用户名: 密码: 验证码:
自发参量下转换制备单光子源及其测量与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单光子态是一种非常重要的非经典光场,它在量子光学基础研究、量子保密通讯和量子计算等领域中发挥着至关重要的作用。常见的制备单光子态的方法主要有量子点、色心、衰减脉冲和自发参量下转换。与其他方法相比,自发参量下转换有着独特的优势。该过程利用二阶非线性相互作用,将泵浦光子转换成一对高度关联的光子对,只要测到其中之一,就可以确认其孪生光子的存在。这样,我们就可以在不破坏单光子的前提下确认单光子的存在,从而弥补了原子相干介质和衰减脉冲等方法的不足。此外,由于参量下转换过程产生的光子对在多个维度上都具备纠缠特性,可以用来制备各种纠缠光源以满足不同的应用。因此,自发参量下转换过程及其制备的条件单光子源无论在理论还是实验上都得到了广泛且深入的发展。
     单光子源的制备、传输与测量以及对单光子的量子操控是量子信息科学领域中的一个前沿课题,它不仅能够丰富人们对微观世界的认识,加深对量子物理基本原理的理解,还同时为量子通信与量子计算过程的实现提供了坚实的物理基础。有关单光子量子效应的研究对促进量子网络的发展尤为重要,已经渗透到了从光源产生到量子信息的调制与解调,再到信息分发及频率转换等量子网络的各个环节,并且还将在其他量子领域逐渐发挥其潜在的巨大作用。
     本文的主要工作是围绕单光子源的制备、传输和测量展开的,其核心内容包含以下几个方面:
     1.总结了实验上产生单光子态的各种物理模型,对每种方法的利弊进行了分析并给出了自发参量下转换过程产生单光子所具有的独特优势;在此基础上,实验研究了利用脉冲光学谐振腔增强了单光子产生率,得到了一个更加明亮的单光子源。
     2.设计并研究了可以用来测量弱脉冲信号的平衡零拍探测系统,分析了该系统的各项性能指标,并且对弱相干光脉冲进行了时域内正交分量信息的测量。
     3.阐述了有关单光子的各种量子干涉效应,用经典物理工具描述了单光子与多光子干涉的物理原理,给出了一个普适的解并具体分析了在单光子态平衡零拍测量过程中的应用。
     4.基丁HOM干涉原理,利用时间反演的HOM过程实验上实现了一个确定性量子分束器,用一个普通的分束器将完全简并的光子对以较高的概率进行空间上的分离;被分束脉冲的时间精度从皮秒量级提高到了飞秒量级。
     5.提出了谐振腔内的量子态频率转换方案,通过引入保真度、信号传输系数和能量转换效率的概念定义了频率转换效率并找到了量子态的完全频率转换条件,同时分析了信号光振幅、泵浦参量以及内腔损耗等因素对频率转换效率的影响。
     在这些研究工作中,属于创新性的工作有以下几点:
     1.利用超短脉冲光学谐振腔,在不改变脉冲超快重复率和频率梳结构的情况下,极大地提高了二阶非线性过程的参量增益,获得了一个明亮的单光子源。
     2.根据时间反演的HOM干涉原理,完成了确定性量子分束系统的设计与测量,可以将飞秒脉宽量级的、完全简并的双光子从空间上彻底分离。
     3.提出了基于谐振腔的量子态频率上、下转换模型。与单次穿过方案中的频率转换模型相比,该方案更容易提高量子态频率转换效率,对具体的实验具有一定的指导意义。该模型适合于弱光场尤其是单光子态的频率转换。
Single photon state is a very essential non-classical light field, which playing a more and more important role in quantum optics foundation, quantum cryptography and quantum computer. The commonly used methods to generate the single photon state include of quantum dots, color center, decay pulse and spontaneous parametric down conversion (SPDC). Compare to the other methods, the SPDC have unique advantages. Based on the second-order nonlinear interaction, this process converts a pump photon into entangled photon pair, once one of SPDC photon was detected, the existence of its twin photon could be verified. Thus we can obtain a single photon without any destruction, and compensate the other methods in this respect. Besides, considering the SPDC photon pair has entangled properties in multiple dimensions, this resource can be used to prepare various entangled source. So both the SPDC process and the single photon state have been deeply developed in theoretical and experimental aspects.
     The preparation, transmission, measurement and manipulation of single photon source are advanced topics in quantum information domain. It not only enriches the knowledge to microscopic world and reinforces comprehension to quantum mechanics fundamental, but also provide a solid foundation to quantum communication and quantum computation. Specially, the researches involved single photon quantum effects are important to quantum network. It has access to every part of network such as the preparation of optical source, modulation, demodulation and distribution of information, and frequency conversion. A potential influence will be gradually manifest in other quantum field.
     In this thesis, we introduce our works mainly around the preparation, transmission and measurement of single photon source. The key parts contain following aspects:
     1. Summarize various physical models to generate the single photon state, analyze the advantages and disadvantages, and give the unique superiority of SPDC; design a resonant cavity for pulse experimentally based on the SPDC process and obtain a brighter single photon source.
     2. Design and investigate the balanced homodyne detection system for measurement of weak pulse, analyze the performance and parameters, and construct the quadrature components of weak coherent light in time domain.
     3. Explain the quantum interference effect related single photon state, analyze the interference fundamental principle between single photon and multiphoton by utilizing of the classical physical tool, and give the universal resolution and applications in balanced homodyne detection of single photon state.
     4. Based on the HOM principle, realize a deterministic quantum splitter experimentally by use of the time-reserved HOM process, make the degenerated twin photons separate from each other completely only with the help of a common beam splitter. The order of magnitude of pulse width that is split had been increased from ps to fs.
     5. Proposed an intracavity frequency conversion scheme of quantum state, define the conversion efficiency through the concept of fidelity and signal transfer coefficient, find out the complete conversion condition. Meanwhile, the influence of signal amplitude, pump parameter and cavity losses to frequency conversion efficiency are also analyzed.
     The creative works are listed as follows:
     1. By utilizing a low-lost ultra-short pulse resonant cavity, increased the parametric gain tremendously while keeping its repetition rate and comb structure, obtain a brighter single photon source.
     2. According to the time-reserved HOM interference principle, design and verify a deterministic quantum splitter experimentally using only a common beam splitter and separate the completely degenerated photon pair of fs pulse width with a higher efficiency.
     3. Propose an intracavity model of quantum frequency up and down-conversion, it can increase the conversion efficiency easier than the travelling-wave scheme and would give the instructive help to specific experiment. This frequency conversion model is suitable for the weak field especially single photon state.
引文
[1]A. Kuhn et al.. Deterministic single-photon source for distributed quantum networking, Phys. Rev. Lett.,2004,89,067901.
    [2]F. Martini et al.. Single-mode generation of quantum photon states by excited single molecules in a microcavity trap. Phys. Rev. Lett.,1996,76,900-903.
    [3]B. Lounis et al.. Single photons on demand from a single molecule at room temperature. Nature,2000,407,491-493.
    [4]T. Hong et al.. On-demand single-photon state generation via nonlinear absorption. Phys. Rev. A,2004,70,013814.
    [5]C. Kurtsiefer et al.. Stable solid-state source of single photons. Phys. Rev. Lett.,2000, 85,290-293.
    [6]R. Brouri et al.. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett.,2000,25,1294-1296.
    [7]A. Beveratos et al.. Room temperature stable single-photon source. Eur. Phys. J. D, 2002,18,191-196.
    [8]P. Michler et al.. A quantum dot single-photon turnstile Device. Science,2000,290, 2282-2285.
    [9]Z. Yuan et al.. Electrically driven single-photon source. Science,2002,295,102-105.
    [10]V. Zwiller et al.. Single quantum dots emit single photons at a time:Antibunching experiments. App. Phys. Lett.,2001,78,2476-2478.
    [11]E. Moreau et al.. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. App. Phys. Lett.,2001,79,2865-2867.
    [12]C. Santori et al. Indistinguishable photons from a single-photon device. Nature,2002, 419,594-597.
    [13]C. Chou et al.. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett.,2004,92,213601.
    [14]C. Kurtsiefer et al.. High-efficiency entangled photon pair collection in type-Ⅱ parametric fluorescence. Phys. Rev. A,2001,64,023802.
    [15]S. Takeuchi. Beamlike twin-photon generation by use of type II parametric down conversion. Opt. Lett.,2001,26,843-845.
    [16]P. Michler et al.. Quantum correlation among photons from a single quantum dot at room temperature. Nature,2000,406,968-970.
    [17]Charles Santori, Matthew Pelton, Glenn Solomon et al.. Triggered single photons from a quantum dot. Phys. Rev. Lett.,2001,86,1502-1505.
    [18]Yuan Zhiliang, Beata E, Kardynal R, Mark Stevenson et al.. Electrically driven single-photon source. Science,2002,295,102-105.
    [19]ZwillerV, Aichele T, Hatami F et al.. Growth of single quantum dots on preprocessed structures:Single photon emitters on a tip. Appl. Phys. Lett.,2005,86,091911.
    [20]J. Gerard et al.. Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Light. Techno.,1999,17,2089-2095.
    [21]L. Duan et al.. Long-distance quantum communication with atomic ensembles and linear optics. Nature,2001,414,413-418.
    [22]M. Eisaman et al.. Electromagnetically induced transparency with tunable single-photon pulses. Nature,2005,438,837841.
    [23]郭光灿.量子光学.中国科技大学二系.
    [24]Z. Ou. Parametric down-conversion with coherent pulse pumping and quantum interference between independent fields. Quan. Semicla. Opt.,1997,9,599-614.
    [25]H. Bachor et al.. A Guide to experiments in quantum optics. WILEY-VCH Verlag GmbH & Co. KgaA,2nd ed.,2004.
    [26]E. P. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932,40,749-759.
    [27]U. Leonhardt. Measuring the quantum state of light. Cambridge University Press, 1997.
    [28]郭光灿.量子光学.高等教育出版社,1990.
    [29]J. Radon, Berichte uber die Verhandlungen der Koniglich-Sachsischen Gesellschaft der Wissenschften zu Leipzig, Mathematisch-Physis cheKlasse 69,262 (1917).
    [30]Z. Y. Ou, L. J. Wang, L. Mandel. Vacuum effects on interference in two-photon down conversion. Phys. Rev. A,1989,40,1428-1435.
    [31]T. Aichele, A. I. Lvovsky, and S. Schiller. Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state. Eur. Phys. J. D,2002,18,237-245.
    [32]Hong C K, Ou Z Y and Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett.,1987,59,2044-2046.
    [33]Vogel W and Grabow J. Statistics of difference events in homodyne detection. Phys. Rev. A,1993,47,4227-4235.
    [34]Braunstein S L. Homodyne statistics. Phys. Rev. A,1990,42 474-481.
    [35]Yuen H P and Chan V W S. Noise in homodyne and heterodyne detection. Opt. Lett. 1983,8,177-179.
    [36]Z Y Ou. Quantum multi-particle interference due to a single-photon state. Quantum Semiclass. Opt.,1996,8,315-322.
    [37]Juan Guo, Hongxin Zou, Zehui Zhai, Junxiang Zhang, and Jiangrui Gao. Generation of continuous-variable tripartite entanglement using cascaded nonlinearities. Phys. Rev. A,2005,71,034305.
    [38]Mandel et al.. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature,2003,425,937-940.
    [39]D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, and D. J. Wineland. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature,2003,422,412-415.
    [40]Brian Julsgaard, Alexander Kozhekin, Eugene S. Polzik. Experimental long-lived entanglement of two macroscopic objects. Nature,2001,413,400-403.
    [41]A. D. Boozer, A. Boca, R. Miller, T. E. Northup, H. J. Kimble. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett.,2007,98,193601.
    [42]M. Fleischhauer, M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett.,2000,84,5094-5097.
    [43]L.-M. Duan, M. D. Lukin, J.I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature,2001,414,413-418.
    [44]H. H. Jen, T. A. B. Kennedy. Efficiency of light-frequency conversion in an atomic ensemble. Phys. Rev. A,2010,82,023815.
    [45]Yong-qing Li and Min Xiao. Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms. Opt. Lett.,1996,21, 1064-1066; Bao long Lu, W. H. Burkett, and Min Xiao. Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping. Opt. Lett.,1998,23,804-806.
    [46]Yan peng Zhang, Andy W. Brown, and Min Xiao. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. Lett.,2007,99,123603.
    [47]F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco. Nondegenerate four-wave mixing in rubidium vapor:The diamond configuration. Phys. Rev. A,2008,78, 013834.
    [48]Gang Wang, Yan Xue, Jin-Hui Wu, Zhi-Hui Kang, Yun Jiang, Si-Sheng Liu, and Jin-Yue Gao. Efficient frequency conversion induced by quantum constructive interference. Opt. Lett.,2010,35,3778-3780.
    [49]A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, H. J. Kimble. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature,2003,423,731-734.
    [50]T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich. Quantum Telecommunication Based on Atomic Cascade Transitions. Phys. Rev. Lett.,2006,96,093604.
    [51]Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, and T. Coudreau Double-A microscopic model for entangled light generation by four-wave mixing. Phys. Rev. A,2010,82,033819.
    [1]A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier. Generating optical schrodinger kittens for quantum information processing. Science,2006,312,83-86.
    [2]Hongxin Zou, Shuqin Zhai, Juan Guo et al.. Preparation and measurement of tunable high-power sub-poissonian light using twin beams. Opt. Lett.,2006,31,1735-1737.
    [3]Y. Takeno, M. Yukawa, H. Yonezawa et al.. Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express, 2007,15,4321-4327.
    [4]W. P. Bowen, N. Treps, B. C. Buchler et al.. Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A,2003,67,032302.
    [5]Takao Aoki, Nobuyuki Takei, Hidehiro Yonezawa et al.. Experimental creation of a fully inseparable tripartite continuous-variable state. Phys. Rev. Lett.,2003,91,080404.
    [6]Carlton M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D,1981, 23,1693-1708.
    [7]G. A. Durkin, C. Simon, and D. Bouwmeester. Multiphoton Entanglement Concentration and Quantum Cryptography. Phys. Rev. Lett.,2002,88,187902.
    [8]江云坤,史保森,郭光灿.飞秒超短脉冲的双光子干涉.光学学报,2001,21,0001-0003.
    [9]D. Bouwmeester, J.-W. Pan, M. Daniell et al.. Observation of Three-Photon Greenberger Horne Zeilinger Entanglement. Phys. Rev. Lett.,1999,82,1345-1349.
    [10]J.-W. Pan, M. Daniell, S. Gasparoni et al.. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett.,2001,86, 4435-4438.
    [11]Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, J.-W. Pan. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature, 2004,430,54-58.
    [12]P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer and A. Zeilinger. Experimental one-way quantum computing. Nature,2005, 434,169-176.
    [13]C. Y. Lu, X. Q. Zhou et al.. Experimental entanglement of six photons in graph states. Nature Physics,2007,3,91-95.
    [14]Witlef Wieczorek, Roland Krischek, Nikolai Kiesel et al.. Experimental entanglement of a six-photon symmetric dicke state. Phys. Rev. Lett.,2009,103,020504.
    [15]Z. Y. Ou, S. F. Pereira, H. J. Kimble, K. C. Peng. Realization of Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett.,1992,68, 3663-3666.
    [16]Xiaolong Su, Aihong Tan, Xiaojun Jia et al.. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett.,2007,98,070502.
    [17]Y. Eto, T. Tajima, Y. Zhang, and T. Hirano. Observation of squeezed light at 1.535 μm using a pulsed homodyne detector. Optics Letters,2007,32,1698-1700.
    [18]Yuta Takahashi, Jonas Soderholm, Keiichi Hirano et al.. Effects of dispersion on squeezing and photon statistics of down-converted light. Phys. Rev. A,2008,77,043801.
    [19]张绍银,许长谭,艾树涛.超短脉冲圆极化激光场的一阶修正描述及加速效应.光学学报,2009,29,1586-1590.
    [20]N. Kiesel, C. Schmid, G. Toth, E. Solano, and H. Weinfurter. Experimental Observation of Four-Photon Entangled Dicke State with High Fidelity. Phys. Rev. Lett., 2007,98,063604.
    [21]Alessandro Zavatta, Valentina Parigi, and Marco Bellini. Toward quantum frequency combs:Boosting the generation of highly nonclassical light states by cavity-enhanced parametric down-conversion at high repetition rates. Phys. Rev. A,2008,78,033809.
    [22]席鹏,周传清,封晓瑞等.10fs脉冲在多光子激发生物成像中的应用.光学学报,2009,29,0046-0049.
    [23]Steven T. Cundiff and Jun Ye. Colloquium:Femtosecond optical frequency combs. Reviews of Modern Physics,2003,75,325-342.
    [24]屈柯楠,张伟刚,刘卓琳等.超短光脉冲压缩系统和传输系统的色散补偿.中国激光,2010,37,449-453.
    [25]Eric D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Physics,2001,69,79-87.
    [26]Jun Chen, Kim Fook Lee, and Prem Kumar. Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference. Phys. Rev. A,2007,76,031804.
    [27]刘华刚,胡明列,刘博文等.基于光子晶体光纤飞秒激光技术的高功率紫外激 光源.中国激光.2009,36,2812-2816.
    [I]H. P. Yuen and V.W. S. Chan. Noise in homodyne and heterodyne detection. Opt. Lett.,1983,8,177-179.
    [2]G. L. Abbas, V. W. S. Chan, and S. T. Yee. Local-oscillator excess-noise suppression for homodyne and heterodyne detection. Opt. Lett.,1983,8,419-421.
    [3]R. E. Slusher, L. W. Hollberg. B. Yurke, J. C. Mertz, and J. F. Valley. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 1985,55,2409-2412.
    [4]G. Breitenbach, S. Schiller, and J. Mlynek. Measurement of the quantum states of squeezed light. Nature,1997,387,471-475.
    [5]D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett.,1993,70,1244-1247.
    [6]H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller. Ultrasensitive pulsed, balanced homodyne detector:application to time-domain quantum measurements. Opt. Lett.,2001,26,1714-1716.
    [7]J. Wenger, R. Tualle-Brouri, and P. Grangier. Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification. Opt. Lett.,2004,29,1267-1269.
    [8]J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier. Time-resolved homodyne characterization of individual quadrature-entangled pulses. Eur. Phys. J. D, 2005,32,391-396.
    [9]A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi. Time-domain analysis of quantum states of light:noise characterization and homodyne tomography. J. Opt. Soc. Am. B,2002,19,1189-1194.
    [10]A. Zavatta, S. Viciani, and M. Bellini. Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection. Phys. Rev. A,2004,70, 053821.
    [11]A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller. Quantum state reconstruction of the single photon Fock state. Phys. Rev. Lett.,2001,87, 050402.
    [12]A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier. Quantum homodyne tomography of a two-photon Fock state. Phys. Rev. Lett.,2006,96,213601.
    [13]A. Zavatta, S. Viciani, M. Bellini. Quantum-to-classical transition with single-photon-added coherent states of light. Science,2004,306,660-662.
    [14]A. Zavatta, S. Viciani, and M. Bellini. Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission. Phys. Rev. A,2005,72,023820.
    [15]A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier. Generating optical Schrodinger kittens for quantum information processing. Science,2006,312,83-86.
    [16]A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier. Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett., 2007,98,030502.
    [17]A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier. Generation of optical "Schrodinger cats" from photon number states. Nature,2007,448,784-786.
    [18]V. Parigi, A. Zavatta, M. Kim, and M. Bellini. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science,2007,317, 1890-1893.
    [19]F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier. Quantum key distribution using Gaussian modulated coherent states. Nature,2003,421, 238-241.
    [20]J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier. Quantum key distribution over 25km with an all-fiber continuous-variable system. Phys. Rev. A, 2007,76,042305.
    [21]J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier. Controlling excess noise in fiber-optics continuous-variable quantum key distribution. Phys. Rev. A,2005,72, 050303.
    [22]J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle- Brouri, N. J. Cerf, and P. Grangier. Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system. Phys. Rev. Lett.,2007,98,030503.
    [23]Ondrej Haderka, Vaclav Michalek, Vladimir Urbasek, and Miroslav Jezek. Fast time-domain balanced homodyne detection of light. Applied Optics,2009,48,2884-2889.
    [24]T. Aichele, A. I. Lvovsky and S. Schiller. Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state. Eur. Phys. J. D,2002,18,237-245.
    [25]Yurke et al.. Measurement of amplitude probability distributions for photon-number-operator eigenstates. Phys. Rev. A,1987,36,1955-1958.
    [26]Lvovsky A. I. et al.. Quantum state reconstruction of the single-photon fock state. Phys. Rev. Lett.,2001,87,050402.
    [1]Yoshihiro Nambu et al.. Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses. Phys. Rev. A.2002,66, 033816.
    [2]Bao-Sen Shi, Akihisa Tomita. Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer. Phys. Rev. A,2004,69,013803.
    [3]Yuhui Luo, and Kam Tai Chan. Quantum cryptography with entangled multiphotons of the same polarization. Phys. Rev. A,2004,70,042302.
    [4]Manfred Eibl et al.. Experimental observation of four-photon entanglement from parametric down-conversion. Phys. Rev. Lett.,2003,90,200403.
    [5]Enrico Pomarico, Bruno Sanguinetti, Nicolas Gisin, Robert Thew, Hugo Zbinden, Gerhard Schreiber, Abu Thomas and Wolfgang Sohler. Waveguide-based OPO source of entangled photon pairs. New J. Phys.,2009,11,113042.
    [6]Hiroki Takesue and Kyo Inoue. Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop. Phys. Rev. A,2004,70,031802.
    [7]M. Centini, J. Pefina, L. Sciscione, C. Sibilia, M. Scalora, M. J. Bloemer, and M. Bertolotti. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals. Phys. Rev. A,2005,72,033806.
    [8]Hou Shun Poh et al.. Single-mode coupling efficiencies of type-Ⅱ spontaneous parametric down-conversion:Collinear, noncollinear, and beamlike phase matching. Phys. Rev. A,2007,75,043816.
    [9]Yoon-Ho Kim et al.. Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion. Phys. Rev. A,2001, 63,062301.
    [10]Osung Kwon et al.. Single-mode coupling efficiencies of type-Ⅱ spontaneous parametric down-conversion:Collinear, noncollinear, and beamlike phase matching. Phys. Rev. A,2008,78,053825.
    [11]E. Knill, R. Laflamme, and G. J. Milburn. Stopping light in its tracks. Nature,2001, 409,461-462.
    [12]M. Almendros et al.. Bandwidth-tunable single-photon source in an ion-trap quantum network. Phys. Rev. Lett.,2009,103,213601.
    [13]Charles Santori et al.. Indistinguishable photons from a single-photon device. Nature, 2002,419,594-597.
    [14]马海强,工素梅,吴令安.基于偏振纠缠光子对的单光子源.物理学报,2009,58,717-721.
    [15]A. V.Burlakov, M. V. Chekhova, O. A. Karabutova, and S. P. Kulik. Collinear two-photon state with spectral properties of type-I and polarization properties of type-Ⅱ spontaneous parametric down-conversion:preparation and testing. Phys. Rev. A,2001,64, 041803.
    [16]Hugues Guillet de Chatellus, Alexander V. Sergienko, Bahaa E. A. Saleh and Malvin C. Teich. Non-collinear and non-degenerate polarization-entangled photon generation via concurrent type-I parametric downconversion in PPLN. Optics Express,2006,14, 10060-10072.
    [17]J. Chen et al.. Fiber-based telecom-band degenerate-frequency source of entangled photon pairs. Opt. Lett.,2006,31,2798-2800.
    [18]M. Halder et al.. Photon-bunching measurement after two 25-km-long optical fibers. Phys. Rev. A,2005,71,042335.
    [19]J. Fan, A. Dogariu, and L. J. Wang. Generation of correlated photon pairs in a microstructure fiber. Opt. Lett.,2005,30,1530-1532.
    [20]Jun Chen, Kim Fook Lee, and Prem Kumar. Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference. Phys. Rev. A,2007,76,031804.
    [21]J. G. Rarity, P. R. Tapster, and E. Jakeman. Two-photon interference in a Mach-Zehnder interferometer. Phys. Rev. Lett.,1990,65,1348-1351.
    [22]C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett.,1987,59,2044-2046.
    [23]R. L. Carman. Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification. Phys. Rev. Lett.,1966,17,1281-1283.
    [24]Campos R A, Saleh B E A, and Teich M C. Quantum-mechanical lossless beam splitter:SU(2) symmetry and photon statistics. Phys. Rev. A,1989,40,1371-1384.
    [25]Xiaoying Li et al.. All-fiber source of frequency-entangled photon pairs. Phys. Rev. A,2009,79,033817.
    [26]A. Zavatta, V. Parigi, and M. Bellini. Toward quantum frequency combs:Boosting the generation of highly nonclassical light states by cavity-enhanced parametric down-conversion at high repetition rates. Phys. Rev. A,2008,78,033809.
    [27]Osung Kwon et al.. Single-mode coupling efficiencies of type-Ⅱ spontaneous parametric down-conversion:Collinear, noncollinear, and beamlike phase matching. Phys. Rev. A,2008,78,053825.
    [28]J. Volz, C. Kurtsiefer, and H. Weinfurter. Compact all-solid-state source of polarization-entangled photon pairs. Appl. Phys. Lett.,2001,79,869-871.
    [29]S Castelletto et al.. Computing uncertainty with uncertain numbers. Metrologia,2006, 43,56-61.
    [30]R. S. Bennink, Y. Liu, D.D. Earl, and W.P. Grice. Spatial distinguishability of photons produced by spontaneous parametric down-conversion with a focused pump. Phys. Rev. A,2006,74,023802.
    [31]Alexander Ling, Antia Lamas-Linares, and Christian Kurtsiefer. Absolute emission rates of spontaneous parametric down-conversion into single transverse Gaussian modes. Phys. Rev. A,2008,77,043834.
    [32]H. Di Lorenzo Pires and M. P. van Exter. Observation of near-field correlations in spontaneous parametric down-conversion. Phys. Rev. A,2009,79,041801.
    [33]V. G. Dmitriev et al.. Handbook of Nonlinear Optical Crystals. Springer,1990.
    [34]C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett.,1987,59,2044-2046.
    [1]Juan Guo, Hongxin Zou, Zehui Zhai, Junxiang Zhang, and Jiangrui Gao. Generation of continuous-variable tripartite entanglement using cascaded nonlinearities. Phys. Rev. A, 2005,71,034305.
    [2]Mandel et al.. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature,2003,425,937-940.
    [3]Leibfried et al.. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature,2003,422,412-425.
    [4]Brian Julsgaard, Alexander Kozhekin, Eugene S. Polzik. Experimental long-lived entanglement of two macroscopic objects. Nature,2001,413,400-403.
    [5]E. Lombardi et al.. Teleportation of a vacuum-one-photon qubit. Phys. Rev. Lett. 2002,88,070402.
    [6]Brian Julsgaard et al.. Experimental demonstration of quantum memory for light. Nature,2004,432,482-486.
    [7]Ferdinand Schmidt-Kaler et al.. Realization of the cirac-zoller controlled-NOT quantum gate. Nature,2003,422,408-411.
    [8]J. I. Cirac et al.. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett.,1997,78,3221-3224.
    [9]Li X Y, Yang L, Ma X X, Cui L, Ou Z Y and Yu D Y. All-fiber source of frequency-entangled. Phys. Rev. A,2009,79,033817.
    [10]Lloyd S, Shahriar M S, Shapiro J H and Hemmer P R. Long distance, unconditional teleportation of an atomic states via complete bell state measurements. Phys. Rev. Lett., 2001,87,167903.
    [11]S. Tanzilli et al.. A photonic quantum information interface. Nature,2005,437, 116-120.
    [12]A. D. Boozer, A. Boca, R. Miller, T. E. Northup, H. J. Kimble. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett.,2007,98,193601.
    [13]M. Fleischhauer, M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett.,2000,84,5094-5097.
    [14]L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature,2001.414,413-418.
    [15]H. H. Jen, T. A. B. Kennedy. Efficiency of light-frequency conversion in an atomic ensemble. Phys. Rev. A,2010,82,023815.
    [16]Prem Kumar. Quantum frequency conversion. Optics Letters,1990,15,1476-1478.
    [17]F. De Martini, G. Di Giuseppe, and S. Padua. Multiparticle quantum superposition and stimulated entanglement by parity selective amplification of entangled states. Phys. Rev. Lett.,2001,87,150401.
    [18]Jianming Huang and Prem Kumar. Observation of quantum frequency conversion. Phys. Rev. Lett.,1992,68,2153-2156.
    [19]Aihong Tan, Xiaojun Jia, and Changde Xie. Frequency conversion of an entangled state. Phys. Rev. A,2006,73,033817.
    [20]G. Giorgi, P. Mataloni, and F. De Martini. Frequency hopping in quantum interferometry:Efficient up-down conversion for qubits and ebits. Phys. Rev. Lett.,2003, 90,027902.
    [21]Hiroki Takesue. Erasing distinguishability using quantum frequency up-conversion. Phys. Rev. Lett.,2008,101,173901.
    [22]Z. Y. Ou. Efficient conversion between photons and between photon and atom by stimulated emission. Phys. Rev. A,2008,78,023819.
    [23]Y. Ding, Z. Y. Ou. Frequency down-conversion for a quantum network. Opt. Lett. 2010,35,2591-2593.
    [24]L. Mandel and E. Wolf. Optical coherence and quantum optics. Cambridge University Press, New York,1995.
    [25]C. M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D,1982,26, 1817-1839.
    [26]Reynaud S, Fabre C and Giacobino E. Quantum fluctuations in a two-mode parametric oscillator. J. Opt. Soc. Am. B,1987,4,1520-1524.
    [27]Jack M W, Collett M J and Walls D F. Asymmetrically pumped nondegenerate second-harmonic generation inside a cavity. Phys. Rev. A,1996,53,1801-1811.
    [28]Grosse N B, Assad S, Mehmet M, Schnabel R, Symul T and Lam P K. Observation of entanglement between two light beams spanning an octave in optical frequency. Phys. Rev. Lett.,2008,100,243601.
    [29]Collett M J and Gardiner C W. Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A.1984,30,1386-1391.
    [30]Chen H and Zhang J. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. Phys. Rev. A,2007,75,022306.
    [31]R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, P. D. Lett. Low-noise amplification of a continuous-variable quantum wtate. Phys. Rev. Lett.,2009,103, 010501.
    [32]P. Grangier, J. A. Levenson, J. Ph. Poizat. Quantum non-demolition measurements in optics. Nature,1998,396,537-542.
    [33]P. K. Lam, T. C. Ralph, E. H. Huntington, H.-A. Bachor. Noiseless signal amplification using positive electro-optic feedforward. Phys. Rev. Lett.,1997,79, 1471-1474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700