用户名: 密码: 验证码:
雷达侦察与无源定位中LPI信号分析处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争条件下,电子对抗与反对抗的斗争日趋激烈。对敌方雷达的侦察和定位是对其实施精确打击的前提,也是掌握战争主动权的关键。对大时宽带宽积线性调频(LFM)信号和多相编码信号等低截获概率(LPI)雷达脉冲压缩信号的分析处理是其中的核心问题。论文针对LPI雷达脉冲压缩信号的调制方式识别、调制参数估计及多普勒频率变化率高精度测量等关键技术展开了深入研究。主要研究内容概括如下:
     第二章研究LFM信号脉内调制参数估计问题,着重解决多分量LFM信号的脉内调制参数估计问题。(1)针对单分量LFM信号脉内参数估计二次相位函数(QPF)方法的性能分析问题,从信噪比积累增益角度对其抗噪性能进行了分析,给出了输出信噪比的表达式,得到了保证算法获得合理估计精度的约束条件,并给出了一阶扰动分析法所要求的“高信噪比”条件。此外还给出了实际应用中信号处理长度和调频率搜索间隔的选取方法。(2)针对多分量LFM信号的QPF存在的信号间互扰和伪峰问题,提出了积分二次相位函数(IQPF)方法,该算法能有效抑制多分量信号间互扰和伪峰,给出了IQPF的SNR积累增益和参数估计精度的解析表达式,并通过仿真实验验证了理论分析结果。
     第三章研究多相编码信号检测和调制参数估计问题,重点解决编码参数盲估计问题,为后续章节进行多相编码信号调制识别提供必要参数。(1)对多相编码信号QPF的特点进行了分析,提出了基于IQPF的检测方法,并通过接收机工作特性(ROC)曲线和特定虚警概率下的检测概率指标对其性能进行了分析。(2)推导了多相编码脉冲模糊函数(AF)的表达式,证明了AF幅度图像上距主脊线最近的脊线在时延和多普勒频率轴上的截距包含信号编码时长和子码率信息的结论。针对多相编码脉冲信号子码率和编码时长盲估计问题,提出了一种基于AF的估计算法,并对其性能进行了理论分析。(3)针对多相编码连续波信号,提出了基于AF局部特性的子码率和调制周期估计算法,算法计算效率高,易于工程实现。利用一阶扰动分析方法推导了子码率估计的理论均方误差的解析表达式。
     第四章研究多相编码脉冲信号调制识别问题,着重解决雷达脉内调制识别研究中相同调制类型内不同调制序列识别难题。(1)针对现有算法仅以编码长度和子码率构造参考信号可能导致编码类型识别错误的问题,提出了一种新的“三参数”参考信号构造方法,并考虑了编码序列正序和反序识别问题。通过数值仿真分析了载频估计误差对相关分类器性能的影响。(2)针对已有调制识别算法对载频估计误差敏感的缺点,在分析多相编码信号间互相关谱特点的基础上,提出了基于互相关谱的调制方式识别算法,该算法无需载频估计并且可采用高效的快速Fourier变换(FFT)实现,运算复杂度低。
     第五章研究单站无源定位中脉冲压缩信号多普勒频率变化率高精度估计问题,重点解决利用相参脉冲串精确估计脉压信号多普勒频率变化率的问题。(1)分析了目标辐射源与观测平台相对运动对观测平台接收信号的影响,建立了脉冲压缩信号观测信号模型。(2)针对LFM相参脉冲串信号,推导了多普勒频率变化率估计的克拉美-罗下界(CRLB),并将分数阶Fourier变换(FrFT)应用于LFM相参脉冲串信号多普勒频率变化率估计问题,提出了一种新的高精度估计算法。理论分析表明该算法估计精度逼近CRLB。(3)针对二相调制(BPSK)相参脉冲串雷达信号,提出了对接收信号进行±π相位补偿的高精度多普勒频率变化率估计算法,该方法通过相位补偿去除脉冲内BPSK调制,克服了进行平方或脉冲间相关运算会引入交叉项的问题;推导了不模糊多普勒频率变化率估计与脉冲重复频率、采样频率及观测时长间的约束关系。
In modern warfare, the conflict between the electronic counter measures and anti electronic counter measures is becoming fiercer day by day. Gathering intelligence about hostile radars and locating their positions are a prerequisite to the precision strike and is also the master key to the initiative of war. One of the core issues is to analyze and process the low probability of intercept (LPI) radar pulse compression signals, etc. the large time-bandwidth product signals LFM and polyphase coded signals. We deeply study some key technologies/subjects in this dissertation, including the modulation rec-ognition, the modulation parameter estimation and the high-precision measurement of Doppler frequency rate for the LPI pulse compression signals. The main contributions of this dissertation are given as follows:
     In Chapter 2, the intra-pulse modulation parameter estimation problem is studied. We focus on solving the problem of intra-pulse modulation parameter estimation for multi-component linear frequency modulation (LFM) signals. (1) From the viewpoint of the output signal-to-noise-ratio gain, the anti-noise performance of the quadratic phase function (QPF) is analyzed and a closed-form expression for the output SNR is derived to evaluate the performance of the QPF method for single LFM signal. The constraint to guarantee a reasonably estimation accuracy is then obtained. Thereafter the high SNR condition required by the first order perturbation analysis is given. The selection of the signal processing length and the search step for the frequency rate is also given for prac-tical applications. (2) To deal with the problem of spurious peaks and interferences pre-sent in the QPF of multi-component LFM signals, a modified algorithm, named IQPF, is proposed. The method can suppress interferences and spurious peaks caused by the multi-component signals effectively. In what follows, the analytical expressions of the output SNR gain and the estimation accuracy are derived. The simulation results verify the theoretical results.
     In Chapter 3, the detection and intra-pulse modulation parameter estimation prob-lem are investigated. We are concentrating on solving the blind encoding parameter es-timation problem of the polyphase coded signals, which will be used by the following chapter for the purpose of the modulation recognition. (1) For the analysis of the char-acteristics of the polyphase coded signal’s QPF, an IQPF-based detector is proposed. The performance of the detector is evaluated by the receiver operating characteristic curve and the detection rate merits at a constant false-alarm rate. (2) The ambiguity function (AF) of the polyphase coded pulse signal is derived. A conclusion is drawn which states that, the intercepts, on the Doppler frequency and the time delay axes, of the ridge nearest to the main ridge contain information on the subcode rate and the time duration of the pulse signal. In addition, an AF based method is also proposed to obtain the blind estimation of the duration and the subcode rate. (3) We proposed a partial AF based algorithm for estimating the subcode rate and the modulation period of polyphase coded continuous wave signals. The algorithm is high efficiency and easy to be imple-mented. The theoretical mean square error of the subcode rate estimates is derived using the first order perturbation analysis.
     In Chapter 4, the modulation recognition of the polyphase coded pulse signal is studied. We focus on classifying the polyphase coded signals with the same modulation type but different code sequences. (1) To solve the error identification problem that may occur caused by using only the subcode rate and the code length to construct the refer-ence signals, a new reference signal generation method is proposed. The positive and reverse sequences are considered. The influence of the carrier frequency estimation er-ror on the performance of the correlation classifier is investigated by the numerical simulation. (2) The existing modulation recognition algorithms have a drawback that their performance is sensitive to the carrier frequency estimation error. Thus, a new cross-correlation spectrum based modulation recognition method, which doesn’t need estimating the carrier frequency, is proposed. The algorithm can be implemented by us-ing the fast Fourier transform (FFT). Thus it has low computational complexity.
     In Chapter 5, the high accuracy Doppler frequency rate estimation is studied for the single observer passive location application. We concentrate on the Doppler frequency rate estimation for the pulse compression signals by using the coherent pulse trains. (1) The influence of the relative motion between the observer platform and the object emit-ter on the characteristics of the observer-received signal is analyzed. The received signal model is described. (2) The Cramér-Rao lower bound (CRLB) of the Doppler frequency rate estimates for the LFM coherent pulse train signal is deduced. A new fractional Fou-rier transform (FrFT) based algorithm is proposed to estimate the Doppler frequency rate for LFM coherent pulse train signals. The theoretical analysis shows that the vari-ance of the estimates is approaching the CRLB at high SNRs. (3) A new Doppler fre-quency rate estimation algorithm is proposed which is based on the phase transition compensation. Different from the other algorithms that based on the square or the in-ter-pulse correlation operations, the proposed algorithm does not suffer the cross term problem. The constraints among the unambiguity Doppler frequency rate estimate, the pulse repetition frequency, the sampling frequency and the time duration of the observa-tion is given.
引文
[1]周一宇,安玮,郭福成等.电子对抗原理[M].北京:电子工业出版社, 2009.
    [2] Wiley R G. The Interception and Analysis of Radar Signals[M]. Artech House, 2006.
    [3] Mardia H K. New Techniques for Deinterleaving of Repetitive Sequences[J]. IEE Proceedings-Part F: Communication, Radar, and Signal Processing. 1989, 136(4): 149-154.
    [4] Milojevec D J. Improved Algorithm for the Deinterleaving of Radar Pulses[J]. IEE Proceedings-Part F: Communications, Radar, and Signal Processing. 1992, 139(1): 98-104.
    [5] Nishiguchi K, Kobayashi M. Improved algorithm for estimating pulse repetition intervals[J]. IEEE Transactions on Aerospace and Electronic Systems. 2000, 36(2): 407-421.
    [6]赵仁健,龙德浩,熊平等.密集信号分选的平面变换技术[J].电子学报. 1998, 26(1): 77-82.
    [7]张国柱.雷达辐射源识别技术研究[D].长沙:国防科学技术大学, 2005.
    [8]张葛祥.雷达辐射源信号智能识别方法研究[D].成都:西南交通大学, 2005.
    [9]普运伟.复杂体制雷达辐射源信号分选模型与算法研究[D].成都:西南交通大学, 2007.
    [10]郁春来.利用空频域信息的单站无源定位与跟踪关键技术研究[D].长沙:国防科学技术大学, 2008.
    [11]刘海军.雷达辐射源识别关键技术研究[D].长沙:国防科学技术大学, 2010.
    [12] Kawalec A, Owczarek R, Dudczyk J. Data modeling and simulation applied to radar signal recognition[J]. Molecular and Quantum Acoustics. 2005, 26: 165-173.
    [13]许丹.辐射源指纹机理及识别方法研究[D].长沙:国防科学技术大学, 2008.
    [14] VIGILE-Advanced Multi-Platform Naval ESM/ELINT System. www.thales-airbornesystems.com.
    [15] ES-5080 ELINT / ESM System. www.edorss.com.
    [16] LPI Detection & Fine Grain Aanalysis - VIGILE ESM SYSTEM.2003 www.thales-airbornesystems.com.
    [17] NS-9003A-V2 Naval ESM system (Israel). Jane's C4I Systems. 2008.
    [18] Advanced Real-time Intelligence System. www.patria.fi.
    [19] VERA-E: ELINT and Passive ESM Tracker.2003 http://www.era.cz.
    [20]池庆玺.脉压雷达脉内特征分析与处理技术研究[D].哈尔滨:哈尔滨工程大学, 2007.
    [21]刘东霞.脉内调制信号的分析与自动识别[D].西安:西安电子科技大学, 2003.
    [22]张葛祥,胡来招,金炜东.雷达辐射源信号脉内特征分析[J].红外与毫米波学报. 2004, 23(6): 477-480.
    [23]朱明.复杂体制雷达辐射源信号时频原子特征研究[D].成都:西南交通大学, 2008.
    [24]宋云朝.雷达信号细微特征提取方法研究[D].成都:电子科技大学, 2008.
    [25]谭小刚.雷达频率调制信号脉内细微特征分析技术研究[D].成都:电子科技大学, 2008.
    [26]吕远.复杂调制雷达信号的调制识别与参数估计算法研究[D].成都:电子科技大学, 2009.
    [27]杨姗姗.雷达信号调制方式识别研究[D].南京:南京航空航天大学, 2007.
    [28]邓振淼.雷达信号脉内分析与处理理论及算法研究[D].南京:南京航空航天大学, 2007.
    [29]陈役涛.雷达信号调制方式识别可信度研究[D].南京:南京航空航天大学, 2008.
    [30]黄知涛,周一宇,姜文利.基于相对无模糊相位重构的自动脉内调制特性分析[J].通信学报. 2003, 24(4): 153-160.
    [31]沙祥.脉内分析综述[J].现代电子. 1998(4): 1-8.
    [32]巫胜洪.雷达脉内特征提取方法的研究[J].舰船电子对抗. 2002, 25(1): 25-28.
    [33]刘东霞,赵国庆.脉内调制信号的分析[J].现代雷达. 2003, 25(11): 17-20.
    [34] Roome S J. Classification of radar signals in modulation domain[J]. Electronics Letters. 1992, 28(8): 704-705.
    [35]阎向东,张庆荣,林象平.脉压信号的脉内调制特征提取[J].电子对抗. 1991(4): 23-31.
    [36]魏东升,徐东晖,林象平.雷达信号脉内细微特征的时频分析[J].电子对抗. 1993(4): 7-13.
    [37] Moraitakis I, Fargues M P. Feature extraction of intra-pulse modulated signals using time-frequency analysis[C] // 21st Century Military Communications Con-ference, 2000: 737-741.
    [38]朱振波,何明浩.一种低信噪比下雷达脉内特征提取方法[J].航天电子对抗. 2003(3): 30-33.
    [39]赵拥军,黄杰.雷达信号细微特征时频分析法[J].现代雷达. 2003, 25(12):26-28.
    [40]柴娟芳,司锡才,李利等.低信噪比FPPS的弱信号提取与特征识别[J].系统工程与电子技术. 2009, 31(2): 310-314.
    [41]朱振波,王玉生,何明浩.基于近似小波变换的信号脉内特征分析[J].空军雷达学院学报. 2002, 16(4): 8-10.
    [42]郁春来,何明浩,裴立志.基于改进小波脊线法的LFM信号脉内特征提取[J].航天电子对抗. 2004(4): 38-42.
    [43]韩俊,何明浩,冒燕等.低信噪比下脉内频率编码信号特征提取[J].电子信息对抗技术. 2007, 22(1): 26-28, 44.
    [44]毕大平,董晖,姜秋喜.基于瞬时频率的脉内调制识别技术[J].电子对抗技术. 2005, 20(2): 6-9, 13.
    [45]普运伟,金炜东,胡来招.基于瞬时频率二次特征提取的辐射源信号分类[J].西南交通大学学报. 2007, 42(3): 373-379.
    [46]于立涛,马洪光,艾名舜等.基于STFT的雷达脉内调制信号类型识别[J].弹箭与制导学报. 2006, 26(2): 1198-1202.
    [47] Ho K C, Prokopiw W, Chan Y T. Modulation identification of digital signals by the wavelet transform[J]. IEE Proceedings-Radar, Sonar and Navigation. 2000, 147(4): 169-176.
    [48]吴江标,万方,郁春来.基于小波变换法的相位编码信号脉内特征提取[J].航天电子对抗. 2005, 21(3): 38-40.
    [49]胡小勐,孙志勇,张剑云.一种基于小波变换的二相编码信号识别方法[J].电子信息对抗技术. 2006, 21(3): 6-10.
    [50]顾明超,王雷,赵国庆.基于小波分析的雷达信号调制方式识别[J].舰船电子对抗. 2009, 32(6): 83-85.
    [51]周一宇,黄知涛,姜文利.一种基于相位差分的脉内调制识别方法[C] //中国电子学会电子对抗分会第十三届学术年会,桂林, 2003.
    [52]王丰华,黄知涛,魏跃敏等.一种有效的锯齿波调频信号识别方法[J].航天电子对抗. 2005, 21(3): 22-24.
    [53]高洪青,褚红燕.基于希尔波特解调的多相码调制信号的识别[J].现代雷达. 2007, 29(1): 31-33, 37.
    [54]付晓辉,杨杰.雷达信号脉内调制特征的时频分析[J].军民两用技术与产品. 2008(9): 39-42.
    [55]张葛祥,荣海娜,金炜东.基于小波包变换和特征选择的雷达辐射源信号识别[J].电路与系统学报. 2006, 11(6): 45-49, 55.
    [56] Jin W, Zhang G, Hu L. Radar Emitter Signal Recognition Using Wavelet PacketTransform and Support Vector Machines[J]. Journal of Southwest Jiaotong Uni-versity. 2006, 14(1): 15-22.
    [57]那云虓,司锡才,蒯冲.二相编码信号调制分析与识别[J].系统工程与电子技术. 2004, 26(3): 298-300.
    [58]龚文斌,黄可生.基于图像特征的雷达信号脉内调制识别算法[J].电光与控制. 2008, 15(4): 45-49.
    [59]冀贞海,朱伟强,赵力.基于时频分布图像和主分量分析的脉内调制识别算法研究[J].电路与系统学报. 2009, 14(2): 22-26.
    [60]冀贞海,朱伟强,赵力等.二维主分量分析的脉内调制识别算法研究[J].电光与控制. 2009, 16(11): 33-37.
    [61]普运伟,金炜东,朱明等.雷达辐射源信号模糊函数主脊切面特征提取方法[J].红外与毫米波学报. 2008, 27(2): 133-137.
    [62]司锡才,柴娟芳.基于FRFT的α域-包络曲线的雷达信号特征提取及自动分类[J].电子与信息学报. 2009, 31(8): 1892-1897.
    [63] López-Risue?o G, Grajal J, Yeste-Ojeda O A. Atomic decomposition-based radar complex signal interception[J]. IEE Proceedings - Radar, Sonar and Navigation. 2003, 150(4): 323-331.
    [64] López-Risue?o G, Grajal J. Multiple signal detection and estimation using atomic decomposition and EM[J]. IEEE Transactions on Aerospace and Electronic Sys-tems. 2006, 42(1): 84-102.
    [65]程吉祥,张葛祥,唐承志.复杂体制雷达辐射源信号时频原子特征提取方法[J].西安交通大学学报. 2010, 44(4): 108-113.
    [66] Zhang G, Jin W, Hu L. Radar Emitter Signal Recognition Based on Complexity Features[J]. Journal of Southwest Jiaotong University. 2004, 12(2): 116-122.
    [67]韩俊,何明浩,朱振波等.基于复杂度特征的未知雷达辐射源信号分选[J].电子与信息学报. 2009, 31(11): 2552-2556.
    [68]韩俊,何明浩,朱元清等.基于双谱二维特征相像系数的雷达信号分选[J].电波科学学报. 2009, 24(5): 848-853.
    [69] Wang G, Xia X G, Benjamin T R. Manoeuvring target in over-the-horizon radar using adaptive clutter rejection and adaptive chirplet transform[J]. IEE Proceed-ings-Radar Sonar And Navigation. 2003, 150(4): 292-298.
    [70] Zhang Y, Amin M G, Frezer G J. High-resolution time-frequency distributions for manoeuring target detection in over-the-horizon radars[J]. IEE Proceed-ings-Radar Sonar And Navigation. 2003, 150(4): 299-304.
    [71]孙泓波,顾红,苏卫民等.利用分数阶Fourier域滤波的机载SAR多运动目标检测[J].航空学报. 2002, 23(1): 33-37.
    [72] Zhang L, Peng Y, Xu J, et al. A chirp signal parameter estimation algorithm and its application to SAR[C] // IEEE Radar Conference, 2003: 228-231.
    [73] Peng S, Ma D, Lin J. Fractional Fourier Transform for moving target detection and location in spaceborne SAR[C] // International Conference on Information and Automation (ICIA'08 ), 2008: 485-488.
    [74]苏军海,吕孝雷,邢孟道等.窄带雷达高速多目标检测及其运动参数估计[J].系统工程与电子技术. 2009, 31(7): 1539-1543.
    [75]李亚超,全英汇,邢孟道.一种基于时频分布尺度变换的ISAR成像新方法[J].电子学报. 2009, 37(9): 2085-2091.
    [76]张军.弹载毫米波脉冲多普勒雷达制导信息处理研究[D].长沙:国防科学技术大学, 2001.
    [77]赵宏钟.毫米波多普勒制导雷达信号处理方法研究[D].长沙:国防科学技术大学, 2003.
    [78]袁振涛.空间目标普测型雷达信号检测与参数估计算法研究[D].长沙:国防科学技术大学, 2009.
    [79] Sang H, Li Z. WHT-Based Detection and Parameter Estimation of a Single LFM Interference Signal in Spread Spectrum Systems[J]. The Journal of China Uni-versities of Posts and Telecommunications. 2002, 9(1): 52-55.
    [80]王强,潘翔,王孝伟.水下目标LFM回波的小波尺度谱重排及匹配检测[J].华南理工大学学报(自然科学版). 2010, 38(1): 70-75.
    [81] Adele B D, Gerald D T S. Time/frequency techniques for signal feature detec-tion[C] // IEEE Radar Conference, 1999: 452-456.
    [82] Kelly E J. The radar mearsurement of range, velocity and acceleration[J]. IRE Transactions on military electronics. 1961, 5(2): 51-57.
    [83] Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and fre-quency rate[J]. IEEE Transactions on Aerospace and Electronic Systems. 1986, 22(6): 708-715.
    [84] Peleg S, Porat B. Linear FM Signal parameter Estimation form Discrete-Time Observations[J]. IEEE Transactions on Aerospace And Electronic Systems. 1991, 27(4): 607-616.
    [85] Saha S, Kay S. Maximun likehood parameter estimation of superimposed chirps using Monte Carlo importance sampling[J]. IEEE Transactions on Signal Proc-essing. 2002, 50(2): 224-230.
    [86] Lin Y, Peng Y, Wang X. Maximum Likelihood Parameter Estimation of Multiple Chirp Signals by a New Markov Chain Monter Carlo Approach[C] // Proceedings of the IEEE Radar Conference, 2004: 559-562.
    [87] Tretter S A. Estimating the frequency of a noisy sinusoid by linear regression[J].IEEE Transactions on Information Theory. 1985, IT-31(6): 832-835.
    [88] Djuri? P M, Kay S M. Parameter Estimation of Chirp Signals[J]. IEEE Transac-tions on Acoustics, Speech and Signal Processing. 1990, 38(12): 2118-2126.
    [89] Tichavsky P, H?ndel P. Frequency Rate Estimation at High SNR[J]. IEEE Transactions on Signal Processing. 1997, 45(8): 2101-2105.
    [90] Haimovich A M, Peckham C D, Teti J G. SAR imagery of moving targets: Ap-plication of time-frequency distributions for estimating motion parameters[C] // SPIE Hybrid Image and Signal Processing, 1994: 238-247.
    [91] Barbarossa S, Zanalda A. A combined Wigner-Ville and Hough transform for cross-terms suppression and optimal detection and parameter estimation[J]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'92). 1992, 5(1): 173-176.
    [92] Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J]. IEEE Transactions on Signal Processing. 1995, 43(6): 1511-1515.
    [93] Wood J C, Barry D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals[J]. IEEE Transactions on Signal Processing. 1998, 42(11): 3166-3177.
    [94] Wang M S, Chan A K, Chui C K. Linear frequency-modulated signal detection using Radon-ambiguity transform[J]. IEEE Transactions on Signal Processing. 1998, 46(3): 571-586.
    [95]刘爱芳,朱晓华,陆锦辉等.基于Radon-Ambiguity变换的多分量LFM信号检测与参数估计[J].南京理工大学学报(自然科学版). 2004, 28(4): 409-413.
    [96]章步云,刘爱芳,朱晓华等.基于Radon-STFT的多分量线性调频信号检测与参数估计[J].探测与控制学报. 2003, 25(3): 30-33.
    [97]袁俊泉,皇甫堪,王展.海洋环境中基于WVD的LFM信号检测方法[J].国防科技大学学报. 2002, 24(4): 73-76.
    [98]孙晓昶,皇甫堪.基于Wigner-Hough变换的多分量LFM信号检测及离散计算方法[J].电子学报. 2003, 31(2): 1-4.
    [99]尉宇,孙德宝,吴江洪等.基于WHT的多分量LFM参数估计与分离[J].系统工程与电子技术. 2003, 25(12): 1472-1474, 1546.
    [100]梁国龙,生雪莉.基于WVD-HT的宽带调频信号检测技术研究[J].电子学报. 2004, 32(12): 1941-1944.
    [101]刘建成,王雪松,刘忠等.基于Wigner-Hough变换的LFM信号检测性能分析[J].电子学报. 2007, 35(6): 1212-1216.
    [102]李涛,侯舒娟,曾海彬等.基于直线检测的两种LFM信号时频变换性能的比较[J].北京理工大学学报. 2008, 28(7): 622-625, 634.
    [103]郭汉伟,王岩,杨凤凤等.基于小波Radon变换检测线性调频信号[J].国防科技大学学报. 2003, 25(1): 91-94.
    [104]郑生华,徐大专.基于小波脊线-Hough变换的LFM信号检测[J].量子电子学报. 2008, 25(2): 145-150.
    [105]李利,司锡才,柴娟芳等.基于重排小波-Radon变换的LFM雷达信号参数估计[J].系统工程与电子技术. 2009, 31(1): 74-77.
    [106] Kumaresan R, Verma S. On estimating the parameters of chirp signals using rank reduction techniques[C] // 21st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 1987: 555-558.
    [107] Peleg S, Porat B. Estimation and classification of polynomial-phase signals[J]. IEEE Transactions on Information Theory. 1991, 37(2): 422-430.
    [108] Porat B. Digital processing of random signals, Theory & Methods[M]. Engle-wood Cliffs, NJ: Prentice-Hall, 1993.
    [109] Peleg S, Friedlander B. The discrete polynomial-phase transform[J]. IEEE Transactions on Signal Processing. 1995, 43(8): 1901-1914.
    [110] Peleg S, Friedlander B. Multicomponent signal analysis using the polyno-mial-phase transform[J]. IEEE Transactions On Aerospace And Electronic Sys-tems. 1996, 32(1): 378-387.
    [111] Barbarossa S, Porchia A, Scaglione A. Multiplicative multilag higher-order am-biguity function[C] // IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'96), Atlanta, GA, 1996: 3022-3026.
    [112] Barbarossa S, Scaglione A, Giannakis G B. Product High-Order Ambiguity Function for Multicomponent Polynomial-Phase Signal Modeling[J]. IEEE Transactions on Signal Processing. 1998, 46(3): 691-708.
    [113]肖文书,朱旭东.基于PHAF的调频参数估计的性能分析[J].现代雷达. 2009, 31(6): 64-68.
    [114] Namias V. The fractional order Fourier transform and its applications to quantum mechanics[J]. Journal of Institute Applied Math. 1980, 25(3): 241-265.
    [115] Almeida L B. The fractional Fourier transform and time-frequency representa-tions[J]. IEEE Transactions on Signal Processing. 1994, 42(11): 3084-3091.
    [116] Akay O, Faye B G. Fractional autocorrelation and its application to detection and estimation of linear FM signals[C] // IEEE International Symposium on Time-frequency and Time-scale analysis, 1998: 213-216.
    [117] Akay O, Boudreaux-Bartels G F. Fractional convolution and correlation via op-erator methods and an application to detection of linear FM signals[J]. IEEE Transactions on Signal Processing. 2001, 49(5): 979-993.
    [118]王璞,杨建宇,杜雨洺.分数阶自相关和FrFT的LFM信号参数估计[J].电子科技大学学报. 2006, 35(2): 179-182.
    [119]章步云,刘爱芳,朱晓华等.基于分数阶Fourier变换的多分量LFM信号检测与参数估计[J].数据采集与处理. 2003, 18(4): 408-411.
    [120]齐林,陶然,周思永等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学E辑. 2003, 33(8): 750-759.
    [121] Lin Q, Ran T, Zhou S Y, et al. Detection and parameter estimation of multicom-ponent LFM signal based on the fractional Fourier transform[J]. Science in China Ser. F Information Sciences. 2004, 47(2): 184-198.
    [122] Yu Wei, Yuan-Qing Qin, De-Bao Sun. The Detection of the Multi-source LFM Signal by Fractional Fourier Transform in Low SNR[J]. The Journal of China Universities of Posts and Telecommunications. 2004, 11(3): 91-95.
    [123]陈鹏,侯朝焕,梁亦慧.基于离散分数阶傅立叶变换的水下动目标线性调频回波检测算法的研究[J].兵工学报. 2007, 28(7): 834-838.
    [124]刘建成,刘忠,王雪松等.高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析[J].电子与信息学报. 2007, 29(10): 2337-2340.
    [125]刘建成,王雪松,刘忠等.基于分数阶Fourier变换的LFM信号参数估计精度分析[J].信号处理. 2008, 24(2): 197-200.
    [126]尹治平,张义安,陈卫东等.基于分数阶功率谱的LFM信号检测[J].系统工程与电子技术. 2009, 31(1): 45-48.
    [127] Liu F, Huang Y, Tao R, et al. Chirp-Rate Resolution of Fractional Fourier Transform in Multi-component LFM Signal[J]. Journal of Beijing Institute of Technology. 2009, 18(1): 74-78.
    [128]袁振涛,胡卫东,郁文贤.用FrFT内插实现LFM信号的参数估计[J].信号处理. 2009, 25(11): 1726-1731.
    [129]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 2001, 153-180.
    [130]李文臣,王雪松,刘佳琪等.线性调频参数估计算法的数学统一[J].信号处理. 2009, 25(8): 1292-1297.
    [131] Xia X G. Discrete chirp-Fourier transform and its application to chirp rate esti-mation[J]. IEEE Transactions Signal Processing. 2000, 48(11): 3122-3133.
    [132] Djurovic I, Stankovic L, Johann F B. Estimation of FM signal parameters in im-pulse noise environments[J]. Signal Processing. 2005, 85(4): 821-835.
    [133]龙慧敏,唐斌.一种适用于线性调频信号参数估计的快速DCFT算法[J].信号处理. 2007, 23(2): 174-177.
    [134]于凤芹,陈光化,曹家麟.基于Chirp-Fourier变换的LFM信号的参数估计[J].电子测量与仪器学报. 2003, 17(3): 75-79.
    [135] Gini F, Montanari M, Verrazzani L. Estimation of chirp radar signals in com-pound-gaussian clutter: a cyclostationary approach[J]. IEEE Transactions on Signal Processing. 2000, 48(4): 1029-1039.
    [136] Shamsunder S, Giannakis G B, Friedlander B. Estimating random amplitude polynomial phase signals: a cyclostationary approach[J]. IEEE Transactions on Signal Processing. 1995, 43(2): 492-505.
    [137] Jin Y, Ji H. A cyclostationarity based iterative algorithm for multi-component chirp signal parameter estimation[C] // International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, 2007: 388-391.
    [138] Jin Y, Ji H. Improved parameter estimation for chirp signals based on cyclosa-tionarity[J]. Chinese Journal of Electronics. 2008, 17(2): 309-313.
    [139]史建锋,王可人.基于循环相关变换的多径LFM信号检测与参数估计[J].电子与信息学报. 2007, 29(6): 1377-1379.
    [140]陈文武.基于HHT的多分量LFM信号检测与参数估计[J].现代雷达. 2007, 29(12): 59-61.
    [141] Chen W, Chen R. Multi-component LFM signal detection and parameter estima-tion based on Radon-HHT[J]. Journal of Systems Engineering and Electronics. 2008, 19(6): 1097-1101.
    [142]余志斌,金炜东.多分量LFM雷达辐射源信号的经验模式分解[J].西南交通大学学报. 2009, 44(1): 49-54.
    [143] Ikram M Z, Abed-Meraim K, Hua Y. Fast Quadratic Phase Transform for Esti-mating the Parameters of Multicomponent Chirp Signals, [J]. Digital Signal Processing. 1997, 7(2): 127-135.
    [144] Zhu S, Wang H, Li X. A New Method for Parameter Estimation of Multicompo-nent LFM Signal based on Sparse Signal Representation[C] // International Conference on Information and Automation, 2008: 15-19.
    [145]王建英,吕雪,尹忠科.基于MP分解的宽带LFM信号参数估计[J].电波科学学报. 2007, 22(6): 986-990.
    [146]文忠,李立萍.基于Duffing振子的弱Chirp信号检测与参数估计[J].自动化学报. 2007(5): 536-539.
    [147]陈韶华,相敬林.基于Laguerre变换的线性调频信号检测[J].西北工业大学学报. 2003, 21(5): 616-620.
    [148]吴伟,唐斌.基于Laguerre变换的宽带LFM信号频谱压缩数字接收方法[J].电子与信息学报. 2007, 29(1): 50-53.
    [149] Evangelista G, Gavaliere S. Frequency-warped filter banks and wavelet trans-forms: a discrete-time approach via Laguerre expansion[J]. IEEE Transactions on Signal Processing. 1998, 46(10): 2638-2650.
    [150]陶建武,石要武,常文秀.基于H∞滤波器的多分量线性调频信号参数估计[J].计量学报. 2005, 26(3): 267-270.
    [151]李明孜,赵惠昌.基于子带变换的LFM信号识别与参数估计研究[J].现代雷达. 2005, 27(3): 53-55.
    [152] Yu X, Shi Y, Sun X, et al. Chirp parameter estimation in colored noise using cross-spectral ESPRIT method[J]. Nature and Science. 2005, 3(1): 75-80.
    [153]王本庆,李兴国. LFM信号调频斜率的双正交Fourier变换分析算法[J].电子与信息学报. 2009, 31(7): 1620-1623.
    [154]吴鹏.线性调频信号的相位匹配去噪处理[J].沈阳师范大学学报(自然科学版). 2009, 27(2): 206-208.
    [155] Brcich R, Zoubir A M. Parameter estimation of linear freqnency modulated sig-nals with missing observations[C] // IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'03), 2003: 569-572.
    [156]吴婷婷,田书林.基于多速率欠采样的超宽带LFM信号参数估计[J].现代电子技术. 2007, 30(12): 151-152.
    [157]沈显祥,叶瑞青,唐斌等.基于欠采样的宽带线性调频信号参数估计[J].电波科学学报. 2007, 22(1): 43-46.
    [158]刘锋,邹世杰.多分量非均匀采样LFM信号的检测[J].舰船电子工程. 2009, 29(4): 69-72.
    [159]邹世杰,刘锋,徐会法等.分数阶Fourier域非均匀采样LFM信号的检测概率[J].光电技术应用. 2009, 24(2): 80-84.
    [160] Pace P E. Detecting and classifying low probability of intercept radar[M]. 2nd ed. Norwood, MA: Artech House, 2009.
    [161] Levanon N, Mozeson E. Radar Signals[M]. John Wiley and Sons Ltd., 2004.
    [162] Lewis B L, Kretschmer F F, Shelton W W. Aspects of radar signal processing[M]. Norwood, MA: Artech House, 1986.
    [163] Lesnik C J, Brenner T W, Kocanda W J, et al. Efficient matched filtering of sig-nal with polyphase Frank coded sequences[C] // 12th International Conference on Microwaves and Radar , 1998: 815-819.
    [164]陶广源,廖桂生,刘宏伟.多相码信号数字脉压滤波器设计[J].电波科学学报. 2003, 18(2): 143-146.
    [165] Lundén J, Terho L, Koivunen V. Classifying Pulse Compression Radar Wave-forms Using Time-Frequency Distributions[C] // 39th Annual Conference on In-formation Sciences and Systems (CISS'05), 2005.
    [166] Lundén J, Koivunen V. Automatic Radar Waveform Recognition[J]. IEEE Jour-nal of Selected Topics in Signal Processing. 2007, 1(1): 124-136.
    [167]章建辉,黄高明,李敬辉.基于二阶统计量的相位编码信号识别[J].舰船电子对抗. 2008, 31(5): 106-110.
    [168]邓振淼,黎海林,刘渝.多相码雷达信号调制方式识别的似然方法[J].现代雷达. 2009, 31(12): 43-48.
    [169] Shackelford A K, De Graaf J, Talapatra S, et al. Adaptive Pulse Compression: Preliminary Experimental Measurements[C] // 2007 IEEE Radar Conference, 2007: 234-237.
    [170] Levanon N, Mozeson E. Multicarrier radar signal - pulse train and CW[J]. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(2): 707-720.
    [171] Gross F B, Connor J. Comparison of detectability of radar compression wave-forms in classic passive receivers[J]. IEEE Transactions on Aerospace and Elec-tronic Systems. 2007, 43(2): 789-795.
    [172] Jenshak J D, Stiles J M. A fast method for designing optimal transmit codes for radar[C] // IEEE Radar Conference, 2008: 1-6.
    [173] Wirth W D. Radar Techniques Using Array Antennas[M]. London, United Kingdom: IEE, 2001.
    [174] Jennison B K. Detection of polyphase pulse compression waveforms using the radon-ambiguity transform[J]. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(1): 335-343.
    [175] Erozden E, Akay O. Use of fractional autocorrelation for efficient detection and parameter estimation of polyphase-coded radar signals[J]. IEEE 12th Signal Processing and Communications Applications Conference. 2004: 41-44.
    [176] Akay O, Erozden E. Employing fractional autocorrelation for fast detection and sweep rate estimation of pulse compression radar waveforms[J]. Signal Process-ing. 2009, 89(12): 2479-2489.
    [177]郑生华,靳学明,徐大专.基于Wigner-Hough变换的P3/P4多相码雷达信号检测研究[J].合肥工业大学学报(自然科学版). 2008, 31(12): 2049-2052.
    [178] Gulum T O, Pace P E, Cristi R. Extraction of polyphase radar modulation pa-rameters using a Wigner-Ville distribution-Radon transform[C] // IEEE Interna-tional Conference on Acoustics, Speech, and Signal Processing (ICASSP'08), 2008: 1505-1508.
    [179] Copeland D B, Pace P E. Detection and analysis of FMCW and P-4 polyphase LPI waveforms using quadrature mirror filter trees[C] // IEEE International Con-ference on Acoustics, Speech, and Signal Processing (ICASSP'02), Orlando, FL, 2002: 3960-3963.
    [180] Milne P R, Pace P E. Wigner distribution detection and analysis of FMCW and P-4 polyphase LPI waveforms[C] // IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'02), Orlando, FL, 2002: 3944-3947.
    [181] Taboada F L. Detection and classification of LPI radar signals using parallel filter arrays and higher order statistics[D]. Monterey, CA: Naval Postgraduate School, 2002.
    [182] Denk A. Detection and Jamming Low Probability of Intercept (LPI) Radars[D]. Monterey, CA: Naval Postgraduate School, 2006.
    [183]戴幻尧,蒋鸿宇.基于滤波器组和高阶累积量技术的LPI信号特征检测的新方法[J].系统工程与电子技术. 2009, 31(6): 1336-1340.
    [184]徐海源,周一宇,黄知涛等.一种Frank码脉压信号的检测与参数估计方法[J].系统工程与电子技术. 2007, 29(6): 858-861.
    [185]徐海源,黄知涛,周一宇.基于Radon变换的具有线性调频特性的多相编码信号参数估计[J].信号处理. 2008, 24(2): 172-176.
    [186] Gillman A M. Non Co-Operative Detection of LPI/LPD Signals Via Cyclic Spectral Analysis.[D]. Air Force Institute of Technology, 1999.
    [187] Jr Antonio F. Lima. Analysis of Low Probability of Intercept (LPI) Radar Signals Using Cyclostationary Processing[D]. Monterey, CA: Naval Postgraduate School, 2002.
    [188]吴顺华.基于空频域信息的单星对星无源定轨与跟踪关键技术研究[D].长沙:国防科学技术大学, 2009.
    [189]王强.基于干涉仪体制的运动单平台无源定位技术研究[D].长沙:国防科学技术大学, 2010.
    [190]李大治.固定单站对机动辐射源无源定位与跟踪关键技术研究[D].长沙:国防科学技术大学, 2007.
    [191]杨争斌.对机动目标的单站无源定位跟踪关键技术研究[D].长沙:国防科学技术大学, 2007.
    [192]龚享铱.利用频率变化率和波达角变化率单站无源定位与跟踪的关键技术研究[D].长沙:国防科学技术大学, 2004.
    [193]占荣辉.基于空频域信息的单站被动目标跟踪算法研究[D].长沙:国防科学技术大学, 2007.
    [194]邓新蒲,祁颖松,卢启中等.相位差变化率的测量方法及其测量精度分析[J].系统工程与电子技术. 2001, 23(1): 20-23.
    [195]周亚强,皇甫堪.噪扰条件下数字式多基线相位干涉仪解模糊问题[J].通信学报. 2005, 26(8): 16-21.
    [196]魏星.单站无源定位系统关键技术研究[D].长沙:国防科学技术大学, 2007.
    [197] Kay S. A fast and accurate single frequency estimator[J]. IEEE Transactions on Acoustics, Speech and Signal Processing. 1989, 37(12): 1987-1989.
    [198] Volker B, Handel P. Frequency estimation from proper sets of correlations[J].IEEE Transactions on Signal Processing. 2002, 50(4): 791-802.
    [199]吴国乔,王兆华,黄晓红.离散频谱的全相位校正法[J].数据采集与处理. 2005, 20(3): 286-290.
    [200] Jacobsen E, Kootsookos P. Fast, Accurate Frequency Estimators[J]. IEEE Signal Processing Magazine. 2007, 24: 123-125.
    [201]黄晓红,王兆华.基于全相位频谱分析的正弦信号高精度参数估计方法[J].电力自动化设备. 2008, 28(7): 54-56.
    [202]张刚兵,刘渝,邓振淼.相参脉冲信号频率估计算法研究[J].电子学报. 2009, 37(9): 2058-2061.
    [203]孙仲康.基于运动学原理的无源定位技术[J].制导与引信. 2001, 22(1): 40-44.
    [204]王越.基于多普勒频率变化率的无源定位技术研究[D].哈尔滨:哈尔滨工程大学, 2006.
    [205] Gershanoff H. Experimental Passive Range and AOA System Shows Promise[J]. Journal of Electronic Defence. 1992: 31-32.
    [206] Lum Z. Killing EW On the Offensive[J]. Journal of Electronic Defence. 1997: 37-39.
    [207] Col L, Wilson J. Precision Location and Identification: A Revolution in Threat Warning and Situational Awareness[J]. Journal of Electronic Defence. 1999: 43-48.
    [208] Fowler L M. Air-to-Air Passive Location System[P]. United States Patent: 5870056. 1999.
    [209] Rose M C. Combined Phase-Circle and Multiplatform TDOA Precision Emitter Location[P]. United States Patent: 5914687. 1999.
    [210] Bass D C, Finnigan S J, Bryant J P. System for Signal Emitter Location Using Rotational Doppler Measurement[P]. United States Patent: 6727851. 2004.
    [211] Rose C. Method for Determing the Optimum Observer Heading Change in Bear-ing-Only Passive Emitter Tracking[P]. United States Patent: 6801152. 2004.
    [212]许耀伟.利用相位变化率信息对固定辐射源的单站无源被动定位[C] //军事电子信息学术会议,呼和浩特, 2000: 239-244.
    [213]许耀伟.一种快速高精度无源定位方法的研究[D].长沙:国防科学技术大学, 1998.
    [214]邓新蒲.运动单观测器无源定位与跟踪方法研究[D].长沙:国防科学技术大学, 2000.
    [215]郭福成.基于运动学原理的单站无源定位与跟踪关键技术研究[D].长沙:国防科学技术大学, 2002.
    [216]郭福成,冯道旺,龚享铱等.基于运动学原理的单站无源定位跟踪地面试验研究[J].航空兵器. 2005(5): 19-22.
    [217]冯道旺.利用径向加速度信息的单站无源定位技术研究[D].长沙:国防科学技术大学, 2003.
    [218]冯道旺,周一宇,李宗华.相参脉冲序列多普勒变化率的一种快速高精度测量方法[J].信号处理. 2004, 20(1): 40-43.
    [219]李宗华.无机动单站对运动辐射源的无源定位与跟踪[D].长沙:国防科学技术大学, 2003.
    [220]龚享铱,周良柱.一种关于相参脉冲信号频率的最优估计算法[J].电子与信息学报. 2004, 26(10): 1594-1600.
    [221]周亚强.基于视在加速度信息的单站无源定位与跟踪关键技术研究及其试验[D].长沙:国防科学技术大学, 2005.
    [222]郁春来,万方,占荣辉等.一种关于LFM相参脉冲信号多普勒频率变化率的估计算法[J].信号处理. 2008, 24(4): 546-550.
    [223]郁春来,占荣辉,万建伟.一种BPSK相参脉冲信号多普勒频率变化率测量方法[J].国防科技大学学报. 2008, 30(1): 53-56.
    [224]郁春来,万建伟,占荣辉.一种PCM相参脉冲序列多普勒频率变化率估计算法[J].电子与信息学报. 2008, 30(10): 2303-2306.
    [225]郁春来,韩彦明,万方等.一种脉冲群间多普勒频率变化率的估计算法[J].现代雷达. 2008, 30(9): 40-43.
    [226]李立萍.无源定位技术的研究与应用[D].成都:电子科技大学, 1999.
    [227]张正明.辐射源无源定位研究[D].西安:西安电子科技大学, 2000.
    [228]王成.无源探测系统的数据处理研究[D].北京:北京航空航天大学, 2002.
    [229]张剑云.空对海单站无源跟踪中的免微分算法研究[D].合肥:解放军电子工程学院, 2006.
    [230]万方,郁春来,熊家军.一种相参脉冲信号频率的估计方法[J].空军雷达学院学报. 2006, 20(3): 180-182.
    [231]王军虎,邓新蒲.相参脉冲信号多普勒变化率测量方法[J].航天电子对抗. 2005, 21(2): 41-43.
    [232]周亚强,曹延伟,程翥等.脉冲群间多普勒频率变化率的高精度测量算法[J].国防科技大学学报. 2005, 27(3): 34-39.
    [233]郁春来,吕韶昱,万方等.基于小波变换的多普勒频率变化率高精度估计方法[J].电子学报. 2007, 35(9): 1656-1659.
    [234]杜雨洺,杨建宇.基于时间-调频斜率分布的多线性调频信号检测与参数估计[J].电子与信息学报. 2007, 29(3): 631-634.
    [235]王勇,姜义成.一种新的LFM信号参数估计算法[J].信号处理. 2008, 24(1): 132-134.
    [236] O'Shea P. A new technique for instantaneous frequency rate estimation[J]. IEEE Signal Processing Letters. 2002, 9(8): 251-252.
    [237] O'Shea P. A Fast algorithm for estimating the parameters of a quadratic FM sig-nal[J]. IEEE Transactions on Signal Processing. 2004, 52(2): 385-393.
    [238] Barbarossa S, Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function[J]. IEEE Transactions on Signal Processing. 1997, 45(2): 316-327.
    [239] Barkat M. Signal Detection And Estimation[M]. Second Edition ed. Artech House, 2005.
    [240] Ristic B, Boashash B. Comments on "The Cramer-Rao Lower Bounds for Signals with Constant Amplitude and Polynomial Phase"[J]. IEEE Transactions on Sig-nal Processing. 1998, 46(6): 1708-1709.
    [241] Wang P, Yang J. Multicomponent chirp signals analysis using product cubic phase function[J]. Digital Signal Processing. 2006, 16: 654-669.
    [242]李文臣.高速机动目标雷达信号参数估计与成像处理[D].长沙:国防科学技术大学, 2009.
    [243] Akay O, Erozden E. Use of fractional autocorrelation in efficient detection of pulse compression radar signals[C] // First International Symposium on Control, Communications and Signal Processing, 2004: 33-36.
    [244] Gau J. Analysis of Low Probability of Intercept (LPI) Radar Signals Using the Wigner Distribution[D]. Monterey, CA: Naval Postgraduate School, 2002.
    [245] Persson C. Classification and Analysis of Low Probability of Intercept Radar Signals Using Image Processing[D]. Monterey, CA: Naval Postgraduate School, 2003.
    [246] Jr Taylor J W, Blinchikoff H J. Quadriphase coded radar pulse compression sig-nal with unique characteristics[J]. IEEE Transactions on Aerospace and Elec-tronic Systems. 1988, 24(2): 156-170.
    [247]傅雄军,张伟,高梅国.基于码形捷变的相位编码信号旁瓣抑制[J].北京理工大学学报. 2009, 29(3): 258-261.
    [248] Wirth W D. coherent integration for a floodlight radar[C] // IEEE International Conference on Radar, 1995: 698-703.
    [249] Wirth W D. Polyphase coded CW radar[C] // IEEE Fourth International Sympo-sium on Spread Spectrum Techniques and Applications, 1996.
    [250]李宏,秦玉亮,李彦鹏等.基于积分二次相位函数的多分量LFM信号分析[J].电子与信息学报. 2009, 31(6): 1363-1366.
    [251] Kay S M. Fundamentals of Statistical Signal Processing[M]. New Jersey: Pren-tice Hall, 1993.
    [252] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition Letters. 2006, 27(8): 861-874.
    [253] Freedman A, Levanon N. Properties of the periodic ambiguity function[J]. IEEE Transactions On Aerospace And Electronic Systems. 1994, 30(3): 938-941.
    [254] Getz B, Levanon N. Weight effects on the periodic ambiguity function[J]. IEEE Transactions on Aerospace And Electronic Systems. 1995, 31(1): 182-193.
    [255] Wang T T. The segmented chirp Z-transform and its application in spectrum analysis[J]. IEEE Transactions on Instrumentation and Measurement. 1990, 39(2): 318-323.
    [256] Aboutanios E, Mulgrew B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Transactions on Signal Processing. 2005, 53(4): 1237-1242.
    [257]袁伟明,王敏,吴顺君.低截获概率雷达信号的调制识别研究[J].信号处理. 2006, 22(4): 153-156.
    [258] Lundén J, Terho L, Koivunen V. Waveform recognition in pulse compression radar systems[C] // IEEE International Workshop on Machine Learning for Sig-nal Processing (MLSP'05), 2005.
    [259]邓振淼,刘渝,杨姗姗.多相码雷达信号调制方式识别[J].数据采集与处理. 2008, 23(3): 265-269.
    [260] Lank G W, Reed I S, Pollon G E. A seimicoherent detection and Doppler estima-tion statistic[J]. IEEE Transaction Aerospace and Electronic Systems. 1973, AES-9: 151-165.
    [261]胡国兵,刘渝,邓振淼.基于Haar小波变换的信号到达时间估计[J].系统工程与电子技术. 2009, 31(7): 1615-1619.
    [262] Sadler B M, Swami A. Analysis of wavelet transform multiscale products for step detection and estimation[R]. Army research Laboratory, 1998.
    [263]邓振淼,刘渝.多相码雷达信号识别与参数估计[J].电子与信息学报. 2009, 31(4): 781-785.
    [264]孙仲康.单多站基地有源无源定位技术[M].北京:国防工业出版社, 1996, 71-88.
    [265]魏星,万建伟,皇甫堪.调频脉冲信号辐射源多普勒信息提取方法研究[J].国防科技大学学报. 2007, 29(4): 95-99.
    [266] Lundén J, Koivunen V. Robust estimation of radar pulse modulation[C] // IEEE International Symposium on Signal Processing and Information Technology, 2006: 271-276.
    [267]陶然,邓兵,王越.分数阶FOURIER变换在信号处理领域的研究进展[J].中国科学E辑. 2006, 36(2): 113-136.
    [268]陶然,张峰,王越.分数阶Fourier变换离散化的研究进展[J].中国科学E辑:信息科学. 2008, 38(4): 481-503.
    [269] Ozaktas H M, Arikan O, Kutay A, et al. Digital computation of the fractional Fourier transform[J]. IEEE Transactions on Signal Processing. 1996, 44(9): 2141-2150.
    [270] Pei S C, Ding J J. Closed-form discrete fractional and affine Fourier trans-forms[J]. IEEE Transactions on Signal Processing. 2000, 48: 1338-1353.
    [271] Pei S C, Tseng C C, Yeh M H. A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Largrange multiplier method[J]. IEEE Transactions On Circuits And Systems II-Analog And Digital Signal Processing. 1999, 46: 1240-1245.
    [272] Bultheel A, Sulbaran H M. Computation of the fractional Fourier transform[J]. Applied and Computational Harmonic Analysis. 2004, 16(3): 182-202.
    [273]胥嘉佳,刘渝,邓振淼. LFM信号参数估计的牛顿迭代方法初始值研究[J].电子学报. 2009, 37(3): 598-602.
    [274] Nguyen V K. Frequency Estimation of a Radar Pulse Train with an Unknown Binary Phase-Coded sequence[C] // Proceedings of the 2008 International Con-ference on Radar, Adelaide, Australia, 2008: 271-275.
    [275]苑小华,罗武忠,罗来源. MPSK信号载波频率盲估计[J].电子与信息学报. 2008, 30(5): 1148-1150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700