用户名: 密码: 验证码:
氧气—乙炔火焰法制备高纯度球形硅微粉技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子工业的迅速发展,作为大规模集成电路封装领域的关键材料——高纯度球形硅微粉的研究越来越受到关注。本研究分别以天然石英和稻壳为原料,结合氧气-乙炔火焰法制备大规模集成电路封装要求的高纯度球形石英粉和超大规模集成电路封装要求的低放射性球形硅微粉。具体工作包括:第一,提出了机械-化学方法相结合的石英提纯新工艺,提纯的同时实现石英超细粉碎和颗粒预整形,制备了具有一定流动性的高纯度石英微粉;第二,利用我国丰富的稻壳为原料,利用碱溶液法制备水玻璃、通过离子交换法交换去除Na~+、K~+、Al~(3+)、Fe~(3+)、Cl~-等离子制备高纯度硅溶胶、对硅溶胶进行喷雾造粒制得类球形氧化硅微粉、焙烧后得到具有一定流动性的焙烧造粒氧化硅微粉;第三,开发新的氧气-乙炔火焰法球形化工艺,研制氧气-乙炔火焰法球形化专用设备:超细微粉送粉器、火焰燃烧器、球形化炉,设计配套微粉冷却和收集装置;第四,分别以上述制备的高纯度石英微粉和类球形的造粒氧化硅微粉为原料对其进行球形化处理,制备了两种球形硅微粉;最后,将制备的球形硅微粉分别与E-51型环氧树脂复合,对SiO_2/E-51环氧塑封料的热膨胀性能、热稳定性能及力学性能进行了研究。
     取得如下几个方面的进展:
     1、开发了球磨结合复配酸的机械-化学石英提纯新工艺。
     通过对脉石英原料的矿物组成、矿物的赋存状态、化学成分等进行研究,在传统复配酸提纯石英的基础上,开发了球磨结合复配酸的机械-化学石英提纯新工艺。对比复配酸提纯方法,该新工艺大大减少了酸的处理时间,并且石英微粉的品质更高:SiO_2含量99.98%、Al_2O_3含量下降到20×10~(-6)g/g以下、Fe_2O_3含量降到5×10~(-6)g/g,其它微量元素的含量都低于1×10-~(-6)g/g。并且,而且在机械-化学提纯的过程中实现了石英的超细粉碎和颗粒预整形,因而石英微粉的流动性能更好,满足了氧气-乙炔火焰法制备球形石英粉对石英微粉的纯度和流动性能的要求。
     2、研制成功了反应烧结碳化硅球形化炉,改进了沸腾式超细微粉送粉器、火焰燃烧器,开发了氧气-乙炔火焰法球形SiO_2生产新工艺和专用设备。
     研究了传统送粉器的微粉输送机理,对制约其输送超细微粉所要面临的瓶颈问题进行了分析,指出团聚和流动性差是超细微粉无法输送的关键原因。通过改进粉斗结构、送粉拾取轴、重新设计载气气路,将传统的载气式微粉送粉器改造成沸腾式微粉送粉器,将传统的载气式微粉送粉器改造成沸腾式微粉送粉器。利用空气震动、微粉自身的重力、载气和粉斗内气体的压力差实现了10μm以细的石英微粉和造粒氧化硅微粉的连续、稳定输送。该送粉器的主要技术指标:可送微粉粒度范围为5~50μm,送粉速率为15~200g/min。
     以反应烧结碳化硅材料为原料,采用实心注浆成型、结合真空烧结工艺制造了球形化炉。对比传统的水冷式夹层不锈钢球形化炉,该球形化炉耐温度更高、并且该设计有效的延长了氧气-乙炔火焰的高温区,整个球形化炉内形成2000K以上的稳定温度场,为获得高球形化率的球形硅微粉提供了保障。
     对火焰燃烧器的送粉结构进行改进,实现了微粉与氧气-乙炔焰流方向一致的轴向内送粉模式;对比传统的垂直送粉、倾斜送粉等方式,减少了微粉的浪费,并且提高了球形化的效率;通过对喷嘴尺寸进行优化,有效降低了氧气-乙炔焰流速度,轴向内送粉和较低的焰流速度有利于延长微粉在球形化炉内的飞行时间,因而提高了石英微粉的球形化率。
     氧气-乙炔火焰法球形化工艺中采用O_2作为石英微粉输送时的载气,这部分O_2同样参与助燃,以O_2为载气不会像用其它气体如N_2、Ar一样因为大量冷载气的引入而降低球形化炉的温度。因此,以O_2为载气有效的保持了炉温,有利于提高石英微粉的球形化率。
     3、建立了石英微粉球形化的数学模型,确定了石英微粉球形化的最佳工艺参数。
     通过对火焰与石英颗粒热交换、石英颗粒温度变化、石英颗粒速度变化、石英颗粒球形化需要的能量等进行研究,建立了石英微粉球形化的时间模型:
     式中,t为石英微粉球形化需要的时间,p为石英粉密度,d_p为颗粒直径,H_m为石英的热焓,λ_p表示热火焰燃烧气体的热导率,T_g表示气体的温度,T_p表示颗粒表面的温度,Nu努赛尔数,ε石英的反射率,σ是Stefan Boltzmann常数。
     研究了氧气-乙炔火焰法球形化石英微粉的实验条件,包括送粉速率、燃气及助燃气的流量、石英微粉的粒度及粒度分布、石英微粉的形貌等因素对微粉球形化率的影响,确定了石英微粉球形化的最佳工艺参数。以中径为10μm的石英微粉为原料进行球形化实验,助燃气O_2 20L/min、载气O_2 5L/min、C_2H_2 10L/min、送粉速率为60g/min,制备的球形石英球形化率可达95%、微粉纯度>99.9%、松装密度0.87g/cm~3、流动度为(67-70)s/50g。石英微粉球形化后平均粒度变大、松装密度变大、流动性能更佳。
     在氧气-乙炔火焰法球形化石英微粉过程中,低温石英迅速被加热成低温石英的过热晶体,一直保持到1600℃直接熔融为过冷的SiO_2高温熔体,熔体骤冷形成熔融球形石英粉。
     以氧气-乙炔工艺制备的球形石英粉指标满足大规模集成电路封装的要求,且该工艺制造成本较低,适合于大规模产业化。
     4、通过实验确定了稻壳为原料制备低放射性球形硅微粉工艺过程中的基本参数。
     将稻壳在600℃下充分热解得到稻壳灰,利用碱溶液法制备水玻璃,通过优化实验条件,稻壳灰中SiO_2的溶出率为95.74%;以浓度为10%的水玻璃为原料,利用大孔型的D001阳离子交换树脂和D201阴离子树脂交替对其进行交换吸附,制得的硅溶胶的胶粒粒径分布在20~30nm之间、硅溶胶中Na~+含量为5×10~(-6)g/g;对固含量为30%的硅溶胶在10mL·min~(-1)的进料速度下进行喷雾造粒;然后将造粒氧化硅微粉在1000℃下焙烧1h。
     对上述经焙烧的造粒氧化硅微粉在优化实验条件下进行火焰球形化处理,可以制得球形化率>95%、颗粒粒度主要分布在1~4μm之间、纯度>99.99%、放射性元素U含量为0.05×10~(-9)g/g的低放射性球形硅微粉。这种以稻壳为原料制备的低放射性球形硅微粉满足超大规模集成电路封装的要求。
     5、利用球形石英粉、低放射性球形硅微粉、普通石英粉三种硅微粉分别填充E-51环氧树脂,其中尤以球形石英粉对E-51的填充量最大,并且制备的球形石英粉/E-51环氧塑封料的热膨胀性能、热稳定性能及力学性能也最优,低放射性球形硅微粉次之。但是,低放射性球形硅微粉在超大规模集成电路封装中更有优势。当球形石英粉的添加量为80%时,环氧塑封料的弯曲强度为146Mpa、环氧塑封料的膨胀系数达到8.5×10~(-6)K~(-1)、环氧塑封料的玻璃化温度提高了34℃。
     采用DSC方法对环氧树脂反应的动力学进行分析,得出SiO_2/E-51/MeTHPA/DMP-30体系固化反应表观活化能△E=78.52kJ·mol~(-1),固化反应级数n=0.917。
     对比射频等离子球形化法、直流电弧等离子球形化法、碳极电弧加热等高温球形化方法、高温熔融喷射球形化法等制备球形硅微粉的方法,氧气-乙炔火焰法球形化工艺更加简化、控制更加容易、能源消耗更少、适于产业化;对比目前正硅酸乙脂或者四氯化硅水解等制备球形硅微粉的化学方法,以稻壳为原料的化学-物理方法结合的工艺简单、产率更高、原料成本更低、可产业化且无污染。因此,氧气-乙炔火焰法制备球形硅微粉更易实现大规模化生产、生产成本更低、更具发展潜力。
The paper mainly focused on studying the technique route in producing high-purityspherical silica powder using quartz and rice husk as raw materials. The spherical silica powderas a pivotal filler material has attracted more and more attention in Large Scale Integration (LSI)and ultra Large Scale Integration (VLSI) circuits packaging field with the amazing developmentof micro-electronic industries. In this study a new mechanical-chemical process was employed topurify for obtaining the ultra-fine, pre-shaped and high-purity quartz powder, when quartz rawmaterial was utilized. Otherwise, the rice husk was chosen to prepare low radioactivity sphericalsilica powder. Firstly, rice husk was pyrolyzed to ash that was used to prepare sodium silicate bya basic solution method. Then high-purity colloidal silica was prepared by a cationic-anion resinsalternative exchange process, and Na~+、K~+、Al~(3+)、Fe~(3+)、Cl~- were exchanged. Lastly, theas-prepared colloidal silica was granulated by the spray-drying granulation method, and thegranulation SiO_2 powder was calcined to improve its apparent density and fluidity. A noveloxygen-acetylene flame spheroidization route was employed to prepare spherical silica powders.In the developing technique special equipments were developed, for example, a boiling powdersfeeder, a spheroidization furnace, a flame burner, and so on. After the as-prepared high-purityquartz powder and calcined granulation SiO_2 powder were treated by oxygen-acetylene flame,the high-purity spherical quartz powder used in Large Scale Integration circuits packaging fieldand low radioactivity spherical silica powder used in ultra Large Scale Integration circuitspackaging field were obtained. The two type spherical silica powder and E-51 epoxy werecomposited respectively to prepare epoxy molding compound materials. The glass transitiontemperature, bending strength, linear thermal expansion coefficient of the composites wascharactered.
     The main achievements of the dissertation are as following:
     Firstly, structure, appearance, mineral compositions and mineral occurrence of the naturequartz raw material used in this work were studied in detail. Main and micro compositions of thequartz sand were determined quantitatively with chemical and instrumental methods. On the baseof traditional compound acids techniques, a milling and compound acids purifying process wasemployed to prepare high-purity quartz powders. Contrast of the two process, it need shortercompound acids leaching time and could get better purify effects in new mechano-chemistryprocess. At the optimal technique parameters, the content of SiO_2 was more than 99.98 %, thetrace amount of Al_2O_3 lower than 20×10~(-6)g/g, the total Fe_2O_3 lower than 5×10~(-6)g/g and theamount of other elements lower than 1×10~(-6)g/g in the as-purified quartz powders. At the sametime, the quartz raw material was ultra-fine grinding and the powders were pre-shaped by highenergy ball milling in the purify process. The as-shaped ultra-fine powder with good fluidity andpurity performances has met the oxygen-acetylene flame spheroidization process demand.
     Secondly, special oxygen-acetylene flame spheroidization equipments have been developedand new spheroidization route for quartz powder was founded successfully.
     The principle of powder transporting on traditional powder feeders was studied in detail andthe bottleneck problem for ultra-fine powder transporting was found. The powdersagglomerations and fluidness were two key reasons. On the basis of the principle of dynamicmechanics and gas dynamics, a boiling ultra-fine powders feeder was improved. The workingprinciple of the feeder accords as the shaking air, gravity of the powder and the pressuredifference between carrying gas and powder hopper. It was capable of feeding angle quartzpowder and granulated SiO_2 powder over a wide range of feed rates from 15g/min to 200g/min,over a wide range of powder size from 5μm to 50μm, regardless of morphology.
     Using siliconized silicon carbide (SISIC) with high strength, high wear resistance, hightemperature tolerance, high corrosion resistance, high anti-oxidization, high thermal shockresistance as raw material, a spheroidization furnace was designed by the solid grouting moldingand vacuum sintering technology. The reactive sintering silicon carbide is a high temperatureresistant and low linear thermal expansion material. The traditional water-cooling sandwich typespheroidization furnace could only maintain the furnace temperature lower than 1500K. Oncontrast, the new spheroidization furnace could maintain the furnace temperature about 2000K.The higher and stable temperature in the spheroidization furnace ensures a higher spheroidizationrate of the silica powder.
     Some improvements for the structure and nozzle size of the flame burner with an insidefeeding style had been done. So, the quartz powders could flight in the same direction tooxygen-acetylene flame and powder movement was axial. Because of the nozzle size increasing,the flame flow velocity decreased greatly. Contrast of the traditional vertical and outer feedingstyle or inclined and outer feeding style, one hand, this system could reduce the waste ofpowders, and on the other hand, the holding time of powder in flame burner and spheroidization was increased. Hence the spheroidization rate and the yield of spherical quartz powder wereincreased.
     The oxygen was chosen as the carrying gas to replace traditional N_2 or Ar during the powdersfeeding in oxygen-acetylene flame spheroidization process. An advantage is obvious in which thecarrying gas oxygen could be used as the assistant gas when acetylene burning. So, nounnecessary cooling gas went to the spheroidization furnace and the high-temperature of furnacecould be kept. It was a positive factor to increasing powder spheroidization rate.
     Thirdly, a mathematical model of the quartz powder spheroidization was established and themost efficient quartz powders spheroidization process parameters were determined.
     A heat energy transfer between the flame and powders, a temperature variation rule of thepowder, a speed variation law of the powder and the minimum energy of quartz spheroidizationwere studied in detail. And the mathematical model of quartz powder spheroidization wasestablished as:
     Where P is the particle density, t is the time required for spheroidization, dp is the powder size,H_m is the enthalpy of silica,λ_p is the thermal conductivity of gas, T_g is the gas temperature, T_p isthe powder temperature, Nu is the Nusselt number,εis the emissivity of silica powder andσisthe Stefan Boltzmann constant.
     During the preparation process of spherical quartz powder, the influencing factors tospheroidization rate, for example, the feeding rate, the flow rate of burning gas and assistant gas,the pressure of burning gas and assistant gas, the frequency of shaking gas, the size and sizedistribution of quartz powder, the morphology of the powder were studied. At optimumspheroidization technological parameters, the flow rate of burning gas 10L/min, the flow rate ofassistant gas 20L/min, the flow rate of carrying gas 5L/min, the feeding rate 60g/min, thehigh-purity quartz powders with the average size 10μm were treated by oxygen-acetylene flame.And, the spheroidization rate of the as-prepared spherical powder sample was 95%, the purity ofthe sample more than 99.9%SiO_2, the apparent density 0.87g/cm~3 and the fluidity from 67/50g to70s/50g. After spheroidization, the average size of sample was bigger, the size distributionnarrower, the powder denser, the surface of the powder smoother and the fluidity better.
     Fourthly, a low radioactivity spherical silica powder using the rice husk as the raw materialswas obtained by a chemical-physical method and the basic process parameters were optimized.
     The rice husk was pyrolyzed fully at 600℃and the ash was used to prepare sodium silicate bya basic dissolving method. The most efficient decomposition can be obtained when the ratio of ash to the sodium hydroxide solution (20% in W/V) weight is 1:3, the temperature wascontrolled at 140℃, and the heating time was lasted for 4 hours. At these conditions theconversion rate of the SiO_2 in rice husk exceeded 95%. During the preparation procedures ofhigh-purity colloidal silica, the method and technique of exchanging Na~+, K~+, Al~(3+), Fe~(3+) and Cl~-from the sodium silicate were investigated in details.
     The cationic-anion resin alternative exchange was an efficient type, the particle size ofcolloidal silica is from 20 to 30nm and the amount of Na~+ is lower than 5×10~(-6)g/g. Then, thecolloidal silica with the solid content of 30% was granulated by the spray-drying granulationmethod with the feeding rate 10mL/min. Because of the hollow-core structure of granulationSiO_2 powders, the apparent density was lower and the fluidity was insufficient. To improve theseproperties, the granulation SiO_2 powders was calcined at 1000℃for 1 hour. At last, the calcinedSiO_2 powders were treated by the oxygen-acetylene flame, and the spheroidization rate of thelow radioactivity spherical silica powder sample was more than 95%, the purity more than99.99%, the size distributed from 1~4μm and the content of U 0.05×10~(-9)g/g.
     Fifthly, the Epoxy Molding Compounds (EMC) was prepared separately by both themechanical disperse and the ultrasonic disperse using the spherical high-purity quartz powder,the low radioactivity spherical silica powder and the common quartz powder as the fillers. Inwhich, filling amount of spherical high-purity quartz powder was 80%, more than two otherpowders, and Epoxy Molding Compounds' properties were the best. But, for the higher purityand lower radioactivity of low radioactivity spherical silica powder, it had obvious advantage asthe filling materials in the ultra Large Scale Integration circuits packaging field. When the fillingamount of spherical high-purity quartz powder was 80%, the Epoxy Molding Compounds'bending strength was 146 MPa, the linear thermal expansion coefficient 8.5×10~(-6)K~(-1) and theGlass transition temperature increasing 34℃. The Differential Scanning Calorimetric (DSC),Kissinger equation and Ozawa equation were employed to detect the kinetics of co-curing system.The apparent reactive activation energy (△E) of spherical quartzpowder/E-51/MeTHPA/DMP-30 was 78.52kJ/mol, and the order of reaction n=0.917. Using thespherical quartz powder and low radioactivity spherical silica powder as the fillers, the linearthermal expansion coefficient was greatly reduced and the thermal stability was improved, whilethe mechanical properties were maintained.
     On the whole, a new oxygen-acetylene flame spheroidization quartz powder and calcinedgranulation SiO_2 powder was developed and a series of special equipments were developed. Inwhich, the rice husk was used as the raw material to prepare the low radioactivity silica powderin the first time. The experimental conditions and technique parameters were optimized with thedetection of results and processes by analytical instruments. Recent researches and developmentsof actuality in the China and international spherical silica powder of actuality produced werebrief reviewed. Several processes and their features for spherical quartz powder, for example, the high temperature fused quartz jet process, the high frequency plasma spheroidization process, thedirect current arc plasma spheroidization process and the carbon electrode high-temperaturespheroidization process were analyzed and compared. The oxygen-acetylene flamespheroidization process is a simple-equipment, easy-control and lower energy cost process.Contrast of the traditional ethyl orthosilicate or silicon tetrachloride hydrolysis methods for lowradioactivity spherical silica, the chemical-physical process taking the rice husk as raw materialwas a higher yields, a lower raw materials cost, a nontoxic and easy industrial production method.Therefore, the oxygen-acetylene flame spheroidization process has advantages over some othermethods and it should be a potential cost-effective process for mass production of spherical silicapowder. Besides, this method can be expanded to preparation of many other spherical powders.
引文
[1]邱富仁.球形二氧化硅微粉制备新技术及应用研究.第四届高新技术用硅质材料及石英制品技术与市场研讨会,洛阳,2006.
    [2]May T C, Wood M H. Alpha-particle-Induced soft-errors in dynamic memories.IEEE Trans. Electron Dev, 1979,26(1):2-9.
    [3]中国电子材料行业协会.电子工业用硅微粉调研报告,2007.
    [4]彭寿.我国硅质原料资源开发利用的现状暨展望.中国玻璃,2004,29(1):3-6.
    [5]姚书典.金属矿物加工与利用[M].北京:科学出版社,1992.
    [6]申士富.高纯石英砂.无机硅化合物,2007(4):2-6.
    [7]李晓辉.开发石英高科技产品势在必行.科技情报开发与经济,2004,14(10):92-93.
    [8]付信涛.中国硅微粉的应用及市场现状.中国粉体工业,2006(2):6-8.
    [9]陶楠楠.金红石纳米复合钛白的合成、表征及稻壳制备纳米级高纯二氧化硅的研究:[博士论文].长春:吉林大学,2007.
    [10]王立,王领军,姚惠源.稻壳硅综合利用.粮食与油脂,2006(4):14-16.
    [11]Jin S Y, Chen H Z. Structural properties and enzymatic hydrolysis of rice straw.Process Biochemistry,2006,41 (6): 1261-1264.
    [12]Li T, Wang T. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure.Materials Chemistry and Physics,2008,112(2):398-401.
    [13]侯贵华,罗驹华,陈景文.稻壳制备高纯高表面积SiO_2的研究.化学世界,2004,45(9):458-460.
    [14]马雪泷,房江育.稻壳纳米SiO_2研究及开发利用.资源开发与市场,2005,21(5):389-390.
    [15]侯贵华,罗驹华,陈景文.用稻壳灰为硅源合成有序介孔二氧化硅硅材料的研究.材料科学与工程学报,2006,24(4):528-530.
    [16]Yamaguchi S, Kawasaki H. Basic research for rice drying with silica gel.Drying Technology, 1994,12(3): 1053-1057.
    [17]Yalcin N, Sevinc V. Studies on silica obtained from rice husk.Ceramics International, 2001,27(2):219-224.
    [18]Kazuhiro Mochidzuki, Akiyoshi Sakoda, Motoyuki Suzuki,et al. Structural behavior of rice husk silica in pressurized hot water treatment processes.Ind.Eng.Chem.Res,2001,40(5):705-709.
    [19]Liou T H. Preparation and characterization of nano-structured silica from rice husk. Materials Science and Engineering,2004,364(1-2):313-315.
    [20]王卫星,曾幸荣,刘安华等.由稻壳制备纳米结构SiO_2.合成材料老化与应用,2004,33(4):1-3.
    [21]张军,盖国胜,宋守志.电工级高纯超细SiO_2粉研究.中国矿业,2003,12(12):62-64.
    [22]李化建,盖国胜,黄佳木等.用优质石英矿制备高纯超细硅微粉工艺.中国粉体技术会刊,2002(8):28-31.
    [23]张军,盖国胜,宋守志.超大规模集成电路用球形硅微粉研究.高新技术用石英制品及相关材料研讨会,江苏连云港,2003.
    [24]Taxiarchou M, Panias D, Douni I, et al. Removal of iron from silica sand by leaching with oxalic acid. Hydrometallurgy, 1997,46(1-2):215-227.
    [25]Stato. Process for continuous refining of quartz powder [P].U S Patent:5,637,284,1997.
    [26]Kemmochi. High-purity quartz glass and method for the preparation there [P].U S Paten:5,968,259,1999.
    [27]Farmer A D, Collings A F, Jameson G J, et al. Effect of ultrasound on surface cleaning of silica particles. Int. J. Miner.Process,2000,60(2): 101-103.
    [28]Jim Sadowski. Physical separation techniques for the preparation of glass sand.Ceramic Engineering and Science Proceeding,2000,21 (1): 123-145.
    [29]Fukui H, Kanzaki M, Hiraoka N, et al. X-ray Raman scattering for structural investigation of silica/silicate mineral.Physics and Chemistry of Minerals, Springer Berlin,Heidelberg,2008.
    [30]Tomozawa M, Koike A, Ryu S R. Exponential structural relaxation of a high purity silica glass.Journal of Non-Crystalline Solids,2008,354(41):4685-4690.
    [31]张军.电子级高纯超细SiO_2粉研究:[博士论文].沈阳:东北大学,2004.
    [32]李勇,王玉连,秦炎福等.石英砂除铁方法的研究.安徽科技学院学报,2008,22(2):35-38.
    [33]申士富.高纯石英砂研究与生产现状.中国非金属矿工业导刊,2006.(5):13-16.
    [34]包申旭.超细高纯石英制备试验研究:[硕士论文].武汉:武汉理工大学,2004.
    [35]盛勇,涂铭旌.一种用天然石英粉制备高纯超细硅微粉的方法[P].CN,200610022274.6,2006.
    [36]刘少云.石英砂和石英粉的制备与提纯工艺及其产品[P].CN,200410044471.9,2004.
    [37]申士富,苏宪君.用石英岩制备高纯石英砂.中国玻璃(年会专刊),2005(6):31-33.
    [38]刘国库,张文军,马正先等.硅石选矿提纯工艺研究现状.有色矿冶,2007,23(6):26-30.
    [39]周灿伟.石英的高效精加工及其应用研究:[硕士论文].长沙:中南大学,2006.
    [40]吴萍华,刘敬钢.江西省萍乡地区粉石英产品开发利用前景浅析.中国非金属矿工业导刊,1999(5):41-45.
    [41]李杨.用石英岩制备高纯石英的工艺研究.中国非金属矿工业导刊,1998(2):26-27.
    [42]朱伟长杨文雁,闫勇.酸浸法去除石英粉中铁杂质.安徽工业大学学报,2008,25(3):267-269.
    [43]陈泉水.低品位粉石英化学漂白.硅铝化合物,2002(1):10-12.
    [44]田金星.高纯石英砂的提纯工艺研究.中国矿业,1999,8(3):55-58.
    [45]杨涛,蒋述兴.高纯超细电子级石英粉的制备技术综述.化工矿产地质,2006,28(3):185-188.
    [46]Wang Y H, Ren J W. The flotation of quartz from iron minerals with a combined quaternary ammonium salt. Int.J.Miner.Process,2005,77(2): 116-122.
    [47]唐甲莹,赵慧玲.难选锐钛矿与杂质矿物的浮选分离研究.武汉工业大学学报,1994,16(2):81-84.
    [48]Li Y, Lei D S, Lu W, et al. Effects of citric acid on separation of sillimanite from quartz. Trans.Nonferrous Met. Soc.China,2002,12(5):979-982.
    [49]阎勇,姜政志,朱伟长等.石英粉提纯工艺研究.非金属矿,2008,31(5):14-16.
    [50]金达表,张兄明,邹蔚蔚.高纯石英的加工工艺研究.中国非金属矿工业导刊,2004(4):44-48.
    [51]张凌燕,林秀玲.石英岩制备高纯石英微粉和石英玻璃砂试验研究.非金属矿,2005,28(6):37-39.
    [52]Zhao M W, Zheng L Q, Li N, et al. Fabrication of hollow silica spheres in an ionic liquid microemulsion.Materials Letters,2008,62(30):4591-4593.
    [53]Arnost Zukal, Matthias Thommes, Jir Cejka. Synthesis of highly ordered MCM-41 silica with spherical particles.Microporous and Mesoporous Materials,2007,104(1-3):52-58.
    [54]Schwerin. Manufacture of chemically Pure soluble silicic acid [P].U S Patent: 1132394,1915.
    [55]Bird. Colloidal solutions of inorganic oxides [P].U S Patent:2244325,1941.
    [56]White. Method of producing sols [P].U S Patent:2285477,1969.
    [57]Sato Gomo, Komatsu Michio, SaitoSumio, et al. High-purity silica sol [P].JP61,158,810,1986.
    [58]田华.硅溶胶的制备及其铝改性的研究[硕士论文].武汉:武汉理工大学,2008.
    [59]田立朋,王力.单质硅粉溶解法制备硅溶胶正交实验研究.化学工程师,2006(11):30-32.
    [60]李永伦.王力.用金属硅粉制备硅溶胶的新工艺.天津化工,2004,18(3):26-27.
    [61]殷馨,戴媛静.硅溶胶的性质、制法及应用.化学推进剂与高分子材料.2005,3(6):27-33.
    [62]姜德源,刘继红.硅粉溶解法制备硅溶胶的新工艺.哈尔滨师范大学自然科学学报,1998,14(1):56-59.
    [63]张扬正.大粒径、低粘度硅溶胶制造方法[P].CN,86104144A,1987.
    [64]纪萍,张进,徐伟平,以天然硅灰石制备稳定性硅溶胶.辽宁化工,2000,29(3):141-145.
    [65]Ho Jenny, Zhu W, Wang H T, et al. Mesoporous silica spheres from colloids.Journal of Colloid and Interface Science,2007,30(8):374-380.
    [66]Edgar A S. Preparation of silica sols [P].U S Patent:2285477,1952.
    [67]刘红梅,衣宝廉.电解电渗析法制备硅溶胶过程中各操作条件对胶粒性质的影响.北京联合大学学报,1996,10(4):33-38.
    [68]马纯超,郑典模.硅溶胶的制备与应用.山东化工,2008,37(5):26-29.
    [69]申晓毅,翟玉春,刘岩.超声水热法制备单分散球形二氧化硅及因素分析.化工学报,2008,59(9):2407-2411.
    [70]许念强,顾建祥,罗康等.高浓度酸性硅溶胶的制备技术.化工进展.2003,22(5):512-515.
    [71]王自新,赵冰.硅溶胶制备与应用.化学推进剂与高分子材料,2003,1(5):34-39.
    [72]西田广泰,若宫义宪,小松通郎.硅溶胶的制造方法以及硅溶胶[P].CN,1506306,2004.
    [73]张建新,刘玉岭,王娟等.降低CMP用SiO_2溶胶中金属离子含量及其机理探析.显微测量微细加工技术与设备,2005(7):340-344.
    [74]Khoa N P, Damian Fullston, Kwesi S C. Surface modification for stability of nano-sized silica colloids. Journal of Colloid and Interface Science,2007,3(15): 123-127.
    [75]王娟,刘玉岭,李薇薇.微电子专用硅溶胶的纯化机理探究.电子器件,2005,28(4):930-933.
    [76]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997.
    [77]马运柱,黄伯云,范景莲等.离心式喷雾干燥制备纳米品微粉的工艺原理及其影响因素.硬质合金,2002,19(3):173-176.
    [78]Chrysantha Freitas, Rainer H. Spray-drying of solid lipid nanoparticles.European journal of Pharmaceutics and Biopharmaceutics, 1998,46(2):145-151.
    [79]Chang H L, Kyung Y J, Joong G C, et al. Nano-sized Y_2O_3:Eu phosphor particles prepared by spray pyrolysis.Materials Science and Engineering,2005,116(1):59-63.
    [80]杜令忠,张伟刚,张登君等.二氧化硅喷雾造粒粉体的热处理工艺研究.中国粉体技术,2007,13(2):24-26.
    [81]傅宪辉,沈志刚.喷雾造粒中形成的各种颗粒形貌和结构.中国粉体技术,2005,11(2):44-49.
    [82]章伟,蔡莹,古宏晨等.雾化过程中粒子形貌控制的模型研究.华东理工大学学报,2000,26(1):57-61.
    [83]Ferry Iskandar, Leon Gradon, Kikuo Okuyama. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol.Journal of Colloid and Interface Science,2003,265(2):296-303.
    [84]Zhang Z T, Yang L M, Wang Y J, et al. Morphology controlling of micrometer-sized mesoporous silica spheres assisted by polymers of polyethylene glycol and methyl cellulose. Microporous and Mesoporous Materials,2008,115(3):447-453.
    [85]郭宜祜,王喜忠编.喷雾干燥[M].北京:化学工业出版社,1982.
    [86]Bertrand G, Roy P,Filiatre C, et al. Spray-dried ceramic powders: A quantitative correlation between slurry characteristics and shapes of the granules.Chemical Engneering Science,2005,60(1):95-102.
    [87]Lenhard M J, Hagenbach R, Forgensi R. Spheroidization method and apparatus [P]. CA 1061968,1961.
    [88]Iura J, Kawaguchi T. Spherical silica glass powder particles and process for their production [P].U S Patent:4,767,433,1988.
    [89]Shimizu T. Process for producing fine spherical silica [P].U S Patent:4,842,837,1989.
    [90]Ito Y, Higashiogawa T, Matsuura M, et al. Method of manufacturing spherical silica particles[P].U S Patent:5,028,360,1991.
    [91]Barder T J, DuBois P D. Process for forming highly uniform silica spheres [P].U S Patent:4,983,369,1991.
    [92]Hammersbach R G, Seligenstadt R K, Bruchkobel W P, et al. Process for the manufacture of quartz glass granulate [P].JP 11199219A, 1999.
    [93]Konya Y, Watanabe K, Ueno S. Method of producing spherical silica powder [P].U S Patent:09,935,593,2001.
    [94]Celik C, Addona T, Boulos M I, et al. Method and transferred arc plasma system for the production of fine and ultrafine powders [P].U S Patent:6,379,419,2002.
    [95]Goudeau J, Charlton R, Fletcher D G. Process for online spheroidization of quartz and silica particles [P].U S Application: 20030070452,2003.
    [96]Boulos M I. The inductively coupled R.F plasma. Journal of Pure and Applied Chemistry 1985,57(9):1321-1352.
    [97]Ishigaki T, Boulos M I. In-flight ceramic powder treatment of an R.F induction plasma.Ceramic Transactions, 1991 (22): 139-145.
    [98]Dignard N M, Boulos M I. Powder spheroidization using induction plasma technology. ITSC 2000:1st International Thermal Spray Conference. Montreal,Quebec,Canada,2000.
    [99]Sakuta T, Takashima T, Boulos M I. Measurement of heating and acceleration processes of metal and ceramic powders in induction plasma by light pulse analysis method.IEEE Transactions on Plasma Science, 1993,11 (3):420-427.
    [100]Dignard N M, Boulos M I.Powder densification and spheroidization using induction plasma technology.National Thermal Spray Conference NTSC'97, Indianapolis, USA, 1997.
    [101]Dignard N M, Boulos M I. Ceramic and metallic powder spheroidization using induction plasma technology.Thermal Spray:a United Forum for Scientific and Technological Advances. Indianapolis,USA, 1997.
    [102]Fan X B, Gitzhofer F, Boulos M I. Statistical design of experiments for the spheroidization of powdered alumina by induction plasma processing.Journal of Thermal Spray Technology, 1998,7(2):247-253.
    [103]Fan X B, Boulos M I. Near net shape forming of tungsten material by induction plasma deposition. ITSC-2005, Basel Switzerland, 2005.
    [104]Kouprine A, Gitzhofer F,Boulos M I, et al. Kinetics of ultrafine coating of SiO_2 nanoparticles, suspended in non-thermal CH_4/C_2H_6 plasma. Journal of Thennal Spray Technology,2007,31(8): 1005-1019.
    [105]Phillips J, Chunku C, Toshi Shiina. Evidence of the production of hot atomic hydrogen in RF generated Hydrogen/Helium plasmas. International Journal of Hydrogen Energy,2007,32(14):3010-3025.
    [106]Chou C, Phillips J. Plasma production of metallic nanoparticles. J. Mater. Res, 1992,7(8):2107-2113.
    [107]Che S L, Norimasa Sakamoto. Preparation and formation mechanism of micrometer-sized spherical single crystal particles of perovskite oxides by flame fusion. Key engineering materials, 2006(320):201-204.
    [108]Che S L, Tomohiro Sogabe, Norimasa Sakamoto. Crystalization of spherical dielectric oxides particles in a melting-spheroidization process using chemical flame.Key engineering materials,2006(301):223-226.
    [109]Seo Jun Ho, Kim Dong Uk, Nam Jun Seok, et al. Radio frequency thermal plasma treatment for size reduction and spheroidization of glass powders used in ceramic electronic devices. Journal of the American Ceramic Society,2007,90(6): 1717-1722.
    [110]Park H K, Park K Y. Vapor-phase synthesis of uniform silica spheres through two-stage hydrolysis of SiCl_4. Materials Research Bulletin,2008,43(11):2833-2839.
    [111]Okabayashi M M, Kono K T. Preparation of spherical particles with quartz single crystal.Chemistry Letters,2005,34(1):58-59.
    [112]Kumar S, Selvarajan V, Sreekumar K P, et al. Spheroidization of metal and ceramic powders in thermal plasma jet: Comparison between experimental results and theoretical estimation.Journal of Materials Processing Technology,2006,17(1-3):87-94.
    [113]Skandan G Synthesis of oxide nanoparticles.Nanostmctured Materials, 1999,11(2): 149-158.
    [114]Takamasa Ishigaki. Synthesis of functional nano-structured powders using thermal plasma processing.Journal of the Japan Society of Powder and Powder Metallurgy,2007,54(1):23-31.
    [115]Suresh K, Selvarajan V, Vijay M. Synthesis of nanophase alumina, and spheroidization of alumina particles, and phase transition studies through DC thermal plasma processing. Surface engineering, Surface Instrumentation and vacuum Technology, 2008,82(8):814-820.
    [116]田民波.微电子封装用的球形硅微粉.第四届高新技术用硅质材料及石英制品技术与市场研讨会,洛阳,2006.
    [117]张军.高纯超细电子级球形石英粉研究.电子元件与材料,2004,23(1):48-51.
    [118]Hu P, Yan S K, Yuan F L, et al. Effect of Plasma Spheroidization Process on the Microstructure and Crystallographic Phases of Silica,Alumina and Nickel Particles.Plasma science and technology,2007,9(5): 1-5.
    [119]Xing X S, Li R, Ke Y. Wear behavior of epoxy matrix composites filled with unifonn sized sub-micron spherical silica particles.Wear,2004,256(2):259-261.
    [120]闫世凯,胡鹏,袁方利等.射频等离子体球化SiO_2粉体的研究.材料工程,2006(2):29-33.
    [121]李玉玺,贺跃辉,陈楚轩.铸造碳化钨球形化处理技术的研究.中国钨业,2006,21(4):41-44.
    [122]蒋学鑫,周建民,周峰.球形石英粉及其应用.中国玻璃.2005,30(5):3-5.
    [123]汪洋,蒋学鑫.球形石英粉工业化生产工艺技术研究.合肥学院学报,2006,16(4):70-72.
    [124]孔常静,宁伟建,吴彬等.直流电弧等离子体球化U_3Si_2粉体.中国粉体技术,2000,6(4):44-46.
    [125]纪崇甲.球形微米和纳米级SiO_2的生产新工艺.中国粉体技术,2003,9(1):36-37.
    [126]吴宏富.我国球形硅微粉研究及生产现状.化工矿物与加工,2006,35(11):36-37.
    [127]邱富仁.球形硅微粉与等离子技术.2006中国玻璃行业年会暨技术研讨会,广州,2006.
    [128]陆尚平,张衍林,胡海军等.基于PLC的球形硅微粉生产线球化炉控制系统.中国水运,2007,7(2):47-48.
    [129]罗涛.载气式超细微粉送粉器的研制:[硕士论文].天津:天津工业大学,2006.
    [130]冯立伟,杨洗陈,雷剑波等.激光再制造双料斗载气式送粉器的试验研究.应用激光,2006,26(6):389-392.
    [131]邵其文,赵海翔,杨勇等.一种新型磁力送粉器的研制.新技术新工艺,2007(5):45-46.
    [132]Boulos M I, Jurewicz J. High performance induction plasma torch with a water-cooled ceramic confinement tube [P].U S Patent:5,200,595,1993.
    [133]Merkhouf A, Boulos M I. Integrated model for the radio frequency induction plasma torch and power supply system.Plasma Sources Science Technology, 1998,7(4):599-606.
    [134]Phillips J, Gleiman S S, Chen C K. Method for producing ceramic particles and agglomerates [P].U S Patent:6,261,484,2001.
    [135]Che S L, Chiba I, Okamoto S, et al. Method of producing spherical oxide powder and apparatus for producing spherical powder, composite dielectric material,and substrate and process for poducing substrate [P].U S Patent:20040180991,2004.
    [136]Che S L. Apparatus for producing spherical powder, burner for treaitng powder, method for producing spherical powder, spherical oxide powder, and oxide powder [P].U S Patent:20060275723,2006.
    [137]Kogoi Hisao,Tanaka Jun. Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder [P].U S Patent:20060127669,2006.
    [138]Sakaguchi M, Fujii K, Tomozawa K. Apparatus for preparing inorganic spheroidized particle [P].U S Patent:20060112784,2006.
    [139]Zweben C. Advances in composite materials for thermal management in electronic packaging.JOM, 1998,50(6):47-47.
    [140]German R. Powder metallurgy processing of thermal management materials for microelectronic applications.The International Journal of Powder Metallurgy,1994,30(2): 205-206.
    [141]黄强,顾明元,金燕萍.电子封装材料的研究现状.材料导报,2000,14(9):28-32.
    [142]李晓云,张之圣,曹俊峰.环氧树脂在电子封装中的应用及发展方向.电子元件与材料,2003,22(2):36-37.
    [143]郝洪顺,付鹏,巩丽等.电子封装陶瓷基片材料研究现状.陶瓷,2007(5):24-27.
    [144]Dohya A. Packaging technology trends and challenges for system-in-package.IEICE Transactions on Electronics,2001 ,E84-C(12): 1756-1762.
    [145]Pascariu G, Cronin P, Crowley D. Next generation electronics packaging using flip chip technology.Advanced Packaging,2003,12(11):21-26.
    [146]Seubold F H. Production of aromatic hydroperoxides [P].U S Patent:2,633,476,1953.
    [147]王绪文.环氧树脂增韧的研究进展.中国胶粘剂,2006,15(2):45-50.
    [148]韦春.无机填料的形态对环氧树脂体系的粘度及性能的影响.绝缘材料通讯,1999(6):20-21.
    [149]赵世琦,云会明.刚性粒子增韧环氧树脂的研究.中国塑料,1999,13(9):35-39.
    [150]姚金甫,田守信,王峰等.无机填料对环氧树脂胶粘剂强度的影响.粘接,2004,25(4):38-39.
    [151]袁慧五,饶秋华.无机填料对低粘度高性能环氧树脂性能的影响.热固性树脂,2007,22(6):33-35.
    [152]Zhang X H, Xu W J, Xia X N, et al .Toughening of cycloaliphatic epoxy resin by nanosize silicon dioxide.Mater Lett,2006,60(28):3319-3323.
    [153]刘竞超,李小兵,张华林等.纳米二氧化硅增强增韧环氧树脂的研究.胶体与聚合物,2000,18(4):1-3.
    [154]张文栓,罗运军,赵辉.纳米SiO_(2-x)改性环氧复合材料研究.热固性树脂,2003,18(4):10-12.
    [155]哈恩华,寇开昌,颜海燕等.插层聚合制备环氧树脂蒙脱土灌封材料的研究.化工进展,2004,23(4):385-388.
    [156]陈名华.姚武文,汪定江等.纳米TiO_2对环氧树脂胶粘剂性能影响的研究粘接,2004,25(6):12-15.
    [157]谢广超.封装树脂用填充剂的研究.电子与封装,2006,6(5):9-11.
    [158]赵敏,高俊刚,李刚.纳米有机蒙脱土改性邻甲酚醛环氧树脂的研究.粘接,2005,26(1):9-11.
    [159]余志伟,陈泉水,周华萍等.硅微粉增强环氧树脂的研究.华东地质学院学报,1998,21(2):136-142.
    [160]张洁,王炜,曾宪华.氮化铝颗粒增强聚合物基板材料的制备及介电性能研究.航空材料学报,2006,26(3):341-342.
    [161]Li H Y, Jacob K I, Wang C P. An improvement of thermal conductivity of under fill material for flip-chip packages.IEEE Trans on Advanced Packaging,2003,26(1):25-32.
    [162]Bujard P, Kuhnlein G, Ino S, et al. Thermal conductivity of molding compounds for plastic packaging.IEEE Trans.Components, Packaging, and Manu.Techno-part A,1994,17(4):527-532.
    [163]Nagai Y, Lai G C. Thermal conductivity of epoxy resin filled with particulate aluminum nitride powder.Journal of the Ceramic Society of Japan, 1997,105(3): 197-200.
    [164]寇开昌,哈恩华,颜录科等.原位聚合法制备环氧树脂/纳米SiO_2灌封材料的性能研究.材料工程,2005(8):32-34.
    [165]Bae J W, Kim W, Cho S H. The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution. Journal of Materials Science,2000,35(23):5907-5913.
    [166]刘庆华,李亚东.超细AlN填充环氧树脂热性能研究.传感器技术,2005,24(11):36-38.
    [167]甘文君,张热.电子元气件封装材料的研制.上海工程技术大学学报,2001,15(2):150-153.
    [168]沈源,傅仁利,何洪等.氮化硅/环氧复合电子基板材料制备及性能.热固性树脂,2007,22(1):13-19.
    [169]牛牧童,吴伟端,郭胜平.环氧树脂/碳纤维/绢云母复合材料性能研究.工程塑料应用,2006,34(1):9-12.
    [170]Gonon P, Sylvestre A, Teysseyre J, et al. Dielectric properties of epoxy/silica composites used for microelectronic packaging, and their dependence on post-curing. Journal of Materials Science: Materials in Electronics,2001,12(2):81-86.
    [171]周永恒.高纯度石英的酸浸实验研究.矿物岩石,2005,25(3):23-26.
    [172]朱德忠,贾长祥,元遵东等.氧-乙炔火焰喷涂枪的火焰温度测量.工程热物理学报,1985,6(1):96-98.
    [173]Cremers M F. Heat transfer of oxy-fuel flames to glass:the role of chemistry and radiation:[D].Netherlands:Technische Universiteit Eindhoven,2006.
    [174]秦清彬.超音速火焰喷涂陶瓷涂层的组织与性能研究及拉伐尔管的设计:[硕士论文].东营:中国石油大学,2004.
    [175]Bokhari A H. Spheroidization of powders under plasma conditions:[D].Canada: Sherbrooke Universite, 1988.
    [176]Dignard N M. Experimental optimization of the spheroidization of metallic and ceramic powders with induction plasma:[D].Canada:Sherbook University, 1998.
    [177]孙曼灵.环氧树脂应用原理和技术[M].北京:机械工业出版社,2002.
    [178]李冰,张晓伟.环氧树脂基导热复合材料的研究进展.中国胶粘剂,2008,17(1):60-62.
    [179]刘天舒,张宝艳,陈祥宝.中温固化环氧树脂体系的固化反应动力学研究.航空材料学报,2005,25(1):45-48.
    [180]杨超,江学良,孙康.酸酐固化环氧树脂/蒙脱土复合材料的等温固化动力学.物理化学学报,2005,21(6):681-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700