用户名: 密码: 验证码:
耐重金属胁迫的能源植物筛选及其适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用盆栽试验,评价了8种能源植物[花生(Arachis hypogaea).大麻(Cannabis sativa).亚麻(Linum usitatissimum)、蓖麻(Ricinus communis)、大豆(Glycine max)、向日葵(Helianthus annuus)、油菜(Brassica rapa)和红花(Carthamus tinctorius)]对重金属(Zn、Cd和Cu)的耐受性和积累能力。在此基础上,以花生为研究对象,研究了叶片对重金属(Zn、Cd和Cu)的可塑性响应及其适应意义;探讨了Zn、Cd胁迫对花生光合作用的影响及其与解剖结构之间的关系;研究了花生对Zn、Cd胁迫的适应机制。同时,探讨了水杨酸(Salicylic acid, SA)对大麻,以及硅对花生Cd毒害的缓解作用及其机理。主要研究结果如下:
     (1)供试的8种能源植物对Cd和Zn具有相对较强的耐受性,而对Cu的耐受性较低。其中,大麻、亚麻、蓖麻和花生对高浓度Cd耐受性较强;大麻、亚麻和油菜对高浓度Zn的耐受性较强;花生、亚麻、蓖麻、大豆则对Cu具有一定的耐性。8种能源植物的地上部分对Zn、Cd和Cu三种重金属的积累量既存在种间差异,也存在金属间差异。对于金属来说,植物的地上部分积累量以Zn为最大,Cd次之,Cu最少。对于物种而言,油菜、红花和亚麻的地上部分对Cd的积累量较大,均大于100 mgkg-1 DW;向日葵、花生、油菜、大豆和红花的地上部分对Zn的积累量较高。
     (2)花生叶片对重金属(Zn、Cd和Cu)表现出一定的表型可塑性。在测定的18种性状中,叶面积(LA)、比叶重(LMA)、叶绿素a (Chl a)、叶绿素b (Chl b).总叶绿素(Chlt)、光系统Ⅱ有效量子产额(ΦPsⅡ)、上表皮气孔密度(SDU)、栅栏组织厚度(PT)和栅栏组织海绵组织厚度比(P/S)对重金属较为敏感,并表现出了较大的可塑性。其中,叶绿素含量和叶绿素荧光参数的可塑性是适应不良性可塑性,反映了重金属对叶片的毒害作用。相反,叶片的解剖可塑性则是适应性的,反映了植物对重金属胁迫的适应能力。在Zn、Cd胁迫下,花生生物量下降,光合作用受到抑制,叶片结构发生改变。Zn、Cd胁迫对花生叶片光合作用的抑制,既包括由气孔导度(Gs)下降引起的气孔限制,又包括光合色素含量降低而引起的非气孔限制。Zn、Cd胁迫均能诱导花生叶片形成了一定的旱生结构:如叶片和栅栏组织增厚,栅栏组织海绵组织厚度比增大,气孔密度增加,长度变小,这种结构使得植物既能降低水分蒸腾,又能最大限度地维持CO2的吸收,从而减轻了因气孔限制导致的光合作用下降。叶绿素荧光参数表明,Cd. Zn胁迫对叶片PSⅡ的活性中心造成损伤,但这并不是抑制光合作用的主要原因。
     (3)花生幼苗对Cd、Zn都具有较强的耐受性。在器官水平,植物吸收的大部分Cd、Zn被截留在根中。在细胞水平,细胞壁是Cd、Zn在花生叶片和根细胞中贮存的主要场所,而可溶组分中的Cd、Zn大部分可能被区隔在液泡之中。低浓度Cd对花生叶片超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性具有抑制效应,而在高浓度Cd胁迫下,SOD、GR活性增大。同样,高浓度锌胁迫诱导SOD和APX活性增大。此外,初步发现根中可能存在诱导型Cd结合蛋白,具有结合大量Cd的能力;叶片中也可能存在与Zn结合能力较强的蛋白。
     (4)大麻对Cd胁迫具有较强的耐受性。在高浓度(100 mg kg-1)下,大麻的地上、地下部分生物量分别下降46%和48%。大麻对Cd的迁移指数很小(3.5-4.0)。在Cd处理为25-100mg kg-1范围内,大麻的光合色素、叶绿素荧光参数(Fv/Fm和ΦPSⅡ)、气体交换参数(Pn, Gs、Ci、E和Rd)均没有受到明显抑制。水杨酸(SA)处理能显著改善高浓度Cd(100 mg kg-1)胁迫下大麻植株的生长状况,降低植物体内的Cd含量,但并不影响迁移指数(TF). SA能显著提高Cd胁迫下大麻植株的光合能力,其机制既包括SA诱导气孔开放而引起的气孔调节因素,同时还包括由于叶绿素和类胡萝卜素含量以及ΦPSⅡ的增加而引起的非气孔调节因素。Cd含量的下降和光合能力的增强可能是SA提高大麻耐Cd性的主要原因。
     (5)在两个花生品种中,鲁资101的耐Cd性明显强于鲁花11号。在200μmol L-1Cd处理下,鲁资101的生物量下降幅度、地上部Cd含量和迁移指数均显著低于鲁花11号。细胞壁和细胞器Cd含量在品种间差异不显著,但鲁资101的可溶组分Cd含量显著高于鲁花11号。硅处理对两个花生品种Cd毒害都具有一定的缓解作用,但存在品种差异,对Cd敏感品种(鲁花11号)幼苗cd毒害的缓解作用明显强于耐Cd品种(鲁资101)。其原因可能是:①硅降低了鲁花11号植株Cd由根系向地上部迁移的迁移系数,大幅减少植株地上部分Cd含量;②降低了鲁花11号叶片细胞器中的Cd含量。
Combining phytoremediation with energy crop cultivation offers attractive economic alternatives, with the view of achieving low price decontamination of soil by the production of biodiesel. In order to screen potential energy plants that can be planted in heavy metal contaminated area for biodiesel, cadmium (Cd), zinc (Zn) and copper (Cu) tolerance and accumulation capacity of eight energy plants, including peanut (Arachis hypogaea), hemp (Cannabis sativa), flax (Linum usitatissimum), caster (Ricinus communis), soybean (Glycine max), sunflower (Helianthus annuus), rapeseed (Brassica rapa) and safflower (Carthamus tinctorius) were evaluated by pot experiments. On the basis of this, peanut, a metal toleranted energy plant widely cultivated in many countries for traditional food oil production, were chosen for further studies, the following questions are posed:(a) how do peanut leaves respond to distinct heavy metal in terms of morphology, anatomy and physiology; and whether the plasticity in response to heavy metal stress was adaptive; (b) do Cd or Zn toxicity affect photosynthetic performance and anatomic structure of leaves, and what relationships between these characteristics; and (c) what kind of mechanisms do peanut plants cope with Cd or Zn toxicity. Furthermore, the roles of exogenous substances, such as salicylic acid (SA) and silicon, in alleviating Cd toxicity were also studied. The results are showed as follows:
     The pot study conducted with Cd (50 to 200 mg Cd kg-1 sands), Zn(200 to 800 mg Cd kg-1 sands), and Cu (200 to 800 mg Cd kg-1 sands) indicated that all plant species tested initially have ability to withstand Cd and Zn stress, whereas the capacity of Cu tolerance are relatively low. Among these plants, hemp, flax, caster and peanut exhibited a higher level of Cd tolerance, while hemp, flax, and rapeseed had a strong tolerance to high Zn concentrations, and these plants could be cultivated in Cd or Zn-contaminated soils for biodiesel production. Metal accumulation in plants were metal specific and species specific. As for metals, Zn content in tissues was the most, followed which is Cd, and Cu the least. In respect for the plant species, hemp, flax, and peanut showed a high ability of Cd accumulation, while peanut and soybean exhibited higher Zn concentrations in shoots. These energy plants, therefore, are good candidates for the implementation of this new strategy of cultivating biodiesel crops for phytoremediation of Cd or Zn-contaminated soils.
     Phenotypic plasticity in morphological, anatomical and physiological traits of peanut leaves was tested at four different concentrations of Cd, Cu and Zn under greenhouse conditions. Among 18 characteristics tested, nine were found to be the most sensitive and demonstrate the greatest phenotypic plasticity. These were:the leaf area (LA), the leaf mass per area (LMA), chlorophyll a content (Chl a), chlorophyll b content (Chl b), total chlorophyll content (Chl t), the effective quantum yield of photosystem II (ΦPS II), stomatal density of upper epidermis (SDU), palisade thickness (PT), and palisade to spongy thickness ratio (P/S). The plasticity of chlorophyll content and fluorescence parameters may be maladaptive and reflects metal toxicity to leaves, whereas the anatomical plasticity is adaptive, indicative of a tradeoff between the physiological and anatomic plasticity. Both Cd and Zn treatments caused an inhibition in the net photosynthetic rate (Pn) of peanut (Arachis hypogaea) plants, due to the reduction of stomatal conductance (Gs) and photosynthetic pigment content, as well as the alteration in leaf structure. The decrease of the transpiration rate (E) and Gs might result from the Cd or Zn-induced xerophyte anatomic features of leaves (i.e. thick lamina, upper epidermis, palisade mesophyll, high palisade to spongy thickness ratio, as well as abundant and small stomata). The decline of Pn seems to be independent of the impairment in PSⅡ.
     Peanut plants had a strong tolerance to high Cd and Zn stress, and also accumulated a certain amount of Cd and Zn in the tissues. At the level of plant tissues, most of Cd and Zn absorbed by the plants were retained in the roots. At subcellular level, most of Cd and Zn in leaf and root cells were fixed in the cell wall fractions, whereas the most of Cd and Zn in the soluble fraction were compartmented in the vacuole. In respect of physiological characters, the obtained result showed that the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) were inhibited by low Cd treatment, while at high level, SOD and GR were increased. Similarly, under high Zn condition, the activities of SOD and APX were also increased. Furthermore, a Cd induced Cd binding protein and a innate Zn binding protein was found in root and leaf soluble fraction, respectively. It is concluded that the tolerance of peanut plant to Cd and Zn toxicity was resulted from the metal exclusion stratedge, in which the fixation of Cd and Zn in cell wall, compartmentation of the vacuole, sequestration by metal binding protein, as well as an efficient antioxidant systems were involved.
     In order to assess cadmium tolerance of hemp, and whether salicylic acid (SA) pretreatment regulate the growth and photosynthetic capacity of hemp under Cd stress, a pot experiment was conducted under greenhouse conditions. Exposure of hemp plants to low Cd (25 mg kg-1) had stimulatory effects on plant growth, whereas it was inhibited at high Cd stress (50 and 100 mg kg-1). Cd exposure showed little inhibition in photosynthetic pigment, chlorophyll fluorescence, as well as photosynthetic performance. These results demonstrated that hemp has innate capacity to tolerant Cd stress. SA pretreatment counteracted the Cd-induced growth inhibition in hemp plants; this was more obvious under high Cd stress (100 mg kg-1). SA affect on alleviating Cd toxicity in hemp seedlings was associated with reduced Cd uptake and improved photosynthetic capacity due to stomatal limitations other than photosynthetic pigments.
     Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially for those grown under stressed environments. Recently, the mitigating role of Si in cadmium (Cd) stress has received some attention. However, its mechanisms involved remain poorly understood. We studied the effects of Si on tissue and subcellular distribution of Cd with two contrasting peanut cultivars (Luhua 11 and Luzi 101) differing in their Cd tolerance. The results showed that Cd exposure alone depressed plant growth for both cultivars, and this toxicity was more obvious in Cd-sensitive cultivar (Luhua 11) than in Cd-tolerant cultivar (Luzi 101). Si supply significantly alleviated the toxicity of Cd in peanut seedlings. In contrast, the alleviation of Cd toxicity was more significantly in Cd-sensitive cultivar (Luhua 11) than in Cd-tolerant cultivar (Luzi 101). The mechanisms of Si amelioration of Cd stress were cultivar dependent. In comparison to Luzi 101, Cd content in shoots, translocation factor of Cd from root to shoot, and Cd content in cell organelle fractions of leaves in Luhua 11 were more significantly inhibited by Si, indicating Si-mediated inhibition of Cd transport from roots to shoots, and reduction of Cd content in cell organelle fractions of leaves might be responsible for the role of Si in alleviating Cd toxicity in Luhua 11 seedlings.
引文
1. Abdel-Latif A.2008. Cadmium induced changes in pigment content, ion uptake, proline content and phosphoenolpyruvate carboxylase activity in Triticum aestivum seedlings. Aust. J. Basic Appl. Sci., 2:57-62.
    2. Aebi H.1984. Catalase in vitro. Method Enzymol,105:121-126.
    3. Aery N.C., Rana D.K.2003. Growth and cadmium uptake in barley under cadmium stress. J. Environ. Biol.,24:117-123.
    4. Agarwal A.K.2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci.,33:233-271.
    5. Ali N.A., Bernal M.P., Ater M.2002. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil,239:103-111.
    6. Alia S.P.P.1993. Suppression in mitochondrial electron transport is the prime cause behind stress induced proline accumulation. Biochem. Biophys. Res. Commun.,193:54-58.
    7. Allan D.L., Jarrell W.M.1989. Proton and copper adsorption to maize and soybean root cell walls. Plant Physiol.,89:823-832.
    8. Alpert P., Simms E,L.2002. The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evol. Ecol.,16:285-297.
    9. Alvarez M.E.2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol.,44:429-442.
    10. Aranda I., Pardo F., Gil L., et al.2004. Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species. Acta Oecol.,25:187-195.
    11. Aravind P., Prasad M.N.V.2003. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.:a free floating freshwater macrophyte. Plant Physiol. Biochem.,41:391-397.
    12. Arellano J.B., Lazaro J.J., Lopez-Gorge J., et al.1995. The donor side of Photosystem II as the copper-inhibitory binding site. Photosynth. Res.,45:127-134.
    13. Arnon D.I.1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol.,24:1-15.
    14. Ashton P.M.S., Olander L.P., Berlyn GP., et al.1998. Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Can. J. Bot.,76:1180-1187.
    15. Assche F., Ceulemans R., Clijsters H.1980. Zinc mediated effects on leaf CO2 diffusion conductances and net photosynthesis in Phaseolus vulgaris L. Photosynth. Res.,1:171-180.
    16. Baker A.J.M.1981. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr.,3:643-654.
    17. Baker A.J.M.1987. Metal tolerance. New Phytol.,106:93-111.
    18. Barcelo J., Poschenrieder C.1990. Plant water relations as affected by heavy metal stress:a review. J. Plant Nutr.,13:1-37.
    19. Barcelo J., Poschenrieder C., Andreu I., et al.1986. Cadmium-induced decrease of water stress resistance in bush bean plants(Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity. J. Plant. Physiol.,125:17-25.
    20. Barcelo J., Vazquez M.D., Poschenrieder C.1988. Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Phytol.,108:37-49.
    21. Baryla A., Carrier P., Franck F., et al.2001. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil:causes and consequences for photosynthesis and growth. Planta, 212:696-709.
    22. Baszynski T., Wajda L., Krol M., et al.1980. Photosynthetic activities of cadmium-treated tomato plants. Physiol. Plantarum.,48:365-370.
    23. Bazzaz F.A., Rolfe G.L., Carlson W.R.1974. Effect of Cd on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol. Plantarum.,32:373-376.
    24. Bazzaz M.B., Govidjee.1974. Effects of cadmium nitrate on spectral characteristics and light reactions of chloroplasts. Environ. Lett.,6:1-12.
    25. Behera R.K., Mishra P.C., Choudhury N.K.2002. High irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. J. Plant. Physiol.,159: 967-973.
    26. Benavides M., Gallego M.S., Tomaro M.L.2005. Cadmium toxicity in plants. Braz. J. Plant Physiol., 17:21-34.
    27. Bernal M., Roncel M., Ortega J.M., et al.2004. Copper effect on cytochrome b559 of photosystem II under photoinhibitory conditions. Physiol. Plantarum.,120:686-694.
    28. Bernier M., Carpentier R.1995. The action of mercury on the binding of the extrinsic polypeptides associated with the water oxidizing complex of photosystem II. FEBS. Lett.,360:251-254.
    29. Bernier M., Popovic R., Carpentier R.1993. Mercury inhibition at the donor side of photosystem Ⅱ is reversed by chloride. FEBS. Lett.,321:19-23.
    30. Beyer W.F., Fridovich I.1987. Assaying for superoxide dismutase activity:Some large consequences of minor changes in conditions. Anal. Biochem.,161:559-566.
    31. Boisvert S., Joly D., Leclerc S., et al.2007. Inhibition of the oxygen-evolving complex of photosystem Ⅱ and depletion of extrinsic polypeptides by nickel. Biometals,20:879-889.
    32. Bonnet M., Camares O., Veisseire P.2000. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J. Exp. Bot.,51:945-953.
    33. Boominathan R., Doran P.M.2003. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J. Biotechnol.,101: 131-146.
    34. Borrero M.A.V., Pereira J.T.V., Miranda E.E.2003. An environmental management method for sugar cane alcohol production in Brazil. Biomass Bioenergy,25:287-299.
    35. Borsani O., Valpuesta V., Botella M.A.2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol.,126: 1024-1030.
    36. Bosabalidis A.M., Kofidis G.2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci.,163:375-379.
    37. Boucher N., Carpentier R.1999. Hg2+, Cu2+, and Pb2+-induced changes in Photosystem Ⅱ photochemical yield and energy storage in isolated thylakoid membranes:A study using simultaneous fluorescence and photoacoustic measurements. Photosynth. Res.,59:167-174.
    38. Boussama N., Ouariti O., Suzuki A., et al.1999. Cd-stress on nitrogen assimilation. J. Plant Physiol., 155:310-317.
    39. Bradford M.M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.,72:248-254.
    40. Bradshaw A.D.1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet.,13: 115-155.
    41. Breckle S.W.1991. Growth under stress. Heavy metals. In:Waisel Y., Eshel A., Kafkafi U. (eds), Plant Roots:The Hidden Half. Marcel Dekker Inc., New York pp.351-373.
    42. Breckle S.W., Kahle H.1992. Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.). Plant Ecol.,101:43-53.
    43. Broadley M.R., White P.J., Hammond J.P., et al.2007. Zinc in plants. New Phytol.,173:677-702.
    44. Brooks R.R., Shaw S., Asensi Marfil A.1981. The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol. Plantarum.,51:167-170.
    45. Burda K., Kruk J., Schmid G.H., et al.2003. Inhibition of oxygen evolution in Photosystem II by Cu(II) ions is associated with oxidation of cytochrome b559. Biochem. J.,371:597-601.
    46. Burzynski M., Jakob M.1983. Influence of lead on auxin-induced cell elongation. Acta Soc. Bot. Polon.,52:231-239.
    47. Burzynski M., Zurek A.2007. Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica.,45:239-244.
    48. Cakmak I., Horst W.J.1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean(Glycine max). Physiol. Plantarum.,83: 463-468.
    49. Calabrese E., Bachmann K., Bailer A., et al.2007. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl.,222:122-128.
    50. Calabrese E.J., Baldwin L.A.2001. Hormesis:U-shaped dose responses and their centrality in toxicology. Trends Pharmacol. Sci.,22:285-291.
    51. Callaway R.M., Pennings S.C., Richards C.L.2003. Phenotypic plasticity and interactions among plants. Ecology,84:1115-1128.
    52. Calvin M.1976. The petroleum plant:perhaps we can grow gasoline. Science,194:46.
    53. Calvin M.1977. Hydrocarbons via photosynthesis. Int. J. Energ. Res.,1:299-327.
    54. Calvin M.1979. Petroleum plantations for fuel and materials. Bioscience.,29:533-538.
    55. Calvin M.1980. Hydrocarbons from plants:Analytical methods and observations. Naturwissenschaften,67:525-533.
    56. Calvin M.1987. Fuel oils from euphorbs and other plants. Bot. J. Linn. Soc.,94:97-110.
    57. Casas X.A., Pons J.R.i.2005. Environmental analysis of the energy use of hemp-analysis of the comparative life cycle:diesel oil vs. hemp-diesel. Int. J.Agri. Resour. Gove. Ecol.,4:133-139.
    58. Chaney R.L.1993. Zinc phytotoxicity. In:Robson A. D. (ed), Zinc in Soil and Plants Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.135-150.
    59. Chaney R.L., Malik M., Li Y.M., et al.1997. Phytoremediation of soil metals. Curr. Opin. Biotech.,8: 279-284.
    60. Chartzoulakis K., Patakas A., Kofidis G, et al.2002. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci. Hortic.,95:39-50.
    61. Chen H.M., Zheng C.R., Tu C., et al.2000. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere,41:229-234.
    62. Chen Z., Caplan A., Klessig D.F., et al.1997. Differential Accumulation of Salicylic Acid and Salicylic Acid-Sensitive Catalase in Different Rice Tissues. Plant Physiol.:193-201.
    63. Cherney J.H., Johnson K.D., Volenec J.J., et al.1990. Evaluation of potential herbaceous biomass crops on marginal crop lands:1, Agronomic potential. ORNL/Sub-85-27412/5-P1.
    64. Chien H.F., Lin C., Wang J.W., et al.2002. Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regul.,36:41-47.
    65. Cho U.H., Seo N.H.2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci.,168:113-120.
    66. Choudhury S., Panda S.K.2004. Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg. J. Plant Physiol.,30:95-110.
    67. Chow J., Kopp R.J., Portney P.R.2003. Energy resources and global development. Science,302: 1528-1531.
    68. Chugh L.K., Sawhney S.K.1999a. Effect of cadmium on activities of some enzymes of glycolysis
    and pentose phosphate pathway in pea. Biol. Plant.,42:401-407.
    69. Chugh L.K., Sawhney S.K.1999b. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol. Biochem.,37:297-303.
    70. Cieslinski G., Neilsen G.H., Hogue E.J.1996. Effect of soil cadmium application and pH on growth and cadmium accumulation in roots, leaves and fruit of strawberry plants (Fragaria ananassa Duch.). Plant Soil,180:267-276.
    71. Clemens S.2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta,212: 475-486.
    72. Clijsters H., Assche F.1985. Inhibition of photosynthesis by heavy metals. Photosynth. Res.,7: 31-40.
    73. Cobbett C., Goldsbrough P.2002. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol.,53:159-182.
    74. Colangelo E.P., Guerinot M.L.2006. Put the metal to the petal:metal uptake and transport throughout plants. Curr. Opin. Plant Biol.,9:322-330.
    75. Costa G., Morel J.1994. Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol. Biochem.,32:561-570.
    76. da Cunha K.P.V., do Nascimento C.W.A.2008. Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air. Soil Poll.: DOI 10.1007/s11270-11008-19814-11279.
    77. Dahiya D.J., Singh J.P., Kumar V.1994. Nitrogen uptake in wheat as iInfluenced by the presence of nickel. Arid Soil Res.,8:51-51.
    78. Dahmani-Muller H., Van Oort F., Gelie B., et al.2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ. Pollut.,109:231-238.
    79. Dan T., KrishnaRaj S., Saxena P.K.2000. Metal tolerance of scented geranium (Pelargonium sp. 'Frensham'):effects of cadmium and nickel on chlorophyll fluorescence kinetics. Int. J. Phytorem., 2:91-104.
    80. Dat J.F., Foyer C.H., Scott I.M.1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol.,118:1455-1461.
    81. Davies K.L., Davies M.S., Francis D.1991. Zinc-induced vacuolation in root meristematic cells of Festuca rubra L. Plant Cell Environ.,14:399-406.
    82. De Filippis L.F., Ziegler H.1993. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J. Plant. Physiol.,142:167-172.
    83. de la Rosa G., Peralta-Videa J.R., Montes M., et al.2004. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species:ICP/OES and XAS studies. Chemosphere,55:1159-1168.
    84. De S., Bag A., Mukherji S.1997. Potential use of Pedilanthus tithymaloides Poit. as a renewable resource of plant hydrocarbons. Bot. Bull.,38:105-108.
    85. del Rio L.A., Corpas F.J., Sandalio L.M., et al.2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot.,53:1255-1272.
    86. Delhaize E., Jackson P.J., Lujan L.D., et al.1989. Poly (y-glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium:role in cadmium tolerance. Plant Physiol.,89:700-706.
    87. Demirevska-Kepova K., Simova-Stoilova L., Stoyanova Z., et al.2004. Biochemical changes in barley plants after excessive supply of copper and manganese. Environ. Exp. Bot.,52:253-266.
    88. Demirevska-Kepova K., Simova-Stoilova L., Stoyanova Z.P., et al.2006. Cadmium stress in barley: Growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J. Plant Nutr.,29:451-468.
    89. Demmig B., Winter K., Krueger A., et al.1987. Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol.,84:218-224.
    90. Di Baccio D., Tognetti R., Sebastiani L., et al.2003. Responses of Populus deltoides×Populus nigra (Populus×euramericana) clone 1-214 to high zinc concentrations. New Phytol.,159:443-452.
    91. di Toppi L.S., Gabbrielli R.1999. Response to cadmium in higher plants. Environ. Exp. Bot.,41: 105-130.
    92. Dixit V., Pandey V., Shyam R.2001. Differential antioxidative responses to cadmium in roots and leaves of pea(Pisum sativum L. cv. Azad). J. Exp. Bot.,52:1101-1109.
    93. Drazic G, Mihailovic N.2005. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci.,168:511-517.
    94. Drazic G, Mihailovic N., Lojic M.2006. Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol. Plant.,50:239-244.
    95. Drazkiewicz M.1994. Chlorophyllase:occurrence, functions, mechanism of action, effects of external and internal factors. Photosynthetica.,30:321-331.
    96. Durner J., Shah J., Klessig D.F.1997. Salicylic acid and disease resistance in plants. Trends Plant Sci.,2:266-274.
    97. Eichhorn G.L., Clark P., Tarien E.1969. The interaction of metal ions with polynucleotides and related compounds.13. The effect of metal ions on the enzymatic degradation of ribonucleic acid by bovine pancreatic ribonuclease and of deoxyribonucleic acid by bovine pancreatic deoxyribonuclease I. J. Biol. Chem.,244:937-942.
    98. Ekmekci Y., Tanyolac D., Ayhan B.2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. Plant. Physiol.,165:600-611.
    99. El Bassam N.1998. Energy Plant Species:Their Use and Impact on Environment and Development. London, James & James
    100. Epstein E.1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol.,50:641-664.
    101. Eren E., Arguello J.M.2004. Arabidopsis HMA2, a divalent heavy metal-transporting P (IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol.,136:3712.
    102. Ericsson K., Nilsson L.J.2006. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy,30:1-15.
    103. Ernst W.H.O.1980. Biochemical Aspects of Cadmium in Plants. In:Nriagu J. O. (ed), Cadmium in the Environment. J Wiley and Sons, New York, pp.639-654.
    104. Fahn A.1964. Some anatomical adaptations of desert plants. Phytomorphology,14:93-102.
    105. Fahn A., Cutler D.F.1992. Xerophytes In:Braun H. J., Carlquist S., Ozenta P., Roth I. (eds), Encyclopedia of Plant Anatomy. Gebruder Borntraeger, Berlin, pp.1-176.
    106. Faller P., Kienzler K., Krieger-Liszkay A.2005. Mechanism of Cd2+toxicity:Cd2+inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+site. Biochim. Biophys. Acta-bioenerg.,1706:158-164.
    107. Farquhar G.D., Sharkey T.D.1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol.,33:317-345.
    108. Fodor E., Szabo-Nagy A., Erdei L.1995. The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J. Plant Physiol.,147:87-87.
    109. Fordyce J.A.2006. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol.,209:2377-2383.
    110. Fornazier R.F., Ferreira R.R., Vit6ria A.P., et al.2002. Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol. Plant.,45:91-97.
    111. Frey B., Keller C., Zierold K.2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ.,23:675-687.
    112. Gallego S., Benavides M., Tomaro M.1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci.,121:151-159.
    113. Gamage H.K., Ashton M.S., Singhakumara B.M.P.2003. Leaf structure of Syzygium spp.(Myrtaceae) in relation to site affinity within a tropical rain forest. Bot. J. Linn. Soc.,141: 365-377.
    114. Ghosh M., Singh S.2005. A comparative study of cadmium phytoextraction by accumulator and weed species. Environ. Pollut.,133:365-371.
    115. Gilmore A.M., Yamamoto H.Y.1991. Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol.,96:635-643.
    116. Goncalves J.F., Becker A.G., Cargnelutti D., et al.2007. Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Brasil. J. Plant Physiol.,19: 223-232.
    117. Gouia H., Habib Ghorbal M., Meyer C.2000. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol. Biochem.,38: 629-638.
    118. Grill E., Loffler S., Winnacker E., et al.1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific y-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA,86:6838.
    119. Grill E., Winnacker E.L., Zenk M.H.1985. Phytochelatins:the principal heavy-metal complexing peptides of higher plants. Science,230:674-676.
    120. Grill E., Winnacker E.L., Zenk M.H.1987. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. USA,84:439.
    121. Grotz N., Fox T., Connolly E., et al.1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA,95:7220-7224.
    122. Gubitz G.M., Mittelbach M., Trabi M.1999. Exploitation of the tropical oil seed plant Jatropha curcas L. Biores. Technol.,67:73-82.
    123. Guo B., Liang Y., Zhu Y.2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J. Plant. Physiol.,166: 20-31.
    124. Guo B., Liang Y.C., Zhu Y.G., et al.2007. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ. Pollut.,147:743-749.
    125. Guo W.J., Meetam M., Goldsbrough P.B.2008. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol.,146:1697.
    126. Gupta S.C., Goldsbrough P.B.1991. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol.,97:306.
    127. Gussarsson M., Jensen P.1992. Effects of copper and cadmium on uptake and leakage of K+ in birch (Betula pendula) roots. Tree. Physiol.,11:305-313.
    128. Haag-Kerwer A., Schafer H., Heiss S., et al.1999. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J. Exp. Bot.,50: 1827-1835.
    129. Hagemeyer J., Kahle H., Breckle S.W., et al.1986. Cadmium in Fagus sylvatica L. trees and seedlings:Leaching, uptake and interconnection with transpiration. Water Air. Soil Poll.,29: 347-359.
    130. Hall J.L.2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot.,53: 1-11.
    131. Hamer D.1986. Metallothionein. Annu. Rev. Biochem.,55:913-951.
    132. Han F.X., Sridhar B.B.M., Monts D.L., et al.2004. Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol.,162:489-499.
    133. Hassan M.J., Wang Z., Zhang G. 2005. Sulfur alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice. J. Plant Nutr.,28:1785-1800.
    134. Heaton E., Long S., Voigt T., et al.2004. Miscanthus for renewable energy generation:European Union experience and projections for Illinois. Mitig. Adap. Strat. Glob. Change,9:433-451.
    135. Heaton E.A., Dohleman F.G., Long S.P.2008. Meeting US biofuel goals with less land:the potential of Miscanthus. Glob. Chang. Biol.,14:2000-2014.
    136. Hegedus A., Erdei S., Horvath G.2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci.,160:1085-1093.
    137. Hernandez L.E., Garate A., Carpena-Ruiz R.1997. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil,189:97-106.
    138. Hernandez L.E., Carpena-Ruiz R., Garate A.1996. Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J. Plant Nutr.,19:1581-1598.
    139. Hohenstein W.G., Wright L.L.1994. Biomass energy productionin the United States-an overview. Biomass Bioenergy,6:161-173.
    140. Holleman A.F., Wiberg E.1985. Lehrbuch der Anorganischen Chemie. Berlin,Walter de Gruyter, p.868.
    141. Hollenbach B., Schreiber L., Hartung W., et al.1997. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley:implications for the involvement of lipid transfer proteins in wax assembly. Planta,203:9-19.
    142. Horvath G, Droppa M., Oravecz a., et al.1996. Formation of the photosynthetic apparatus during greening of cadmium-poisoned barley leaves. Planta,199:238-243.
    143. Howden R., Goldsbrough P.B., Andersen C.R., et al.1995. Cadmium-sensitive, cadl mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol.,107:1059-1066.
    144. Hsu Y., Kao C.2007. Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil,298:231-241.
    145. Hsu Y.T., Kao C.H.2003. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ.,26:867-874.
    146. Hu P.-J., Qiu R.-L., Senthilkumar P., et al.2009. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ. Exp. Bot., doi:10.1016/j.envexpbot.2009.02.014
    147. Hura T., Hura K., Grzesiak M., et al.2007. Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C 3 and C 4 plants. Acta Physiol. Plantarum,29:103-113.
    148. Iannelli M.A., Pietrini F., Fiore L., et al.2002. Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol. Biochem.,40:977-982.
    149. Iglesias A.A., Andreo C.S.1984. Inhibition of Zea mays phosphoenolpyruvate carboxylase by copper and cadmium ions. Photosynthetica.,18:134-138.
    150. Inouhe M.2005. Phytochelatins. Brasil. J. Plant Physiol.,17:65-78.
    151. Inouhe M., Mitsumune M., Tohoyama H., et al.1991. Contributions of cell wall and metal-binding peptide to Cd-and Cu-tolerances in suspension-cultured cells of tomato. J. Plant Res.,104: 217-229.
    152. Jegerschold C., Arellano J.B., Schroder W.P., et al.1995. Copper (II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy. Biochemistry,34:12747-12754.
    153. Jegerschold C., MacMillan F., Lubitz W., et al.1999. Effects of copper and zinc ions on photosystem II studied by EPR spectroscopy. Biochemistry,38:12439-12445.
    154. Kupper H., Zhao F.J., McGrath S.P.1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol.,119:305-312.
    155. Kambhampati M.S., Begonia G.B., Begonia M.F.T., et al.2005. Morphological and physiological responses of morning glory (Ipomoea lacunosa L.) grown in a lead-and chelate-amended soil. Int. J. Environ. Res. Public Health,2:299-303.
    156. Kang H.M., Saltveit M.E.2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plantarum.,115:571-576.
    157. Kesseler A., Brand M.D.1994. Quantitative determination of the regulation of oxidative phosphorylation by cadmium in potato tuber mitochondria. Eur. J. Biochem.,225:923-935.
    158. Klessig D.F., Durner J., Noad R., et al.2000. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA,97:8849.
    159. Kneer R., Zenk M.H.1992. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry.,31:2663-2667.
    160. Koeppe D.E., Miller R.J.1970. Lead effects on corn mitochondrial respiration. Science,167: 1376-1378.
    161. Kovacevic G., Kastori R., Merkulov L.J.1999. Dry matter content and lead structure in young wheat plants as affected by cadmium, lead, and nickel. Biol. Plant.,42:119-123.
    162. Kramer U., Cotter-Howells J.D., Charnock J.M., et al.1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature,379:635-638.
    163. Krall J.P., Edwards GE.1992. Relationship between photosystem Ⅱ activity and CO2 fixation in leaves. Physiol. Plantarum.,86:180-187.
    164. Kralova K., Sersen F., Blahova M.1994. Effects of Cu (II) complexes on photosynthesis in spinach chloroplasts. Aqua (aryloxyacetato) copper (Ⅱ) complexes. Gen. Physiol.,13:483-491.
    165. Kramer U., Pickering I.J., Prince R.C., et al.2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol.,122:1343-1354.
    166. Krantev A., Yordanova R., Janda T., et al.2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant. Physiol.,165:920.
    167. Krause G.H., Weis E.1991. Chlorophyll fluorescence and photosynthesis:the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol.,42:313-349.
    168. Kukkola E., Rautio P., Huttunen S.2000. Stress indications in copper-and nickel-exposed Scots pine seedlings. Environ. Exp. Bot.,43:197-210.
    169. Kuo M.C., Kao C.H.2004. Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant, rice (Oryza sativa L.) seedlings. Bot. Bull. Acad. Sin.,45: 291-299.
    170. Lamoreaux R.J., Chaney W.R.1978. The effect of cadmium on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. Physiol. Plantarum.,43:231-236.
    171. Lane B., Kajioka R., Kennedy T.1987. The wheat germ Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol.,65:1001-1005.
    172. Lane S., Martin E., Garrod J.1978. Lead toxicity effects on indole-3-ylacetic acid-induced cell elongation. Planta,144:79-84.
    173. Larbi A., Morales F., Abadia A., et al.2002. Effects of Cd and Pb in sugar beet plants grown in nutrient solution:induced Fe deficiency and growth inhibition. Funct. Plant Biol.,29:1453-1464.
    174. Lasat M.M., Baker A.J.M., Kochian L.V.1996. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol.,112:1715-1722.
    175. Laspina N.V., Groppa M.D., Tomaro M.L., et al.2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci.,169:323-330.
    176. Lee J., Shim D., Song W.Y., et al.2004. Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol. Biol.,54:805-815.
    177. Lee K.C., Cunningham B.A., Paulsen G.M., et al.1976. Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol. Plantarum.,36:4-6.
    178. Leita L., Marchiol L., Martin M., et al.1995. Transpiration dynamics in cadmium-treated soybean (Glycine max L.) plants. J. Agron. Crop Sci.,175:153-156.
    179. Lemus R., Lal R.2005. Bioenergy crops and carbon sequestration. Crit. Rev.,24:1-22.
    180. Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O., et al.2000. Miscanthus:European experience with a novel energy crop. Biomass Bioenergy,19:209-228.
    181. Lewandowski I., Scurlock J.M.O., Lindvall E., et al.2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy,25: 335-361.
    182. Li E.H., Miles C.D.1975. Effects of cadmium on photoreaction Ⅱ of chloroplasts. Plant Sci. Lett.,5: 33-40.
    183. Li Q., Yu L., Deng Y., et al.2007. Leaf epidermal characters of Lonicera japonica and Lonicera confuse and their ecology adaptation. J. Forestry Res.,18:103-108.
    184. Liang Y., Wong J., Wei L.2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere,58:475-483.
    185. Liang Y., Yang C., Shi H.2001. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J. Plant Nutr.,24:229-243.
    186. Liao Y.C., Chien S.W.C., Wang M.C., et al.2006. Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere,65: 343-351.
    187. Lichtenthaler H., Miehe J.1997. Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci.,2:316-320.
    188. Lichtenthaler H.K..1987. Chlorophylls and carotenoids:pigments of photosynthetic membranes. Methods Enzymol,148:350-382.
    189. Lin J., Jiang W., Liu D.2003. Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). Biores. Technol.,86:151-155.
    190. Linger P., Miissig J., Fischer H., et al.2002. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil:fibre quality and phytoremediation potential. Ind. Crop. Prod.,16:33-42.
    191. Liu J.G., Liang J.S., Li K.Q., et al.2003. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere,52: 1467-1473.
    192. Llamas A., Ullrich C.I., Sanz A.2000. Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice [Oryza sativa L) roots. Plant Soil,219:21-28.
    193. Lombardi L., Sebastiani L.2005. Copper toxicity in Prunus cerasifera:growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci.,168:797-802.
    194. Lozano-Rodriguez E., Hernandez L., Bonay P., et al.1997. Distribution of cadmium in shoot and root tissues of maize and pea plants:physiological disturbances. J. Exp. Bot.,48:123-128.
    195. Lu C.M., Chau C.W., Zhang J.H.2000. Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis-assessment by chlorophyll fluorescence analysis. Chemosphere,41:191-196.
    196. Lunackova L., Masarovicova E., Kral'ova K., et al.2003. Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bull. Environ. Contain. Toxicol.,70:576-585.
    197. Ma J.F.2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr.,50:11-18.
    198. Ma J.F., Miyake Y, Takahashi E.2001. Silicon as a beneficial element for crop plants. In:Datnoff L., Snyder G., Korndorfer G. (eds), Silicon in agriculture. Elsevier Science, New York, pp.17-39.
    199. Ma J.F., Ueno D., Zhao F.J., et al.2005. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta,220:731-736.
    200. Ma M., Lau P.S., Jia Y.T., et al.2003. The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Sci.,164:51-60.
    201. MacFarlane G.R., Burchett M.D.2001. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove, Avicennia marina (Forsk.) Vierh. Mar. Pollut. Bull.,42:233-240.
    202. Macfie S.M.2000. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch. Environ. Contam. Toxicol.,39:413-419.
    203. Madhava R.K.V., Sresty T.V.2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci.,157:113-128.
    204. Maitani T., Kubota H., Sato K., et al.1996. The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol.,110:1145-1150.
    205. Marschner H.1995. Mineral Nutrition of High Plants. Academic Press, London, pp.299-312.
    206. Mathys W.1977. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plantarum.,40:130-136.
    207. Maxwell K., Johnson G. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot.,51: 659-668.
    208. McGrath S.P., Zhao F.J.2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotech.,14:277-282.
    209. McGrath S.P., Zhao F.J., Lombi E.2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil,232:207-214.
    210. Mediavilla S., Santiago H., Escudero A.2002. Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species Photosynthetica., 40:553-559.
    211. Meharg A.A., Hartley-Whitaker J.2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol.,154:29-43.
    212. Metwally A., Finkemeier I., Georgi M., et al.2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol.,132:272-281.
    213. Metwally A., Safronova V.I., Belimov A.A., et al.2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J. Exp. Bot.,56:167-178.
    214. Miles C.D., Brandle J.R., Daniel D.J., et al.1972. Inhibition of photosystem Ⅱ in isolated chloroplasts by lead. Plant Physiol.,49:820-825.
    215. Miller R.J., Bittell J.E., Koeppe D.E.1973. The effect of cadmium on electron and energy transfer reactions in corn mitochondria. Physiol. Plantarum.,28:166-171.
    216. Milone M.T., Sgherri C., Clijsters H., et al.2003. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ. Exp. Bot.,50:265-276.
    217. Mishra A., Choudhuri M.A.1999. Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol. Plant.,42:409-415.
    218. Miyazawa S.I., Terashima I.2001. Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii:relationships between leaf anatomical characteristics and photosynthetic rate. Plant Cell Environ.,24:279-291.
    219. Mobin M., Khan N.A.2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J. Plant. Physiol.,164:601-610.
    220. Mohanty N., Vass I., Demeter S.1989. Copper toxicity affects photosystem II electron transport at the secondary quinone acceptor, QB. Plant Physiol.,90:175-179.
    221. Monnet F., Vaillant N., Vernay P., et al.2001. Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J. Plant. Physiol.,158:1137-1144.
    222. Moussa H.R.2004. Effect of cadmium on growth and oxidative metabolism of faba bean plants. Acta Agr. Hung.,52:269-276.
    223. Moya J.L., Ros R., Picazo I.1993. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth. Res.,36:75-80.
    224. Murphy A., Zhou J., Goldsbrough P.B., et al.1997. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol.,113:1293-1301.
    225. Neumann D., zur Nieden U.2001. Silicon and heavy metal tolerance of higher plants. Phytochemistry.,56:685-692.
    226. Nicholls A.M., Mal T.K.2003. Effects of lead and copper exposure on growth of an invasive weed, Lythrum salicaria L.(Purple Loosestrife). Ohio J. Sci.,103:129-133.
    227. Nieminen T., Helmisaari H.S.1996. Nutrient retranslocation in the foliage of Pinus sylvestris L. growing along a heavy metal pollution gradient. Tree. Physiol.,16:825-831.
    228. Nishizono H., Ichikawa H., Suziki S., et al.1987. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil,101:15-20.
    229. Nishizono H., Kubota K., Suzuki S., et al.1989. Accumulation of heavy metals in cell walls of Polygonum cuspidatum roots from metalliferous habitats. Plant Cell Physiol.,30:595-598.
    230. Nonhebel S.2005. Renewable energy and food supply:will there be enough land? Renew. Sust. Energy Rev.,9:191-201.
    231. Novak V., Vidovic J.2003. Transpiration and nutrient uptake dynamics in maize (Zea mays L.). Ecol. Model.,166:99-107.
    232. Nowakowski W., Nowakowska J.1997. Silicon and copper interaction in the growth of spring wheat seedlings. Biol. Plant.,39:463-466.
    233. Nussbaum S., Schmutz D., Brunold C.1988. Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol.,88:1407-1410.
    234. Obata H., Umebayashi M.1997. Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J. Plant Nutr.,20:97-105.
    235. Olmos E., Martinez-Solano J.R., Piqueras A., et al.2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot.,54:291-301.
    236. Ouariti O., Gouia H., Ghorbal M.H.1997. Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol. Biochem.,35:347-354.
    237. Ouzounidou G., Ciamporova M., Moustakas M., et al.1995. Responses of maize (Zea mays L.) plants to copper stress-I. Growth, mineral content and ultrastructure of roots. Environ. Exp. Bot., 35:167-176.
    238. Pal M., Szalai G, Horvath E., et al.2002. Effect of salicylic acid during heavy metal stress. Acta Biol. Szeg.,46:119-120.
    239. Page A.L., Bingham F.T., Nelson C.1972. Cadmium absorption and growth of various plant species as influenced by solution cadmium concentration. J. Environ. Qual.,1:288-291.
    240. Panda S.K., Chaudhury I., Khan M.H.2003. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol. Plant.,46:289-294.
    241. Pandey N., Sharma C.2002. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci.,163:753-758.
    242. Pandey N., Sharma C.P.2003. Chromium interference in iron nutrition and water relations of cabbage. Environ. Exp. Bot.,49:195-200.
    243. Papadakis I.E., Giannakoula A., Therios I.N., et al.2007. Mn-induced changes in leaf structure and chloroplast ultrastructure of Citrus volkameriana (L.) plants. J. Plant. Physiol.,164:100-103.
    244. Papoyan A., Kochian L.V.2004. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol.,136:3814-3823.
    245. Parys E., Romanowska E., Siedlecka M., et al.1998. The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. Acta Physiol. Plantarum,20:313-322.
    246. Perfus-Barbeoch L., Leonhardt N., Vavasseur A., et al.2002. Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status. Plant J.,32:539-548.
    247. Peuke A.D., Rennenberg H.2005. Phytoremediation. Molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep.,6:497-501.
    248. Pigliucci M.2001. Phenotypic Plasticity:Beyond Nature and Nurture.Johns Hopkins University Press.
    249. Piqueras A., Olmos E., Martinez-Solano J., et al.1999. Cd-induced oxidative burst in tobacco BY2 cells:Time course, subcellular location and antioxidant response. Free. Radical. Res.,31:33-38.
    250. Polle A., Schutzendubel A.2004. Heavy metal signalling in plants:linking cellular and organismic responses. In:Hirt H., Shinozaki K. (eds), Plant Responses to Abiotic Stress. Springer-Verlag Berlin, Heidelberg, pp.187-215.
    251. Popova L.P., Maslenkova L.T., Yordanova R.Y., et al.2009. Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol. Biochem.,47:224-231.
    252. Poschenrieder C., Gunse B., Barcelo J.1989. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol.,90:1365-1371.
    253. Poulter A., Collin H.A., Thurman D.A., et al.1985. The role of the cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L. Plant Sci.,42:61-66.
    254. Prasad K.V.S.K., Paradha Saradhi P., Sharmila P.1999. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ. Exp. Bot.,42:1-10.
    255. Prassad D.D.K., Prassad A.R.K.1987. Altered aminolevulinic acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). J. Plant. Physiol.,127:241-249.
    256. Price L., Bullard M., Lyons H., et al.2004. Identifying the yield potential of Miscanthus x giganteus:an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales. Biomass Bioenergy,26:3-13.
    257. Price T.D., Qvarnstrom A., Irwin D.E.2003. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B Biol. Sci.,270:1433-1440.
    258. Prine G.M., Stricker J.A., McConnell W.V.1997. Opportunities for Bioenergy Development in Lower South USA. Proceedings of the Third Biomass Conference of the America. Pergamon Press Inc, pp.227-235.
    259. Riiegsegger A., Brunold C.1992. Effect of cadmium on gamma-glutamylcysteine synthesis in maize seedlings. Plant Physiol.,99:428.
    260. Radwan D.E.M., Fayez K.A., Mahmoud S.Y., et al.2006. Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiol. Mol. Plant Pathol.,69:172-181.
    261. Rai V.K., Sharma S.S., Sharma S.1986. Reversal of ABA-induced stomatal closure by phenolic compounds. J. Exp. Bot.,37:129-134.
    262. Ralph P.J., Burchett M.D.1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ. Pollut.,103:91-101.
    263. Ramadhas A.S., Jayaraj S., Muraleedharan C.2005. Biodiesel production from high FFA rubber seed oil. Fuel,84:335-340.
    264. Ranalli P.2004. Current status and future scenarios of hemp breeding. Euphytica.,140:121-131.
    265. Rashid A., Bernier M., Pazdernick L., et al.1991. Interaction of Zn2+ with the donor side of Photosystem II. Photosynth. Res.,30:123-130.
    266. Rashid A., Camm E.L., Ekramoddoullah A.K.1994. Molecular mechanism of action of Pb2+ and Zn2+on water oxidizing complex of photosystem II. FEBS. Lett.,350:296-298.
    267. Rashid A., Popovic R.1990. Protective role of CaCl2 against Pb2+inhibition in Photosystem Ⅱ. FEBS. Lett.,271:181-184.
    268. Rauser W.E.1995. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol.,109:1141-1149.
    269. Reese R.N., Roberts L.W.1985. Effects of cadmium on whole cell and mitochondrial respiration in tobacco cell suspension cultures(Nicotiana tabacum L. var. xanthi). J. Plant. Physiol.,120: 123-130.
    270. Renger G., Gleiter H., Haag E., et al.1993. Photosystem Ⅱ:thermodynamics and kinetics of electron transport from QA- to QB (QB-) and deleterious effects of copper (Ⅱ). Z. Naturforsch. C Biosci.,48:234-240.
    271. Richmond K.E., Sussman M.2003. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol.,6:268-272.
    272. Robinson N.J., Wilson J.R., Turner J.S.1996. Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein-deficient Synechococcus PCC 7942: putative role for MT2 in Zn2+metabolism. Plant Mol. Biol.,30:1169-1179.
    273. Rodriguez-Serrano M., Romero-Puertas M.C., Zabalza A., et al.2006. Cadmium effect on oxidative metabolism of pea(Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ.,29:1532-1544.
    274. Rogalla H., Romheld V.2002. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ.,25:549-555.
    275. Rohacek K.2002. Chlorophyll fluorescence parameters:the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica.,40:13-29.
    276. Romanowska E., Igamberdiev A.U., Parys E., et al.2002. Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol. Plantarum.,116:148-154.
    277. Romero-Puertas M.C., McCarthy I., Sandalio L.M., et al.1999. Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free. Radical. Res.,31:25-31.
    278. Romero-Puertas M.C., Rodriguez-Serrano M., Corpas F.J., et al.2004. Cadmium-induced subcellular accumulation of O2-and H2O2 in pea leaves. Plant Cell Environ.,27:1122-1134.
    279. Rosselli W., Keller C., Boschi K.2003. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil,256:265-272.
    280. Rousos P.A., Harrison H.C., Steffen K.L.1989. Physiological responses of cabbage to incipient copper toxicity. J. Am. Soc. Hortic. Sci.,114:149-152.
    281. Rout G.R., Das P.2003. Effect of metal toxicity on plant growth and metabolism:Ⅰ. Zinc. Agronomie.,23:3-11.
    282. Rubio M.I., Escrig I., Martinez-Cortina C., et al.1994. Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul.,14:151-157.
    283. Ruciska-Sobkowiak R., Pukacki P.M.2006. Antioxidative defense system in lupin roots exposed to increasing concentrations of lead. Acta Physiol. Plantarum,28:357-364.
    284. Ruley A.T., Sharma N.C., Sahi S.V., et al.2006. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ. Pollut.,144: 11-18.
    285. Sabat C.1996. Copper ion inhibition of electron transport activity in sodium chloride washed photosystem II particle is partially prevented by calcium ion. Z. Naturforsch. C Biosci.,51: 179-184.
    286. Saitama J., Kathmandu N., Ibaraki J.2001. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves:Drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis,22:2824-2831.
    287. Salt D.E., Prince R.C., Baker A.J.M., et al.1999. Zinc ligands in the metal hyperaccumulation Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol., 33:713-717.
    288. Salt D.E., Prince R.C., Pickering I.J., et al.1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol.,109:1427-1433.
    289. Sam O., Jerez E., Dell'Amico J., et al.2000. Water stress induced changes in anatomy of tomato leaf epidermes. Biol. Plant.,43:275-277.
    290. Samson G., Morissette J.C., Popovic R.1990. Determination of four apparent mercury interaction sites in photosystem II by using a new modification of the Stern-Volmer analysis. Biochem. Biophys. Res. Commun.,166:873-878.
    291. Samson G, Popovic R.1990. Inhibitory effects of mercury on photosystem Ⅱ photochemistry in Dunaliella tertiolecta under in vivo conditions. J. Photoch. Photobio. B,5:303-310.
    292. Sandalio L.M., Dalurzo H.C., Gomez M., et al.2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot.,52:2115-2126.
    293. Sas-Nowosielska A., Kucharski R., Malkowski E., et al.2004. Phytoextraction crop disposal-an unsolved problem. Environ. Pollut.,128:373-379.
    294. Schutzendubel A., Schwanz P., Teichmann T., et al.2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol.,127:887-898.
    295. Scheller H.V., Huang B., Hatch E., et al.1987. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol.,85:1031.
    296. Schlegel H., Godbold D.L., Huttermann A.1987. Whole plant aspects of heavy metal induced changes in CO2, uptake and water relations of spruce (Picea abies) seedlings. Physiol. Plantarum., 69:265-270.
    297. Schmer M.R., Vogel K.P., Mitchell R.B., et al.2008. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA,105:464.
    298. Schmoger M.E.V., Oven M., Grill E.2000. Detoxification of arsenic by phytochelatins in plants. Plant Physiol.,122:793-802.
    299. Schroder W.P., Arellano J.B., Bittner T., et al.1994. Flash-induced absorption spectroscopy studies of copper interaction with photosystem II in higher plants. J. Biol. Chem.,269:32865-32870.
    300. Schutzendubel A., Polle A.2002. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot.,53:1351-1365.
    301. Schutzendubel A., Schwanz P., Teichmann T., et al.2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol.,127:887-898.
    302. Sebastiani L., Scebba F., Tognetti R.2004. Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides×maximowiczii) and Ⅰ-214 (P.× euramericana) exposed to industrial waste. Environ. Exp. Bot.,52:79-88.
    303. Senaratna T., Touchell D., Bunn E., et al.2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul.,30:157-161.
    304. Seregin I.V., Ivanov V.B.2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant Physiol.,48:523-544.
    305. Sersen F., Kralova K., Bumbalova A., et al.1997. The effect of Cu(II) ions bound with tridentate Schiff base ligands upon the photosynthetic apparatus. J. Plant. Physiol.,151:299-305.
    306. Shah K., Kumar R.G., Verma S., et al.2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci.,161: 1135-1144.
    307. Sharma P., Dubey R.S.2005. Lead toxicity in plants. Brasil. J. Plant Physiol.,17:35-52.
    308. Sheoran I.S., Singal H.R., Singh R.1990. Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth. Res.,23:345-351.
    309. Shi G.R., Cai Q.S.2008. Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica.,46:627-630.
    310. Shi Q., Bao Z., Zhu Z., et al.2005a. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry.,66: 1551-1559.
    311. Shi Q., Zhu Z., Xu M., et al.2006. Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities. Environ. Exp. Bot.,58:197-205.
    312. Shi X., Zhang C., Wang H., et al.2005b. Effect of Si on the distribution of Cd in rice seedlings. Plant Soil,272:53-60.
    313. Shioi Y., Tamai H., Sasa T.1978. Effects of copper on photosynthetic electron transport systems in spinach chloroplasts. Plant Cell Physiol.,19:203-209.
    314. Shu W.S., Ye Z.H., Lan C.Y., et al.2002. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ. Pollut.,120:445-453.
    315. Siedlecka A., BaszynAski T.1993. Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol. Plantarum.,87:199-202.
    316. Singh D.P., Singh S.P.1987. Action of heavy metals on Hill activity and O2 evolution in Anacystis nidulans. Plant Physiol.,83:12-14.
    317. Singh P.K., Tewari R.K.2003. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J. Environ. Biol.,24:107.
    318. Singh S., Saxena R., Pandey K., et al.2004. Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge:its metal accumulation potential. Chemosphere,57:1663-1673.
    319. Skorzynska-Polit E., Baszynski T.1997. Differences in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. Plant Sci.,128:11-21.
    320. Smith G.C., Brenan E.G., Greenhalgh B.J.1985. Cadmium sensitivity of soybean related to efficiency in iron utilization. Environ. Exp. Bot.,25:99-106.
    321. Sresty T.V.S., Rao K.V.M.1999. Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ. Exp. Bot.,41:3-13.
    322. Sridhar B.B.M., Diehl S.V., Han F.X., et al.2005. Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ. Exp. Bot.,54:131-141.
    323. Steffens J.C., Hunt D.F., Williams B.G 1986. Accumulation of non-protein metal-binding polypeptides (gamma-glutamyl-cysteinyl) n-glycine in selected cadmium-resistant tomato cells. J. Biol. Chem.,261:13879-13882.
    324. Stiborova M., Ditrichova M., Brezinova A.1987. Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biol. Plant.,29: 453-467.
    325. Stobart A.K., Griffiths W.T., Ameen-Bukhari I., et al.1985. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plantarum.,63:293-298.
    326. Stoltz E., Greger M.2002. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot.,47:271-280.
    327. Sultan S.E.1995. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl.,44:363-383.
    328. Sundberg M.1986. A comparison of stomatal distribution and length in succulent and non-succulent desert plants. Phytomorphology,36:53-66.
    329. Szalontai B., Horvath L.I., Debreczeny M., et al.1999. Molecular rearrangements of thylakoids after heavy metal poisoning, as seen by Fourier transform infrared (FTIR) and electron spin resonance (ESR) spectroscopy. Photosynth. Res.,61:241-252.
    330. Tani F.H., Barrington S.2005. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.). Environ. Pollut.,138:548-558.
    331. Tanyolac D., Ekmekci Y., Unalan S.2007. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere,67:89-98.
    332. Tarhanen S.1998. Ultrastructural responses of the lichen Bryoria fuscescens to simulated acid rain and heavy metal deposition. Ann. Bot.,82:735-746.
    333. Tasgin E., Atici O., Nalbantoglu B.2003. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul.,41:231-236.
    334. Terashima I.1992. Anatomy of non-uniform leaf photosynthesis. Photosynth. Res.,31:195-212.
    335. Tewari R.K., Kumar P., Sharma P.N.2008. Morphology and physiology of zinc-stressed mulberry plants. J Plant Nutr. Soil Sci.,171:286-294.
    336. Thomine S., Wang R., Ward J.M., et al.2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA,97:4991.
    337. Tian S.K., Lu L.L., Yang X.E., et al.2009. Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol.,182:116-126.
    338. Tiryakioglu M., Eker S., Ozkutlu F., et al.2006. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J. Trace Elem. Med. Biol.,20:181-189.
    339. Tolra R.P., Poschenrieder C., Barcelo J.1996. Zinc hyperaccumulation in Thlaspi caerulescens. Ⅱ. Influence on organic acids. J. Plant Nutr.,19:1541-1550
    340. Turner R.G., Marshall C.1972. The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibth. in relation to zinc tolerance. New Phytol.,71:671-676.
    341. Tuteja N., Singh M.B., Misra M.K., et al.2001. Molecular mechanisms of DNA damage and repair: Progress in plants. Crit. Rev. Biochem. Mol. Biol.,36:337-397.
    342. Vaillant N., Monnet F., Hitmi A., et al.2005. Comparative study of responses in four Datura species to a zinc stress. Chemosphere,59:1005-1013.
    343. Vallee B.L., Ulmer D.D.1972. Biochemical Effects of Mercury, Cadmium, and Lead. Annu. Rev. Biochem.,41:91-128.
    344. Van Assche F., Clijsters H.1986a. Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc:Effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J. Plant Physiol.,125:355-360.
    345. Van Assche F., Clijsters H.1986b. Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc:effects on electron transport and photophosphorylation. Physiol. Plantarum.,66:717-721.
    346. van der Zaal B.J., Neuteboom L.W., Pinas J.E., et al.1999. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol.,119:1047-1056.
    347. van Hoof N.A.L., Hassinen V.H., Hakvoort H.W.J., et al.2001. Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol.,126:1519-1526.
    348. Vashegyi A., Zsoldos F., Pecsvaradi A., et al.2002. Aluminium/silicon interactions in cereal seedlings. Acta Biol. Szeg.,46:129-130.
    349. Vassilev A., Yordanov I., Tsonev T.1997. Effects of Cd2+on the physiological state and photosynthetic activity of young barley plants. Photosynthetica.,34:293-302.
    350. Vazquez M.D., Barcelo J., Poschenrieder C., et al.1992. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J. Plant. Physiol.,140:350-355.
    351. Vazquez M.D., Poschenrieder C., Barcelo J., et al.1994. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Presl. Botanica Acta,107: 243-250.
    352. Venendaal R., Jorgensen U., Foster C.A.1997. European energy crops:a synthesis. Biomass Bioenergy,13:147-185.
    353. Venturi P., Venturi G. 2003. Analysis of energy comparison for crops in European agricultural systems. Biomass Bioenergy,25:235-255.
    354. Verkleij J., Schat H.1990. Mechanisms of metal tolerance in higher plants. In:Shaw A. J. (ed), Heavy metal tolerance in plants:evolutionary aspects. CRC Press Inc., Florida, pp.179-193.
    355. Verkleij J.A.C., Koevoets P.L.M., Blake-Kalff M.M.A., et al.1998. Evidence for an important role of the tonoplast in the mechanism of naturally selected zinc tolerance in Silene vulgaris. J. Plant. Physiol.,153:188-191.
    356. Verma S., Dubey R.S.2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci.,164:645-655.
    357. Vitoria A.P., Lea P.J., Azevedo R.A.2001. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry.,57:701-710.
    358. Vogel-Mikus K., Regvar M., Mesjasz-Przybylowicz J., et al.2008. Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol.,179: 712-721.
    359. Vojtechova M., Leblova S.1991. Uptake of lead and cadmium by maize seedlings and the effect of heavy metals on the activity of phosphoenolpyruvate carboxylase Isolated from maize. Biol. Plant., 33:386-394.
    360. Vollenweider P., Cosio C, Giinthardt-Goerg M.S., et al.2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) Part II Microlocalization and cellular effects of cadmium. Environ. Exp. Bot.,58:25-40.
    361. Wojcik M., Skorzynska-Polit E., Tukiendorf A.2006. Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul.,48: 145-155.
    362. Walker W.M., Miller J.E., Hassett J.J.1977. Effect of lead and cadmium upon the calcium, magnesium, potassium and phosphorus concentration in young corn plants. Soil Sci.,124: 145-151.
    363. Walsh M.1997. Miscanthus Handbook-EU project FAIR 3-CT96-1707. Hyperion, Cork.
    364. Wang C., Zhang S.H., Wang P.F., et al.2009. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, doi:10.1016/j.chemosphere. 2009.02.033
    365. Wang L.J., Wang Y.H., Chen Q., et al.2000. Silicon induced cadmium tolerance of rice seedlings. J. Plant Nutr.,23:1397-1406.
    366. Weigel H.J.1985. The effect of Cd2+ on photosynthetic reactions of mesophyll protoplasts. Physiol. Plantarum.,63:192-200.
    367. Weigel H.J., Jager H.J.1980. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol.,65:480-482.
    368. Weyers J.D.B., Meidner H.1990. Methods in stomatal research. Essex, England,Longman Scientific & Technical Harlow.
    369. Wilkins D.A.1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol.,80:623-633.
    370. Wu X., Liu C., Qu C., et al.2008. Effects of Lead on Activities of Photochemical Reaction and Key Enzymes of Carbon Assimilation in Spinach Chloroplast. Biol. Trace. Elem. Res.,126:269-279.
    371. Xiang C., Oliver D.J.1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell,10:1539-1550.
    372. Yachandra V.K., Sauer K., Klein M.P.1996. Manganese cluster in photosynthesis:Where plants oxidize water to dioxygen. Chem. Rev.,96:2927-2950.
    373. Yang H.M., Zhang X.Y., Wang G.X.2004a. Effects of heavy metals on stomatal movements in broad bean leaves. Russ. J. Plant Physiol.,51:464-468.
    374. Yang X., Baligar V.C., Martens D.C., et al.1996. Plant tolerance to nickel toxicity. Ⅱ. Nickel effects on influx and transport of mineral nutrients in four plant species. J. Plant Nutr.,19:265-280.
    375. Yang X.E., Long X.X., Ye H.B., et al.2004b. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alfredii Hance). Plant Soil,259:181-189.
    376. Yeh C., Chien P., Huang H.2007. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J. Exp. Bot.,58:659.
    377. Yruela I., Alfonso M., Baron M., et al.2000. Copper effect on the protein composition of photosystem Ⅱ. Physiol. Plant.,110:551-557.
    378. Yruela I., Alfonso M., Ortiz de Zarate I., et al.1993. Precise location of the Cu (Ⅱ)-inhibitory binding site in higher plant and bacterial photosynthetic reaction centers as probed by light-induced absorption changes. J. Biol. Chem.,268:1684-1689.
    379. Yruela I., Gatzen G., Picorel R., et al.1996a. Cu (Ⅱ)-inhibitory effect on photosystem Ⅱ from higher plants. A picosecond time-resolved fluorescence study. Biochemistry,35:9469-9474.
    380. Yruela I., Montoya G., Alonso P.J., et al.1991. Identification of the pheophytin-QA-Fe domain of the reducing side of the photosystem Ⅱ as the Cu(Ⅱ)-inhibitory binding site. J. Biol. Chem.,266: 22847-22850.
    381. Yruela I., Montoya G., Picorel R.1992. The inhibitory mechanism of Cu(Ⅱ) on the Photosystem Ⅱ electron transport from higher plants. Photosynth. Res.,33:227-233.
    382. Yruela I., Pueyo J., Alonso P., et al.1996b. Photoinhibition of photosystem Ⅱ from higher plants. Effect of copper inhibition. J. Biol. Chem.,271:27408-27415.
    383. Zawoznik M.S., Groppa M.D., Tomaro M.L., et al.2007. Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci.,173:190-197.
    384. Zenk M.H.1996. Heavy metal detoxification in higher plants-a review. Gene,179:21-30.
    385. Zhang C., Wang L., Nie Q., et al.2008a. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ. Exp. Bot.,62:300-307.
    386. Zhang F., Zhang H., Wang G., et al.2009. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J. Hazard. Mater., doi:10.1016/j.jhazmat.2009.02.002
    387. Zhang H., Xia Y., Wang G., et al.2008b. Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper-zinc superoxide dismutase in roots of Elsholtzia haichowensis. Planta,227:465-475.
    388. Zhao F.J., Lombi E., McGrath S.P.2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil,249:37-43.
    389. Zhou J., Goldsbrough P.B.1994. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell,6:875.
    390. Zhu R., Macfie S.M., Ding Z.2005. Cadmium-induced plant stress investigated by scanning electrochemical microscopy. J. Exp. Bot.,56:2831-2838.
    391.王慧忠,何翠屏,赵楠.2003.铅对草坪植物生物量与叶绿素水平的影响.草业科学,20:73-75.
    392.王广林,王立龙,李征,等.2005.杂草对土壤重金属的富集与含量特征研究.生态学杂志,24:639-643.
    393.王泽港,骆剑峰,刘冲,等.2004.单一重金属污染对水稻叶片光合特性的影响.上海环境科学,23:237-240.
    394.任安芝,高玉葆.2000.铅,镉,铬单一和复合污染对青菜种子萌发的生物学效应.生态学杂志,19:19-22.
    395.安志装,王校常,施卫明,等.2002.重金属与营养元素交互作用的植物生理效应.土壤与环境,11:392-396.
    396.朱艳霞,魏幼璋,叶正钱,等.2006.有机酸在超积累植物重金属解毒机制中的作用.西北农林科技大学学报(自然科学版),34:121-126.
    397.江行玉,王长海,赵可夫.2003.芦苇抗镉污染机理研究.生态学报,23:856-862.
    398.江行玉,赵可夫.2001.植物重金属伤害及其抗性机理.应用与环境生物学报,7:92-99.
    399.江海东,周琴,李娜,等.2006.Cd对油菜幼苗生长发育及生理特性的影响.中国油料作物学报,28:39-43.
    400.宋勤飞,樊卫国.2004.铅胁迫对番茄生长及叶片生理指标的影响.山地农业生物学报,23:134-138.
    401.李勤奋,杜卫兵,李志安,等.2006.金属矿区芒草种群对重金属的积累及其与土壤特性的关系.生态学杂志,25:255-258.
    402.李军,吴平治,李美茹,等.2007.能源植物的研究进展及其发展趋势.自然杂志,29:21-24.
    403.李铮铮,伍钧,唐亚,等.2007.铅,锌及其交互作用对鱼腥草(Houttuynia cordata)叶绿素含量及抗氧化酶系统的影响.生态学报,27:5441-5446.
    404.杜应琼,何江华,陈俊坚,等.2003.铅,镉和铬在叶类蔬菜中的累积及对其生长的影响.园艺学报,30:51-55.
    405.沈振国,刘友良.1998.重金属超量积累植物研究进展.植物生理学通讯,34:133-139.
    406.谷巍,施国新,韩承辉,等.2001.汞,镉污染对轮叶狐尾藻的毒害.中国环境科学,21:371-375.
    407.和文祥,朱铭莪.2000.土壤酶与重金属关系的研究现状.土壤与环境,9:139-142.
    408.周青,黄晓华.1998.La对Cd伤害大豆幼苗的生态生理作用.中国环境科学,18:442-445.
    409.胡筑兵,陈亚华,王桂萍,等.2006.铜胁迫对玉米幼苗生长,叶绿素荧光参数和抗氧化酶活性的影响.植物学通报,23:129-137.
    410.倪才英,陈英旭,骆永明.2003.红壤模拟铜污染下紫云英根表形态及其组织和细胞结构变化.环境科学,24:116-121.
    411.唐咏,王萍萍,张宁.2006.植物重金属毒害作用机理研究现状.沈阳农业大学学报,37:551-555.
    412.郝怀庆,施国新,杜开和.2001.Hg2+ 对水鳖(Hydrocharis dubia)叶片生理生化及超微结构的毒害效应.湖泊科学,13:163-168.
    413.崔爽,周启星,晁雷.2006.某冶炼厂周围8种植物对重金属的吸收与富集作用.应用生态学报,17:512-515.
    414.常学秀,王焕校.1999.Cd2+,Al3+对蚕豆胚根根尖细胞遗传学毒性效应研究.农业环境保护,18:1-3.
    415.康志河,杨国红,杨晓平,等.2005.发展甜高粱生产开创能源农业新时代.中国农学通报,21:340-341.
    416.莫文红,李懋学.1992.镉离子对蚕豆根尖细胞分裂的影响.植物学通报,9:30-34.
    417.彭鸣,王焕校.1991.镉,铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化.中国环境科学,11:426-431.
    418.薛艳,周东美,郝秀珍,等.2006.2种不同耐性青菜品种对铜胁迫响应差异的机制研究.农业环境科学学报,25:281-285.
    419.魏树和,周启星.2004.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志,23:65-72.
    420.刘文彰,孙典兰.1985.铜对黄瓜幼苗生长及过氧化氢酶和吲哚乙酸氧化酶活性的影响.植物生理学通讯,3:22-24.
    421.刘秀梅,王庆仁.2002.6种植物对Pb的吸收与耐性研究.植物生态学报,26:533-537.
    422.刘素纯,萧浪涛,廖柏寒,等.2005.铅胁迫对黄瓜幼苗内源激素积累动态的影响.湖南农业大学学报(自然科学版),31:510-513.
    423.刘登义,王友保.2002.Cu, As对作物种子萌发和幼苗生长影响的研究.应用生态学报,13:179-182.
    424.吴国江,刘杰,娄治平,等.2006.能源植物的研究现状及发展建议.中国科学院院刊,21:53-57.
    425.孙波,周生路,赵其国.2003.基于空间变异分析的土壤重金属复合污染研究.农业环境科学学报,22:248-251.
    426.孙卫红,王伟青,孟庆伟.2005.植物抗坏血酸过氧化物酶的作用机制,酶学及分子特性.植物生理学通讯,41:143-147.
    427.孙宪芝,郑成淑,王秀峰.2008.高温胁迫对切花菊‘神马’光合作用与叶绿素荧光的影响.应用生态学报,19:2149-2154.
    428.张玉秀,柴团耀.1999.植物耐重金属机理研究进展.植物学报,41:453-457.
    429.张义贤.1997.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,17:199-205.
    430.张卫明,史劲松,顾龚平.2007.生物质能的利用和能源植物的开发.南京师范大学学报:自然科学版,30:68-74.
    431.张宪政.1992.作物生理研究法.北京:农业出版社,p.142.
    432.杨丹慧,许春辉,王可玢,等.1990.镉离子对菠菜叶绿体色素蛋白质复合物及激发能分配的影响.植物学报,32:198-204.
    433.杨丹慧,许春辉,赵福洪,等.1989.镉离子对菠菜叶绿体光系统Ⅱ的影响.植物学报,31:702-707.
    434.杨晓青,张岁岐,梁宗锁,等.2004.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响.西北植物学报,24:812-816
    435.杨树华,曲仲湘,王焕.1986.铅在水稻中的迁移积累及其对水稻生长发育的影响.生态学报,6:312-323.
    436.汤春芳,刘云国,曾光明,等.2004.镉胁迫对萝卜幼苗活性氧产生,脂质过氧化和抗氧化酶 活性的影响.植物生理与分子生物学学报,30:469-474.
    437.聂俊华,刘秀梅,王庆仁.2004.Pb(铅)富集植物品种的筛选.农业工程学报,20:255-258.
    438.苏德纯,黄焕忠.2002.油菜作为超累积植物修复镉污染土壤的潜力.中国环境科学,22:48-51.
    439.苏德纯,黄焕忠,张福锁.2002.印度芥菜对土壤中难溶态镉,铅的吸收差异.土壤与环境,11:125-128.
    440.谢光辉,卓岳,赵亚丽,等.2008.欧美根茎能源植物研究现状及其在我国北方的资源潜力.中国农业大学学报,13:11-18.
    441.谢光辉,郭兴强,王鑫,等.2007.能源作物资源现状与发展前景.资源科学,29:74-80.
    442.贾虎森,许亦农.2006.生物柴油利用概况及其在中国的发展思路.植物生态学报,30:221-230.
    443.赵宗保,华艳艳,刘波.2005.中国如何突破生物柴油产业的原料瓶颈.中国生物工程杂志,25:1-6.
    444.赵博生.1996.镉对蒜根尖细胞分裂的影响.曲阜师范大学学报:自然科学版,22:93-97.
    445.赵凤云.1999.铅锌对蒜根尖的毒害作用.河南科学,17:116-117,120.
    446.陆晓怡,何池全.2005a.蓖麻对重金属Cd的耐性与吸收积累研究.农业环境科学学报,24:674-677.
    447.陆晓怡,何池全.2005b.蓖麻对重金属锌的耐性与吸收积累研究.环境污染与防治,27:414-415.
    448.陈同斌,阎秀兰,廖晓勇,等.2005.蜈蚣草中砷的亚细胞分布与区隔化作用.科学通报,50:2739-2744.
    449.陈怀满.1996.土壤-植物系统中的重金属污染.北京,科学出版社.
    450.陈翠芳,钟继洪,李淑仪.2007.施硅对白菜地上部吸收重金属镉的抑制效应.中国农学通报,23:144-147.
    451.韦朝阳,陈同斌.2001.重金属超富集植物及植物修复技术研究进展.生态学报,21:1196-1204.
    452.韩志萍,胡正海.2005.芦竹对不同重金属耐性的研究.应用生态学报,16:161-165.
    453.韩瑞宏,卢欣石,高桂娟,等.2007.紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应.生态学报,27:5229-5237.
    454.马成仓,洪法水.1998.汞对小麦种子萌发和幼苗生长作用机制初探.植物生态学报,22:373-378.
    455.马鸿翔,张大栋.2006.沿海滩涂发展能源植物的潜力分析.中国农学通报,22:445-449.
    456.黄益宗,朱永官.2004.森林生态系统镉污染研究进展.生态学报,24:101-108.
    457.黄细花,赵振纪.1993.铜对紫云英生长发育影响的研究.农业环境保护,12:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700