用户名: 密码: 验证码:
变频调速数控机床运行过程能量特性及节能技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国机床装备拥有量居世界第一,耗电总量惊人。同时,大量统计调查表明:机床能量利用率非常低下。因此对机床运行过程能量特性及节能技术的研究意义重大。
     本文针对已有研究在数控机床能量特性方面的不足,在国家自然科学基金课题(编号:50775228)和国家科技支撑计划项目(编号:2006BAF02A03)的支持下,对我国目前广泛应用的变频器调速数控机床的能量特性及节能技术展开了研究。其主要内容包括:
     根据变频调速数控机床运行过程的能量传输特点,建立了变频调速类数控机床主传动系统的能量流程,分析了机床主电机功率传输特性和机械传动系统功率传输特性及其各部分的能量损耗规律;在上述研究基础上,建立了变频调速数控机床主传动系统的动态功率平衡方程。该方程相对于普通机床功率平衡方程,具有变频器自身存在较大的能量损耗、变频器输出的非正弦波形电压带来的电气谐波损耗和机械传动系统的机械脉动损耗、主传动系统当量角速度具有一致连续性等三个重要特点。并在上述功率平衡方程的基础上分析了变频调速数控机床运行过程的能量利用率和能量损失特性。
     基于上述功率方程和能量损失特性,对变频调速数控机床运行过程的节能途径进行了分析,指出了从四个途径来系统地考虑机床运行过程的节能问题。机床加工过程工步间空载运行过程是一个能量损耗过程,是造成机床能量利用率低的直接原因之一。本文根据变频调速数控机床工步间空载运行过程转速和时间已知并且转速可无级变频调节等三个特点和条件,提出了一种机床空载运行时动态调节机床空载运行转速、使得空载运行过程能量消耗达到最低的变频调速数控机床工步间空载运行状态的调速节能方法。当数控机床加工过程工步间空载运行时间大于某一临界值时,采取工步间停机后再启动策略就可以取得比调速节能更好的节能效果;为此本文建立了基于临界值确定方法和节能百分比计算方法的数控机床工步间空载运行时停机节能的实用方法。根据电机的转差率的变化,通过调节变频器装置的输出电压来控制电机运行转差率,并基于神经网络模型参考自适应的控制算法实现了交流异步电动机在不同负荷下最优转差率的控制,从而达到电机在不同负载下的节能运行。
     针对以上研究内容,在一台变频调速数控机床CK6136上进行了大量实验,实验数据及实验结果分布在各有关章节中;实验结果证实了有关结论的正确性和应用前景。
The amount of machine tools in China is largest in the world, and the total energy consumption is remarkable. Therefore, the study on energy characteristics and energy saving technology in the running processes of machine tools is very important.
     Considering the insufficiency of existing studies on energy characteristics about CNC machine tools, this paper focuses on the studies on the energy characteristics and energy saving technology about CNC machine tools driven by VVVF(Variable Voltage Variable Frequency) with the supporting of the National Natural Science Foundation of China and National Science and Technology Supporting Programs. The details are as follows.
     According to the characteristics of energy transmission in the running processes of CNC machine tools driven by VVVF, the energy flow-chart of main driving system is established. The power transmission characteristics in the main motor and the mechanical transmission system, and every section’s energy losses are analyzed. Finally, the power balance equation of the CNC machine tool main driver system driven by VVVF is established. Comparing with the equation of common machine tools, this equation has three characteristics: It includes the variable frequency driver’s energy loss;The variable frequency driver’s no-sine voltage wave causes mechanical pulse losses in mechanical driving system;Equivalent palstance of main driving system is of uniform continuity。Based on the equation, the energy utilization and energy loss characteristics are analyzed.
     Four methods of saving energy about the CNC machine tools driven by VVVF are analyzed .It is based on the power balance equation and the power transition characteristics. The process of CNC machine tools idle running is a energy consumption process,and this is the one of main reason of lower energy usage of CNC machine tools. According to the three conditions which are specified speed, specified time and the speed characteristics of continuous variable , A saving energy method which via controlling the speed of main driver of CNC machine tools in the process of idle running is given.
     When the interval between two process steps is larger than an specified value,The method of energy-saving that stopping CNC machine tool’s between process steps is much better than the method of controlling the speed of main driver of CNC machine tools.So an practical method of energy-saving is introduced in the paper. The method is realized by stopping CNC machine tool’s when the running process is idle between process steps. The critical value and the computing of saving energy percent also is given in the paper.
     Because of the slip speed will change when the voltage of VVVF is changed, so we can control the slip speed by controlling the outport voltage of VVVF, A saving energy method of main driven motor of CNC machine tool which running in the defferent state of load is introduced in the paper .This method is realized by optimizing the slip speed in the defferent load state based on the adaptive neural network.
     The research results are proved and having a good application perspective by some experiments.The experiments is done on the CNC machine tool (CK6136) which main driver is driven by VVVF. The result of experiment is given in the defferent chapter in the paper.
引文
[1]刘飞,徐宗俊,但斌,昝昕武.机械加工系统能量特性及其应用[M].北京:机械工业出版社, 1995.
    [2]刘飞,张晓冬,杨丹等.制造系统工程[M].北京:国防工业出版社, 2000.
    [3] Melngk S A, Smith R T. Green Manufacturing[M]. Dearborn, USA: Society of manufacturing Engineers, 1996.
    [4]刘飞.绿色制造.先进制造模式与制造哲理研讨会论文集[C].大连, 1997, 9: 15-24.
    [5]刘飞,曹华军,张华.绿色制造的理论与技术[M].北京:科学出版社, 2005.
    [6] Duffie N. Trends in green manufacturing [M]. CASA/SME Technology Trends, 1998.8.
    [7] Bras B, Isaacs J A, Overcash M. Environmentally benign manufacturing - A workshop report [J]. Journal of cleaner production. 2006,14(5): 527-535.
    [8] Duflou J, Dewulf W, Sas P, Vanherck P. Pro-active Life Cycle Engineering Support Tools[J]. CIRP Annals - Manufacturing Technology, 2003, 52 (1) :29-35.
    [9] Chen Z, Atmadi A, Stephenson D A, etc. Analysis of cutting fluid aerosol generation for environmentally responsible machining[J]. CIRP Annals - Manufacturing Technology, 2000, 49(1): 53-65.
    [10] Sheng P, Srinivasan M. Multi-Objective Process Planning in Environmentally Conscious Manufacturing: A Feature-Based Approach[J]. Annals of the CIRP,1995,44(1):433-437.
    [11] The Environmentally Conscious Design & Manufacturing (ECDM) [Z]. http://cobra. esxf.uwindsor. ca/ecdm_lab.html.
    [12] The Centre for Sustainable Design (CSD) [Z]. http://www.cfsd.org.uk/index.html
    [13] Gutowski G T, Murphy F C, Allen T D, etc. Environmentally Benign Manufacturing [C]. International Technology Research Institute World Technology (WTEC) Panel Report, 2001.
    [14] Allen D, Bauer D, Bras B, etc. Environmentally Benign Manufacturing: Trends in Europe, Japan, and the USA [J]. ASME transaction: Journal of Manufacturing Science and Engineering, 2002, 124(4): 908-920.
    [15] Gutowski T, Murphy C, Allen D, ect. Environmentally Benign Manufacturing: Observations from Japan, Europe and the United States[J]. Journal of Cleaner Production, 2005,13: 1-17.
    [16] The 5th International Symposium on Environmentally Conscious Design and Inverse Manufacturing[Z]. http://www.ecodenet.com/ed2007/, 2007.
    [17]上海市科协技术委员会. http://www.sast.stn.sh.cn/duiwai2004.html[Z]. 2004.
    [18] Chen Ming. The 2005 International Workshop on Sustainable Manufacturing[C]. JOM, 2006.2(58):39-40.
    [19]全国首届绿色制造研究研讨会. http://www.hfut.edu.cn/ch/ [Z]. 2006.
    [20]国家统计局,国家环保局.中国环境统计年鉴[M].北京:中国统计出版社, 1997-2002.
    [21]段小华,柳卸林. 2004中国国际竞争力评价——基于《2004洛桑报告》的分析[Z].中国科技统计, 2004. http://www.sts.org.cn/fxyj/zcfx/documents/20050822.htm.
    [22]国务院办公厅.国发[2005]22号,国务院关于加快发展循环经济的若干意见[M], 2005.
    [23]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[M], 2006.
    [24]国家环境保护总局.中华人民共和国清洁生产促进法[M]. 2002.
    [25]中国国务院新闻办公室.中国21世纪议程-中国21世纪人口、环境与发展白皮[M], 2000.
    [26] Liu F, Yin J X, Cao H J, etc. Investigations and practices on green manufacturing in machining systems[J]. Journal of Central South University of Technology, 2005,12(s2):18-24
    [27] Dahmus B J, Gutowski G T. An environmental analysis of machining[J]. Proceedings of 2004 ASME International Mechanical Engineering Congress and RD&D Expo. California USA, 2004: 1-10.
    [28] Consortium on Green Design and Manufacturing (CGDM) [Z]. University of California, Berkeley. http://cgdm.berkeley.edu/, 2007.
    [29] Srinivasan, M. and P. Sheng, Feature Based Process Planning for Environmentally Conscious Machining - Part 1: MicroPlanning [J]. Robotics and Computer Integrated Manufacturing, 1999.15: 257-270.
    [30] Srinivasan, M. and P. Sheng, Feature Based Process Planning for Environmentally Conscious Machining-Par t 2: MacroPlanning [J]. Robotics and Computer Integrated Manufacturing, 1999. 15: 271-281.
    [31] Munoz, A. and P. Sheng. An Analytical Approach for Determining the Environmental Impact of Machining Processes [J]. Journal of Materials Processing Technology, 1995. 53(3-4): 736-758.
    [32] Sheng P, Srinivasan M. Multi-Objective Process Planning in Environmentally Conscious Manufacturing [J]: A Feature-Based Approach. Annals of the CIRP, 1995.44(1):433-437.
    [33] P. Sheng, V.Carey, D. Bauer, S. Thurwachter, J. Creyts, D. Bennett Environmental Planning for Machining Operations and System. Proc [C]. 1998 NSF Design and Manufacturing Grantees Conference, 1998.1.
    [34] Environmentally Benign Manufacturing (EBM) [Z]. http://web.mit.edu/ebm/www/index.htm,2007.
    [35] Gutowski, T, Dahmus J, Thiriez A.. Electrical Energy Requirements for Manufacturing Processes [C]. 13th CIRP International Conference on Life Cycle Engineering, Leuven, Belgium, May 31-June 2, 2006.5.
    [36]关慧.变频器驱动下的异步电机设计与分析.清华大学研究生论文.2004.11
    [37]杜江.三相感应电动机软起动及节能运行技术的研究.河北工业大学博士论文。2007.11
    [38] Gutowski, T., J. Dahmus, A. Thiriez, M. Branham, and A. Jones.“A Thermodynamic Characterization of Manufacturing Processes," IEEE International Symposium on Electronics and the Environment [C]. Orlando, Florida, USA, May 7-10, 2007.
    [39] Thiriez, A. and T. Gutowski.“An Environmental Analysis of Injection Molding [C]." IEEE International Symposium on Electronics and the Environment, San Francisco, California, USA, May 8-11, 2006.
    [40] Gutowski, T., J. Dahmus, and S. Dalquist.“Measuring the Environmental Load of Manufacturing Processes," International Society for Industrial Ecology (ISIE) [C]. 3rd International Conference, Stockholm, Sweden, June 12-15, 2005.
    [41] Jeffrey B. Dahmus, Timothy G. Gutowski. An environmental analysis of machining [C]. Proceeding of IMECE2004, 2004 ASME International Mechanical Engineering Congress and RD&D Expo, November 13-19, 2004: 1-10.
    [42] Dalquist, S. and T. Gutowski. "Life Cycle Analysis of Conventional Manufacturing Techniques: Sand Casting," [C]. Proceedings of the ASME International Mechanical Engineering Congress and RD&D Exposition. Anaheim, California, USA, November 13-19, 2004.
    [43] Gutowski, T. and J. Dahmus.“Environmental Analysis of Manufacturing Processes,”Proceedings of the 2004 NSF Design [C]. Service and Manufacturing Grantees and Research Conference, Dallas, Texas, January 5-8, 2004.
    [44] Sustainable Design & Manufacturing (SDM) [Z]. http://www.sdm.gatech.edu/, 2007.
    [45] Sustainable Futures Institute (SFI) [Z]. http://www.sfi.mtu.edu/publications.htm, 2007.
    [46] Adler, D. P., W. W.-S. Hii, D. J. Michalek, and J. W. Sutherland, "Examining the Role of Cutting Fluids in Machining and Efforts to Address Associated Environmental/Health Concerns [C]". Machining Science and Technology, 10: 1, 23-58, 2006.
    [47] Dasch, J., J. D'Arcy, A. Gundrum, J.W. Sutherland, J. Johnson, and D. Carlson, "Characterization of Fine Particles from Machining in Automotive Plants [C]". Occupational and Environmental Hygiene, 2:12, Dec. 2005, 609-625.
    [48] Xue, H., V. Kumar, and J. W. Sutherland, "Material Flows and Environmental Impacts of Manufacturing Systems via Aggregated Input-Output Models" [J]. Journal of Cleaner Production
    [49] Cutting Fluid Evaluation Software Testbed(CFEST) [Z].http://www.mfg.mtu.edu /testbeds/ cfest/intro. html, 2007.
    [50] Sutherland, J.W.,Kulur, V.N., King, N.C. Experimental investigation of air quality in wet and dry turning [J].CIRP Annals - Manufacturing Technology, 2000,49(1):61-6.
    [51] Vadrevu, Srikanth, Sutherland, John W., Olson, W. Value model for use in environmentally conscious design and manufacturing [J]. ASME-Manufacturing Science and Engineering, 1994, 68(1):93-102.
    [52] Sutherland, J.W., Gunter, K.L., Weinmann, K.J. A model for improving economic performance of a demanufacturing system for reduced product end-of-life environmental impact [J]. CIRP Annals - Manufacturing Technology, 2002, 51(1):45-48.
    [53] Shen, G., Arici, O., Sutherland, J.W. Development of a model for the prediction of the energy partition in a peripheral milling operation [J]. ASME Manufacturing Engineering Division, 2001, 12: 97~106.
    [54]清华至卓绿色制造研发中心. http://www.pim.tsinghua.edu.cn/me/zhizhuo/ [Z].2004.
    [55]汪劲松,段广洪,李方义,杨向东,张洪潮.基于产品生命周期的绿色制造技术研究现状与展望.计算机集成制造系统[J], 2000,5(4):1-8.
    [56]姚丽英,高建刚,段广洪,薛俊芳.基于分层结构的拆卸序列规划研究[J].中国机械工程,2003,14(17):1516-1519.
    [57]李方义,刘钢,汪劲松,段广洪.模糊AHP方法在产品绿色模块化设计中的应用[J].中国机械工程,2000,10,(9):997-1000.
    [58]秦晔,王翔,陈铭,王成焘.废旧汽车循环再利用的经济性评估[J].机电一体化, 2006,01.
    [59] HU Zhi-yuan, ZHANG Cheng, PU Geng-qiang, WANG Cheng-tao. Energy, Environment, Economic Life Cycle Assessment of Cassava-based Ethanol Used as Automotive Fuel in Guangxi Province [J]. China. Journal of Donghua University, 2005,01.
    [60]张国庆,荆学东,浦耿强,王成焘.汽车发动机可再制造性评价[J].中国机械工程, 2005,08.
    [61]张成,浦耿强,王成焘.基于生命周期的汽车回收及其循环经济模型[J].机械设计与研究, 2003,03.
    [62]张国庆,荆学东,浦耿强,王成焘.产品可再制造性评价方法与模型[J].上海交通大学学报, 2005, 09.
    [63]徐滨士.绿色再制造工程——21世纪的重要产业.航空制造技术[J]. 2002,6:26-28.
    [64]张伟,刘仲谦,张纾,徐滨士.绿色制造与再制造技术研究与发展[J].中国表面工程, 2006.
    [65]史佩京;徐滨士;刘世参;朱绍华.基于装备多寿命周期理论的发动机再制造工程及其效益分析[J].装甲兵工程学院学报, 2006,06.
    [66]徐滨士,刘世参,张伟,史佩京.绿色再制造工程及其在我国主要机电装备领域产业化应用的前景[J].中国表面工程, 2006.
    [67]朱绍华,徐滨士;废旧机械产品再制造的资源环境评价[J].中国表面工程, 2006,2.
    [68]徐滨士,刘世参,史佩京.再制造工程和表面工程对循环经济贡献分析[J].中国表面工程, 2006,1.
    [69]向永华,吕耀辉,夏丹,徐滨士.再制造工程中的生产者延伸责任制初探[J].中国表面工程, 2006.
    [70]刘光复,刘志峰,李钢.绿色设计与制造[M].北京:机械工业出版社,1999.
    [71]江吉彬,刘志峰,刘光复.基于层次网络图模型的可拆卸性设计[J].中国机械工程,2003,14,(21):1864-1867.
    [72]刘学平,刘光复,段广洪,刘志峰.拆卸路径决策时的装配体判别分析[J].中国机械工程, 2003,13(6): 505~508.
    [73]机械科学研究总院. http://www.cam.com.cn/main.asp [Z]. 2007.
    [74]房贵如.变铸造大国为铸造强国——我国铸造行业实现可持续发展的途径[M].铸造, 2001,3.
    [75]郝福安,张红,王耀辉.清洁生产与机械工业可持续发展[J].中国机械工程,2002,19.
    [76]刘飞,曹华军,何乃军.绿色制造的研究现状与发展趋势[J].中国机械工程, 2000, 11(1-2):105-110.
    [77]张华,刘飞,马祖军.绿色制造的广义内涵和集成特性[J].制造技术与机床,1999,11:10-12.
    [78] Liu F,Zhang H. A model for analyzing the consumption situation of product material resources in manufacturing systems [J]. Journal of Materials Processing Technology, 2002, 122(2-3):201-207.
    [79]曹华军,刘飞,何彦,张华.基于模型集的面向绿色制造工艺规划策略研究[J].计算机集成制造系统,2002,18(12):978-982.
    [80]何彦,刘飞,曹华军,刘纯.面向绿色制造的机械加工系统任务优化调度模型[J].机械工程学报,2007,43(4):27-33.
    [81]曹华军,刘飞,何彦.机械加工系统节能降噪型综合任务分配模型及应用[J].机械工程学报,2006,42(5): 97-102.
    [82]江志刚,张华,曹华军,何彦.面向绿色制造的工艺规划数据库系统研究[J].机械. 2005,5.
    [83]曹华军,刘飞,阎春平,李聪波.制造过程环境影响评价方法及其应用[J].机械工程学报,2005,6.
    [84] S A Melnyk, R P Sroufe, F L Montabon, T J Hinds. Green MRP: identifying the material and environmental impacts of production schedules [J]. International Journal of Production Research, 2001,39(8):1559-1573.
    [85] Rabinowic E. Abrasive wear resistance as a materials test [J]. Lubrication Engineering, 1977,33(7): 378-381.
    [86] Kramer M B, Von F B. A comprehensive tool wear mode [J]l. CIRP Annals, 1986,35(1): 67-70.
    [87]前苏联金属切削机床科学研究所.金属切削机床回转驱动装置的摩擦损失计算(中译本)[M].北京机床研究所, 1964.
    [88]张策.机床噪声——原理及控制[M].天津:天津科学技术出版社,1984.
    [89]李先广.面向绿色制造的高速干式切削滚齿机设计与评价技术研究[D].重庆:重庆大学, 2004.
    [90] Finnveden G, Moberg A. Environmental systems analysis tools-an overview [J]. Journal of Cleaner Production, 2005,13: 1165-1173.
    [91] Fijal T. An environmental assessment method for cleaner production technologies [P]. 2005,1: 1-6.
    [92] Hui K I. An environmental assessment model applied to printed circuit board manufacturing [J]. International Journal of Advanced Manufacturing Technology, 2007,32: 834-842.
    [93]陈侠,樊治平.基于区间数决策矩阵的评判专家水平的研究[J].系统工程与电子技术, 2006, 28(11): 1688-1716.
    [94] Zadeh L A. Fuzzy sets and systems. Proceedings Symposium System Theory [J]. Polytechnic Institute, Brooklyn, 1965: 29-37.
    [95]陈水利,李敬功,王向公.模糊集理论及其应用[M].北京:科学出版社, 2005.
    [96]王凌智能优化算法及其应用[M].北京:清华大学出版社, 2001.
    [97] Glover F, Laguna M. Tabu search [M]. London: Kluwer Academic publishers, 1997.
    [98] Reeves C R. Modern heuristic techniques for combinatorial problems [M]. New York: John Wiley & Sons, 1993.
    [99] Bilge U, KIrac F, Kurtulan M, et al. A tabu search algorithm for parallel machine total tardiness problem [J]. Computers & Operations Research, 2004,31: 397-414.
    [100] COCHRAN J K, HORNG S M, FOWLER J W. A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines [J]. Computers & Operations Research, 2003,30:1087-1102.
    [101]周明,孙树林.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [102]刘飞,徐宗俊,但斌机械加工系统能量特性及其应用[M].机械工业出版社,1995.2.
    [103]王桂英,徐岩,徐丽红,变频器非正弦供电对异步电机运行性能的影响[J].沈阳农业大学学报,2003.8.
    [104]王艳秋,郭振华,李友文PWM IGBT变频器的损耗[J]基础自动化,1996,6:51-55.
    [105] F.Draganescu.Models of machine tool efficiency and apecific consumed energy [J]. Journal of Materials Processing Technology 2003,141:9-15.
    [106] P.Franco, M.Estrems, F.Faura.A study of back cutting surface finish from tool errors and machine tool deviations during face milling [J]. International Journal of Machine tools & manufacture. 2008,l(148):45-48.
    [107] Xu Min, Jiang Shuyun, Caiying.An improved thermal model for machine tool bearings [J]. International Journal of Machine tools & manufacture. 2007,l(147):345-347.
    [108] Barta,P.Fast identification Method of the heat fransfer coefficient [J]. International conference on Thermal issue in emerging technologies theory and application.2007.
    [109] He Qing.Acompensation calculation and simulation test of cutting tool in virtual CNC system [C]. International conference on industrial engineering and engineering manag ement.2006.
    [110] Z.pandilov, V.Dukovski.Computer aided design of main spindle and feed drives for NC machine tools [J]. Courses and lectures 2005 .
    [111] F.Draganescu.Models of machine tool efficiency and consumed energy [J] . Journal of Materials processing Technology 2003, 141:9-15.
    [112]刘飞,徐宗俊.机床主传动系统能量传输数学模型[J].重庆大学学报(自然科学版), 1990.02:8-14.
    [113]王辉.异步电动机节能与功率因数关系的研究[J].宁夏电力, 2008, 01:37-39.
    [114]程明,曹瑞武,胡国文,蔡桂龙,陈军.异步电动机调压节能控制方法研究(J).电力自动化设备, 2008,01:6-10.
    [115]李杉,高金贵,樊孟维.木工钻床空载功率的研究(1) [J].木材加工机械, 2003.03.
    [116]李杉.木工钻床空载功率的研究(2) [J].木材加工机械, 2003.03.
    [117]李杉.木工钻床空载功率的研究(3) [J].木材加工机械, 2003.03.
    [118]甘启义,刘飞,徐宗俊.机床功率监控技术中抗电压和频率干扰的研究[J].机械, 1992.02:6-8.
    [119] Dieter Foerste, Wolfgang Mueller.进给传动方式影响CNC切削加工机床的功率[J].现代制造, 2002,09:34-36.
    [120]倪前富,邵华,林益耀.机床功率信号的试验研究[J].组合机床与自动化加工技术, 1994, 06.
    [121]潘敏强,刘亚俊,汤勇.车削加工中切削用量的分层多目标最优化模型[J].工具技术, 2005.08:29-33
    [122]施志辉,刘杰.优化计算切削用量的实用方法[J].工具技术, 2008.01:86-89.
    [123]李智华,王细洋,徐勇军.机床切削功率信号实时处理方法[J].制造技术与机床, 2005.05:43-45.
    [124]刘志艳,苏景云.一种用于车床主传动系统空载功率测量装置的设计[J].吉林化工学院学报, 2006.02:68-70.
    [125]李汉强,刘玉娟,高承伟,高效节能型异步电机矢量控制系统[J].电气传动, 2004.1:17-19.
    [126]吕树清.电动机软启动器的节能功能及应用分析[J] .小型电机, 2001.28(6):43-45.
    [127] Kuo-Kai Shyu,Hsin-Jang shieh,and Sheng-shang Fu, Model reference adaptive speed control for induction motor drive using neural networks [J]. IEEE Transactions on industrial electronics,1888,1(45).
    [128] B.K.Bose,Power electronics and AC drives . Englewood Cliff [J]. NJ: Pretice-Hall , 1986.
    [129]汪擂,周国兴等.参数在跟踪的交流传动系统双神经网络模型参考自适应控制[J].中国电机工程学报,2001,7:114-119.
    [130]张友良.基于ARM的钢厂实时能耗监测系统设计[M].北京交通大学,2008.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700