5):393-397.
    [51] Whitaker S. Diffusion and dispersion in porous media[J]. AICHE J. , 1967, 13:420-427.
    [52] Slattery J C. Flow of viscoelastic fluids through porous media[J], AICHE J. , 1967, 13: 1066-1071.
    [53]芦宁甲烷在多孔介质中过滤燃烧制取氢气的数值模拟:[硕士学位论文],大连:大连理工大学,2007.
    [54] Dobrego Kirill V, Kozlov Igor M, Zhdanok Serguei A, et al. Modeling of diffusion filtration combustion radiative burner[J]. International Journal of Heat and Mass Transfer, 2001, 44(17): 3265-3272.
    [55] Akehata T, Shirai T, Ishizaki N, et al. Kagaku Kogaku, 1973, 37:1026.
    [56] Akehata T, Ito K, Inokawa A.. Kagaku Kogaku Ronbunshu, 1976, 2:583.
    [57] Maruyama T, Nishimoto T. Chem. Eng. Comm. , 1992,117:111.
    [58] White W B, Johnson S M, Dantzig G B.Chemical Equilibrium in complex mixtures[J]. The Journal of Chemical Physics, 1958, 28(5): 751-755.
    [59]刘炳池典型危险废弃物的热处置特性研究:[硕士学位论文],杭州:浙江大学,2006.
    [60] Yoshizawa Y, Sasaki K,Echigo R. Analytical study of the structure of radiation controlled flame[J]. International Journal of Heat and Mass Transfer, 1988, 31(2): 311-319.
    [61] Hendricks T J, Howell J R. Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics[J]. J. Heat Trans., 1996, 118, (l): 79-87.
    [62] Fu X, Viskanta R, Gore J P. A model of the volumetric characteristics of cellular ceramics[J]. Int.Comm. Heat Mass Transfer, 1997, 24(8):1069-1082.
    [63] Howell J R, Hall M J, Ellzey J L. Combustion of hydrocarbon fuel within porous inert media[J]. Progress in Energy and combustion science, 1996, 22: 121-145.
    [64] Henneke Michael R, Ellezey Janet L. Modeling of filtration combustion in a packed bed [J].Combustion and Flame, 1999, 117(4): 832-840.
    [65] Fu X, Viskanta R, Gore J P. Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics[J]. Experimental Thermal and Fluid Science, 1998, 17: 285-293.
    [66]王恩宇,吴晋湘,刘联胜,等.基于FLUENT对惰性多孔介质中湍流预混燃烧的模拟[J].河北工业大学学报, 2007, 36(2): 94-99.
    [67] Ma P Y, Tang Z G, Li Y L, etc. Research on Conversion of Natural Gas to Hydrogen under Super adiabatic Rich Combustion[J]. Advanced Materials Research, 2010, 105(106): 701-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700