用户名: 密码: 验证码:
低能电子与水分子弹性散射截面以及Li_2、Na_2分子激发态结构与势能函数
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子与水分子的碰撞在很多研究领域都有着非常重要的意义。如天体物理、大气和星际模拟、恒星大气、等离子体物理以及放射物理和化学等。尤其需要指出的是,对电子与水分子碰撞过程的研究有助于对辐射损伤模型的分析和理解。本文工作之一是基于固定核近似原理,利用R矩阵方法:和分子的R矩阵程序计算了在4-20eV能量范围内电子被基态水分子弹性散射的总碰撞截面,同时讨论了R矩阵半径的取值对总截面的影响。并将结果与实验值及其它理论计算作了比较,结果显示这种计算方法对于低能电子与分子碰撞是很有效的。
     分子势能函数是在整个空间范围内对分子性质的完全描述,同时也是研究原子分子碰撞与反应动力学的基础。从理论计算的角度导出双原子分子的势能函数,尤其是其激发态的势能函数一直是重要的研究课题。本文另一部分工作是用SAC(symmetry-adapted cluster)/SAC-CI(configuration interaction)方法以及优选出的6-311+g~*基组对Li_2分子基态X~1∑_g~+,以及A~1∑_u~+,B~1∏_u,a~3∑_u~+和b~3∏_u激发态,用6-31+g~*基组对Na_2基态X~1∑_g~+,以及A~1∑_u~+,B~1∏_u和b~3∏_u进行结构计算,而用QCISD方法对Na_2分子a~3∑_u~+态计算,最后用正规方程组对它们拟合Murrell-Sorbie函数或Huxley函数,做出的势能曲线与单点扫描结果符合较好,并计算出一些分子态的光谱常数,与文献报道的光谱实验结果进行了对比。结果显示,分别利用这两种方法获得的势能函数,总体效果很好。为电子与分子激发态碰撞的理论计算打好基础。
Collisions of electrons with water molecules play an important role in a variety of research fields such as astrophysics and atmospheric physics, radiation biology and plasma physics. Knowledge of electron-water collision interactions is concernful for models of radiation damage. In part one of this dissertation, the R-matrix method and the UK molecular R-matrix codes are used to calculate total (integral) cross sections of electrons elastic scattering from H_2O molecule in quite low energy range 4-20eV and the scattering calculations are performed within the fixed-nuclei approximation. Then the effect of radius of R-matrix sphere to the results is discussed. Cross sections are compared with previous result and also experiments and the results are in good agreement with experimental ones.
    The study of diatomic molecular potential energy functions, especially for the functions of excited states, has been considered a topic worthy of investigation. These functions are needed for any dynamical study of molecules including the rates of simple chemical reactions, molecular beam scattering cross-sections and vibrational and rotational spectroscopy. The potential energy function is needed both for classical and quantum mechanical treatments of this dynamics. Thus in the other part, the potential curves for the ground stated X~1∑_g~+, and excited states X~1∑_u~+, B~1∏_u ,a~3∑_u~+ and b~3∏_u of Li_2 molecules are calculated by the keyword GSUM in SAC(symmetry-adapted cluster)/SAC-CI(configuration interaction) method with preferable basis set 6-311+g*, and 6-31+g* basis set for X~1∑_g~+, X~1∑_u~+, B~1∏_u
引文
1 刘玉芳,张现周,孙金锋,万陵德.中高能量电子被NO_2和SO_2分子散射总截面的研究[J].原子与分子物理学报,1997,14:216-218
    2 孙金锋,江玉海,万陵德,杨向东.中低能电子被分子散射总截面的计算[J].成都科技大学学报,1995,86:76-78
    3 J F Sun, D H Shi, Z L Zhu and Y F Liu. Electron impact total (elastic and inelastic) cross sections with simple molecules consisting of N&O atoms at 100-1600eV[J]. Chinese Optics Letters, 2003, 1: 624-626
    4 刘玉芳,孙金锋。电子被HF和HCl分子散射总截面的计算[J].原子与分子物理学报,1997,14:77-80
    5 刘玉芳,张小平,孙金锋,耿有德.电子被氨分子散射总截面的计算[J].河南师范大学学报(自然科学版),1996,24:20-22
    6 刘玉芳,孙金锋,张现周,万陵德.计算电子被分子散射总截面的经验公式[J].原子与分子物理学报增刊,1998,157-158
    7 刘玉芳,朱遵略,孟慧燕,孙金锋.中高能电子被分子的散射总截面与能量关系的研究[J].原子核评论增刊,2002,19:67-69
    8 孙金锋,施德恒,朱遵略,刘玉芳,杨向东.100-5000eV下电子被若干分子散射的总截面[J].原子与分子物理学报增刊,2004,145-148
    9 D H Shi, J F Sun, X D Yang, Z L Zhu and Y F Liu. Total cross sections for scattering of electrons from O_2, H_2O, H_2, O_3, CO and CO_2 at 100-2000eV[J]. Chiese Physics, 2004, 13:1018-1023
    10 商继敏,王如梅,孙金锋,刘玉芳.中高能区电子与分子散射总截面的计算[J].原子与分子物理学报,2004,21:187-190
    11 陈学俊,王岩,李波,邓新元.反散射理论应用于e-H_2O碰撞[J].物理学报,1994,43:1419-1426
    12 H Feng and W G Sun. Parameter-free nonadiabatic correlation-polarization potential for vibrational excitation in electron-molecule scattering: Application to e-N_2 collisions[J]. Phys. Rev. A, 2003, 68: 062709
    
    13 J D Gorfinkiel, LA Morgan and J Tennyson. Electron impact dissociative excitation of water within the adiabatic nuclei approximation [J]. J Phys B, 2002, 35: 543-555.
    
    14 A Faure, J D Gorfinkiel and J Tennyson. Low-energy electron collisions with water: elastic and rotationally inelastic scattering[J]. J Phys B, 2004, 37: 801-807
    
    15 I Rozum, N J Mason and J Tennyson, Electron collisions with the CF radicals using the R-matrix method[J]. J Phys B, 2003, 36: 2419-2432
    
    16 J Tennyson et al, Electron molecule collisions calculations using the R-matrix method[J]. Radiation Physics and Chemistry, 2003, 68: 65-72
    
    17 J Tennyson and L A Morgan, Electron collisions with polyatomic molecules using the R-matrix method[J]. Phil Trans R Soc Lord A, 1999, 357: 1161-1173
    
    18 I Rozum, N J Mason and J Tennyson, Electron collisions with the CF3 radical using the R-matrix method[J]. New J Phys, 2003, 5: 155.1-155.12
    
    19 I Rabadan, B K Sarpal and J Tennyson, Calculated rotational and vibrational excitation rates for electron-HeH~+ collisions[J]. Mon Not R Astron Soc, 1998, 299: 171-175
    
    20 A Faure and J Tennyson, Electron-impact rotational excitation of linear molecular ions[J]. Mon Not R Astron Soc, 2001, 325: 443-448
    
    21 A Faure and J Tennyson, Rates coefficients for electron-impact rotational excitation of H_3~+ and H_3O~+[J]. Mon Not R Astron Soc, 2003, 340: 468-472
    
    22 B K Antony, K N Joshipura, N J Mason and J Tennyson, R-matrix calculation of low-energy electron collisions with LiH[J]. J Phys B, 2004, 37: 1689-1697
    
    23 I Rozum and J Tennyson, Elastic differential cross sections for the CF_x (x=1, 2, 3) radicals[J]. J Phys B, 2004, 37: 957-966
    
    24 K K Verma, J T Bahha, A R Relgei-Rizi, W C Stwalley and W T Zemke. J. Chem. Phys., 1983, 78:3599
    
    25 C Effantin, J d' Incan, A J Ross, R F Barrow and J Verges. J. Phys. B: At. Mol. Phys., 1984, 17: 1515
    
    26 H Richter, H Knockel and E Tiemann. Chem. Phys., 1991, 157: 217
    27 H Wang, P L Gould and W C Stwalley. Phys. Rev. Lett., 1997, 78:4173
    28 L Li, A M Lyyra, W T Luh and W C Stwalley. J. Chem. Phys., 1990, 93:8452
    29 G Jeung. J. Phys. B.: At. Mol. Phys., 1983, 16:4289
    30 H Partidge, C W Bauschlicher and P E M Ssiegbahn. Chem. Phys. Lett., 1983, 97: 198
    31 I Schmidt-Mink, W Muller and W Meyer. chem. Phys., 1985, 92:263
    32 U Kaldor. Chem. Phys., 1990, 140:1
    33 D D Konowalow and J L Fish. Chem. Phys., 1984, 84:463
    34 S Magnier and Ph Millie. J. Chem. Phys., 1993, 98:7113
    35 T Nakajima, H Nakatsuji. Energy gradient method for the ground, excited, ionized and electron-attached states calculated by the SAC (symmetry-adapted cluster)/SAC-CI(configuration interaction) method[J]. Chem. Phys., 1999, 242: 177-193
    36 T Nakajima, H Nakatsuji. Chem. Phys. Lett., 1997, 280:79-84
    37 M Ehara and H Nakatsuji. Chem. Phys. Lett., 1998, 282:347-354
    38 M Ishida, K Toyota, M Ehara and H Nakatsuji. Chem. Phys. Lett., 2001, 347:493-498
    39 M Ishida, K Toyota, M Ehara and H Nakatsuji. Chem. Phys. Lett., 2001, 350: 351-358
    40 朱正和,俞华根.分子结构与分子势能函数[M].1997,北京:科学出版社
    1 L G Christophorou. Electron-Molecule Interactions and Their Applications[J]. academic press. 1984. vol1. p41
    2 朱正和,俞华根 分子结构与分子势能函数[M].北京:科学出版社,1997 Z H Zhu, H G Yu. Molecular structure and potential energy function[M].Beijing: Science Press, 1997
    3 Dunham. Phys. Rev., 1932, 41:721
    4 J N Murrell, S Carter, S C Farantos, P Huxley and A J C Varandas. Molecular potential energy functions[M]. New York: John Wiley & Sons, 1984.
    5 J N Murrell and K S Sorbie. New analytic form for the potential energy curves of stable diatomic states[J]. J. Chem. Soc. Faraday Trans. Ⅱ. 1974, 70: 1552-1557
    6 P Huxley, D B Knowels, J NMurrell and J D Watts. Ground-state diatomic potentials, part 2. Van der Waals molecules[J]. J. Chem. Soc. Faraday Trans, Ⅱ, 1984, 80: 1349-1361.
    7 P Huxley and J N Murrell Chem. Soc. Faraday Trans., 1974, 2:238
    8 Z H Zhu, S Y Shen, W M Mou and L Li. J. Mol. Sci. (China), 1984, 2:79
    9 朱正和 原子分子反应静力学[M].北京:科学出版社,1996 Z H Zhu. Atomic and molecular reaction statics[M]. Beijing: Science Press, 1996
    1 A D McLean, Conference on Potential Energy Surfaces in Chemistry[M]. W A Lester Jr, ed. 1971, San Jose: IBM Research Laboratory, 87.
    2 A D McLean, M Yoshimine, B H Lengsfield, P S Bagus, B Liu. Modem Techniques in Computational Chemistry: MOTECC-91[M].. E. Clementi, ed. 1991 , Leiden: Escom, Ch. 6.
    3 J Almlof, P R Taylor. Advanced Theories and Compulational Approaches to the Electronic Structure of Molecules[M]. C E Dykstra, ed. 1984, Dordrecht: Reidel
    4 J Almlof, P R Taylor, Modern Techniques in Computational Chemistry: MOTECC-91[M]. E Clementi, ed. 1991, Leiden: Escom, Ch. 6A.
    5 L A Morgan, C J Gillan, J Tennyson, X Chen. J. Phys. B. 1997. 30: 4087.
    6 P G Burke, K A Berrington. R-matrix Theory of Atomic and Molecular Processes [M]. 1993, Bristol: IOP Publishing.
    
    7 R K Nesbet. Variational Methods in Electron-Atom Scattering[M]. 1980, New York: Plenum.
    
    8 L A Morgan. Comput. Phys. Coramun. 1984. 31: 419.
    
    9 C J Noble, R K Nesbet. Comput. Phys. Commun. 1984. 33: 399.
    
    10 J Tennyson, C J Noble. Comput. Phys. Commun. 1984. 33: 421.
    1 J D Gorf inkiel, L A Morgan and J Tennyson. Electron impact dissociative excitation of water within the adiabatic nuclei approximation[J]. J. Phys. B, 2002, 35: 543-555.
    
    2 J Tennyson, J D Gorf inkiel et al. Electron molecule collisions calculations using the R-matrix method[J]. Radiation Phys. and Chem., 2003, 68: 65-72
    
    3 F A Gianturco, S Meloni and P Paioletti et al. Low-energy electron scattering from the water molecule: Angular distributions and rotational excitation[J]. J. Chem. Phys. 1998, 108: 4002-4012
    
    4 Y Okamoto, K Onda and Y Itikawa. Vibrationally elastic cross sections for electron scattering from water molecules[J]. J. Phys. B, 1993, 26:745-758
    
    5 T W Shyn and S Y Cho. Vibrationally elastic scattering cross section of water vapor by electron impact[J]. Phys. Rev. A, 1987, 36: 5138-5142
    
    6 Z Saglam, N Aktekin. Absolute total cross sections for scattering of electrons by H_2O in the energy range 4-20eV[J]. J. Phys. B, 1991, 24: 3491-3496
    
    7 W M Johnstone and W R Newell. Absolute vibrationally elastic cross sections for electrons scattered from water molecules between 6eV and 50eV[J]. J. Phys. B, 1991, 24: 3633-3643
    
    8 L A Morgan, J Tennyson et al. The UK molecular R-matrix codes[J]. Computer Phys. Commun., 1998, 114: 120-128
    
    9 J Tennyson, C S Trevisan. Low energy electron collisions with molecular Hydrogen[J]. Contrib. Plasma Phys. 2002, 42:573-577
    
    10 J Tennyson and L A Morgan. Electron collisions with polyatomic molecules using the R-matrix method[J]. Phil. Trans. R. Soc. Lord. A., 1999, 357: 1161-1173
    
    11 I Rozum, N J Mason and J. Tennyson. Electron collisions with the CF3 radical using the R-matrix method[J]. New J. Phys., 2003, 5: 155.1-155.12
    
    12 T H Dunning Jr. Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first-row Atoms[J]. J. Chem. Phys. 1970, 53: 2823-2833
    
    13 T J Gil, T N Rescigno, McCurdy C W and Lengsfield B H. Ab initio complex Kohn calculations of dissociative excitation of water[J]. Phys. Rev. A, 1994, 49: 2642-2650
    14 T H Dunning Jr. Gaussian basis functions for use in molecular calculations. III. Contraction of (10s6p) atomic basis sets for the first-row Atoms[J]. J. Chem. Phys. 1970, 53: 716-723
    15 A Faure, J D Gorfinkiel and J Tennyson. Low-energy electron collisions with water: elastic and rotationally inelastic scattering[J]. J. Phys. B, 2004, 37: 801-807
    16 R van Harrevelt and M C van Hemert. Photodissociation of water. 1. Electronic structure calculations for the excited states[J]. J. Chem. Phys., 2000a, 112: 5777-5786
    17 A Jain. Theoratical study of the total (elastic + inelastic) cross sections for electron-H_2O (NH_3) scattering at 10-3000eV[J]. J. Phys. B, 1988, 21: 905-924
    1 H Nakatsuji, M Ehara. J. Chem. Phys. 1994, 101:7658
    2 T Nakatjima, H Nakatsuji. Chem. Phys. Lett. 1997, 280:79
    3 Silverstone, H.J. and Sinanoglu O. J. Chem. Phys. 1966, 44:1899
    4 Pipano, A., Gilman, R.R. and Shavitt, O. J. Chem. Phys. Lett. 1970, 5:285
    5 Sinanoglu, O., Proc. Nat. Acad. Sci. USA. 1961, 47:1217
    6 Lowdin, P.O., Adv. Chem. Phys. 1959, 2:2.07
    7 H Nakatsuji, K Hirao. J. Chem. Phys. 1978, 68:2053
    8 H Nakatsuji. Acta Chim. Hung. 1992, 129:719
    9 H Nakatsuji. in: J. Leszczynski (Ed.) Computational Chemistry-Reviews of Current Trends, Vol. 2, World Scientific, 1997, p. 62.
    10 H Nakatsuji, K Hirao. Int. J. Quantum Chem. 1981, 20:1301
    11 H Nakatsuji, J Ushio, T Yonezawa. Can. J. Chem. 1985, 63:1857
    1 Matsunaga N, Zavitsas A A. Comparison of spectroscopic potentials and an a priori analytical function. The potential energy curve of the ground state of the sodium dimmer, X~1 ∑_8~+ Na_2[J]. J. Chem. Phys., 2004, 120 (12):5624-5630
    2 Hirst D M. Ab initio potential energy surfaces for excited states of the NO_2~+ molecular ion and for the reaction of N~+ with O_2[J]. J. Chem. Phys., 2001, 115 (2):9320-9329
    3 Horst M A T, Schatz G C, Harding L B. Potential energy surface and quasi-classical trajectory studies of the CN+H_2 reaction [J]. J. Chem. Phys., 1996, 105 (2) :558-572
    4 Huang Y, Roy R J L. Potential energy, ∧ doubling and Born-oppenheimer breakdown functions for the B~1 Π_u " barrier" state of Li_2[J]. J. Chem. Phys., 2003, 119 (14):7398-7416
    5 Colavecchia F D, Burke J P, Stevens W J, et al. The potential energy surface for spin-aligned Li_3(14A' ) and the potential energy curve for spin aligned Li_2(a~3∑_u~+) [J]. J. Chem. Phys. 2003, 118(12) :5484-5495
    6 Spangberg D, Hermansson K. Many-body potentials for aqueous Li~+, Na~+, Mg~(2+) and Al~(3+): comparison of effective three-body potentials and polarizable models[J]. J. Chem. Phys., 2004, 120(10):4829-4843
    7 Nakajima T, Nakatsuji H. Energy gradient method for the ground, excited, ionized and electron-attached states calculated by the SAC (symmetry-adapted cluster)/SAC-CI(configuration interaction) method[J]. Chemical Physics, 1999, 242: 177-193.
    8 Krishnan R, Binkley J S, Seeger R, and Pople J A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. J. Chem. Phys. 1980, 72:650-654
    9 McLean A D, Chandler G S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18[J]. J. Chem. Phys. 1980, 72: 5639-5648
    10 Murrell J N and Sorbie K S. New analytic form for the potential energy curves of stable diatomic states[J]. J. Chem. Soc. Faraday Trans. Ⅱ. 1974, 70:1552-1557
    11 Murrell J N, Carter S, Farantos S C, Huxley P and Varandas A J C. Molecular potential energy functions[M]. New York: John Wiley & Sons, 1984
    12 Huxley P, Knowels D B, Murrell J N and Watts J D. Ground-state diatomic potentials, part 2. Van der Waals molecules[J]. J. Chem. Soc. Faraday Trans, Ⅱ, 1984, 80: 1349-1361
    13 朱正和,俞华根 分子结构与分子势能函数[M] 北京:科学出版社,1997 Zhu Z H, Yu H G. Molecular structure and potential energy function[M].Beijing:Science Press, 1997
    14 朱正和 原子分子反应静力学[M] 北京:科学出版社,1996 Zhu Z H. Atomic and molecular reaction statics[M]. Beijing: Science Press, 1996
    15 Huber K P, Herzberg G. Molecular Spectra and Molecular Structure, Ⅳ. Constants of Diatomic Molecules[M], New York: Van Nostrand, 1979
    16 Herzberg G. Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules[M]. New York: Van Nostrand, 1953
    17 Sangfelt E, Kurtz H A, Elander N and Goscinski O. J. Chem. Phys. 1984, 81:3976
    18 Urbanski K, Antonova S and Yiannopoulou A et al. All optical triple resonance spectroscopy of the A~1 ∑_u~+ state of ~7Li_2[J]. J. Chem. Phys. 1996, 104(8):2813
    19 Kaldor U. Chem. Phys., 1990, 140:1
    20 Russier I, Yiannopoulou A and Crozet P et al. The 2~3 Π_g-b~3Π_u and 1~3Δ_g-b~3Π_u trancitions in ~7Li_2: analysis of the b~3Π_u state for v=0-27[J].J. Mol. Spectrosc., 1997, 184:129-139
    21 Poteau R and Spiegelmann F. Calculation of the electronia spectrum of Li_2 using effective core pseudopotentials and I-dependent core polarization potentials[J]. J. Mol. Spectrosc., 1995, 171:299-308
    1 Matsunaga N, Zavitsas A A. Comparison of spectroscopic potentials and an a priori analytical function. The potential energy curve of the ground state of the sodium dimmer, X~1∑_g~+ Na_2[J]. J. Chem. Phys., 2004, 120 (12):5624-5630
    2 Hirst D M. Ab initio potential energy surfaces for excited states of the NO_2~+molecular ion and for the reaction of N~+ with O_2[J]. J. Chem. Phys., 2001, 115 (2):9320-9329
    3 Horst M A T, Schatz G C, Harding L B. Potential energy surface and quasi-classical trajectory studies of the CN+H_2 reaction [J]. J. Chem. Phys., 1996, 105 (2):558-572
    4 Spangberg D, Hermansson K. Many-body potentials for aqueous Li~+, Na~+, Mg~(2+) and Al~(3+): comparison of effective three-body potentials and polarizable models[J]. J. Chem. Phys., 2004, 120(10):4829-4843
    5 Nakajima T, Nakatsuji H. Energy gradient method for the ground, excited, ionized and electron-attached states calculated by the SAC (symmetry-adapted cluster)/SAC-CI (configuration interaction) method[J]. Chemical Physics, 1999, 242:177-193
    6 Murrell J N and Sorbie K S. New analytic form for the potential energy curves of stable diatomic states[J]. J. Chem. Soc. Faraday Trans. Ⅱ. 1974, 70:1552-1557
    7 Murrell J N, Carter S, Farantos S C, Huxley P and Varandas A J C. Molecular potential energy functions[M]. New York: John Wiley & Sons, 1984
    8 Huxley P, Knowels D B, Murrell J N and Watts J D. Ground-state diatomic potentials, part 2. Van der Waals molecules[J], J. Chem. Soc. Faraday Trans. Ⅱ. 1984, 80: 1349-1361
    9 朱正和,俞华根 分子结构与分子势能函数[M] 北京:科学出版社,1997 Zhu Z H, Yu H G. Molecular structure and potential energy function[M].Beijing: Science Press, 1997
    10 朱正和 原子分子反应静力学[M] 北京:科学出版社,1996 Zhu Z H. Atomic and molecular reaction statics[M]. Beijing: Science Press, 1996
    11 Huber K P, Herzberg G. Molecular Spectra and Molecular Structure, Ⅳ. Constants of Diatomic Molecules[M]. New York: Van Nostrand, 1979
    12 Herzberg G. Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules[M]. New York: Van Nostrand, 1953
    13 Barrow R F, Verges J, Effantin C, Hussein K and d' Incan J. Chem. Phys. Lett.,1984, 104:179
    14 Gerber G and Moller R. Chem. Phys. Lett, 1985, 113:546
    15 Kusch P and Hessel M M. J. Chem. Phys., 1978, 68:2591
    16 Whang T J, Stwalley W C, Li L, Lyyra A M. J. Chem. Phys., 1992, 97:7211
    17 Effantin C, Babaky O, Hussein K, d' Incan J and Barrow R. J. Phys. B.,1985, 18: 4077

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700