用户名: 密码: 验证码:
岩石变形破坏过程中的能量演化机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击地压、岩爆等岩体工程灾害本质上是能量非线性演化至灾变的过程,从能量角度研究岩石的变形破坏规律,可以突破应力应变分析的传统模式局限,对于岩体力学行为的深入认识带来一种新的视角和分析方法。本文针对岩石变形破坏过程中的能量演化机制,从能量转化作用、能量演化及分配规律、能量演化的非线性特性、能量演化的细观特征等四个方面研究了岩石在受载过程中的能量行为,主要取得以下进展:
     (1)分析了岩石变形破坏过程中的能量转化作用。受载岩石能量转化大致分为能量输入、能量积聚、能量耗散、能量释放四个过程,输入的总能量部分转化为弹性能,部分转化为其他形式的能量耗散掉;分别建立了碎块数量与耗散能、碎块速率与弹性能的关系,发现能量耗散决定了岩石破碎块度,碎块形成后剩余的弹性能决定了岩石破碎剧烈程度;能量驱动岩石变形破坏主要有两种机制:能量耗散使岩石抵抗破坏的能力降低、能量积聚使驱动岩石破坏的能力增强。
     (2)获得了岩石变形破坏过程中的能量演化及分配规律。提出了岩石储能极限、残余弹性能密度和最大耗散能密度概念。单轴压缩下弹性能随应力呈现慢-快-慢的增长模式,并于破坏时释放出来,储能极限约为0.21MJ/m3,耗散能起初增长较缓慢,临近破坏时大幅增加,增幅可达85%左右,整个加载过程中输入能量转化为弹性能的比例约从60%增加到82%,临近破坏阶段有小幅下降。研究了岩石能量演化及分配规律的加载速率效应、围压效应、岩性效应和水环境效应,并进一步得到不同开采条件下能量演化的差异,无煤柱开采的工作面前方煤岩体最大弹性能密度是放顶煤开采的1.5倍,是保护层开采的2.3倍,而峰后能量释放速率也由保护层开采、放顶煤开采、无煤柱开采依次增大。
     (3)揭示了岩石能量演化的分叉和混沌特性。建立了岩石能量转化的自我抑制模型,得到并验证了岩石内部能量随应力变化的演化方程,所建模型适用于岩石变形破坏峰前阶段;能量演化具有分叉和混沌性质,当轴向应力达到约92%峰值应力时,系统进入倍周期分叉区,达到约97.5%峰值应力时,进入混沌状态;提出了能量迭代增长因子μ,其表征岩石受载过程中能量的迭代增长效应,根据能量迭代增长因子的非线性演化,可将岩石变形破坏过程分为4个阶段:0<μ≤1、1<μ≤3、3<μ≤3.5699、3.5699<μ≤4,分别表征了岩石中的能量衰减、能量积聚、能量耗散和能量释放主导阶段。
     (4)探究了岩石能量演化的细观特征。沟通了岩石细观几何及强度特征——能量演化特征——细观破裂特征的内在联系:一方面,得到了岩石细观基元的平均强度、均质度和特征尺度以及裂纹分布特征对岩石能量演化特征的影响规律,并建立了细观特征与能量耗散的关系,表明基元均质度决定了能量耗散的模式,而临界能耗值和基元平均强度决定了能量耗散的量值;另一方面,探讨了岩石能量演化特征对其细观破裂模式的影响,建立了有效冲击能指数与破裂面分形维数的关系,表明存在分形维数阈值,当破裂面分形维数小于此阈值时,岩石有效冲击能指数与分形维数值呈正相关关系,反之,呈反相关关系,建立了有效冲击能指数与微破裂演化之间的关系,表明有效冲击能指数越大,岩石微破裂演化表现为“突变”的性质,有效冲击能指数越小,岩石微破裂演化表现为“渐变”的性质。
     该论文有图138幅,表28个,参考文献245篇。
Rock mass engineering disaster such as coal bump and rock burst results fromnonlinear evolution and catastrophe of energy. Research on rock deformation andfailure from the point of energy evolution can break through the limit of stress-strainanalysis, and offer a new view and method to know deep the mechanical behavior ofrock mass. Aim at the energy evolution mechanism during rock deformation andfailure, four aspects i.e. energy transformation, energy evolution and allocation,nonlinear characteristic and mesoscopic characteristic of energy evolution werediscussed. The main progresses are as follows.
     (1) Energy transformations during rock deformation and failure were analyzed.The energy transforming process can be divided as four steps i.e. energy input, energyaccumulation, energy dissipation and energy release roughly. A part of inputted energyis transformed into elastic energy, while another part is transformed into other energydissipated. The relationship between the number of rock fragments and dissipatedenergy as well as the one between the velocity of rock fragments and elastic energywere established respectively, and the results show that the dissipated energy decidesthe rock fragmentation, while the residual elastic energy after failure decides therupture intensity. There are two main mechanism of energy drives rock fracture i.e.energy dissipation reduces the failure resistance and energy accumulation enhancesthe driving force of rock failure.
     (2) Energy evolution and allocation pattern during rock deformation and failurewere obtained. Firstly, the accumulation energy limit, the residual elastic energydensity and the maximum dissipated energy density are put forward. Secondly, theelastic energy shows a slow-fast-slow growth pattern with the accumulation energylimit of0.21MJ/m3under uniaxial compression, while the dissipated energy growsgently at first and has a sharp increase near failure with the amplification of85%; theratio of inputted energy transforming into elastic energy is about60%~82%at thewhole loading process, and it drops slightly near failure. Thirdly, the effects of loadingrate, confining pressure, lithology, and water environment on energy evolution andallocation pattern are investigated. Lastly, the difference of energy evolution amongthree typical mining ways is got, and the maximum elastic energy density in front coalmass of coal mining working face without pillars is1.5times as that in caving mining,while2.5times as that in protective layer mining. The energy release rate increases orderly along protective layer mining, caving mining and coal mining without pillars.
     (3) Bifurcation and chaos characteristics of rock energy evolution were revealed.The self-repression model reflecting energy transformation was constructed, and theevolution equation of rock energy with stress was obtained and proved. The model issuitable for energy evolution before peak strength. Rock energy evolution has thecharacteristics of bifurcation and chaos, and rock system turns into period doublingbifurcation region when the axial stress reaches92%of peak strength, while it turnsinto chaos state when the axial stress reaches97.5%of peak strength. The energyiteration growth factor μ is put forward, and it can describe the iteration growth effectof rock energy. According to the nonlinear evolution of μ, the process of rockdeformation and failure can be divided four stages i.e.0<μ≤1,1<μ≤3,3<μ≤3.5699and3.5699<μ≤4, and they represent the phase of energy decrement, energyaccumulation, energy dissipation and energy release leading respectively.
     (4) Mesoscopic characteristics of rock energy evolution were investigated. Theinternal relation among mesoscopic characteristics on geometry and strength, energyevolution characteristic and mesoscopic fracture characteristic is discovered. On theone hand, the effect of average strength, homogeneity, characteristic scale of rockelement and fissure distribution on rock energy evolution was studied, and therelationship between mesoscopic characteristic and dissipated energy was set up.These show that the homogeneity of rock element decides the pattern of energydissipation, while the average strength of rock element and the critical dissipatedenergy decide the value of energy dissipation. On the other hand, the effect of rockenergy characteristic on mesoscopic rupture pattern was discussed. The relationshipbetween effective impact energy index and fractal dimension of fracture surface wasset up, which shows a threshold of fractal dimension exists, and it is positivecorrelation between effective impact energy index and fractal dimension of fracturesurface when the fractal dimension is less than the threshold, while inverse correlationwhen the fractal dimension is more than it. The relationship between effective impactenergy index and micro-rupture evolution is set up too, which shows micro-ruptureevolution has property of catastrophe when the effective impact energy index is large,while it has property of gradualness when the effective impact energy index is small.
引文
[1]谢和平.分形-岩石力学导论[M].北京:科学出版社,2001.
    [2]J.A. Hudson, J.P. Harrison. Engineering Rock Mechanics:an Introduction to the Principles and Applications[M]. Nederland:Elsevier Science,1997.
    [3]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [4]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740.
    [5]彭瑞东.基于能量耗散及能量释放的岩石损伤与强度研究[D].北京:中国矿业大学,2005.
    [6]赵忠虎.基于能量耗散与能量释放的岩石变形破坏研究[D].成都:四川大学,2007.
    [7]姜耀东,赵毅鑫,刘文岗,等.煤岩冲击失稳的机制和试验研究[M].北京:科学出版社,2009.
    [8]张志镇,高峰.单轴压缩下岩石能量演化的非线性特性研究[J].岩石力学与工程学报,2012,31(6):1198-1207.
    [9]彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报,2007,26(12):2526-2531.
    [10]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.
    [11]黎立云,谢和平,鞠杨,等.岩石可释放应变能及耗散能的实验研究[J].工程力学,2011,28(3):35-40.
    [12]张志镇,高峰.单轴压缩下红砂岩能量演化试验研究[J].岩石力学与工程学报,2012,31(5):953-962.
    [13]梁昌玉,李晓,王声星,等.岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J].岩石力学与工程学报,2012,31(9):1830-1838.
    [14]黄达,黄润秋,张永兴.粗晶大理岩压缩力学特性的静态加载速率效应及能量机制试验研究[J].岩石力学与工程学报,2012,31(2):245-255.
    [15]刘建锋,徐进,李青松.循环荷载下岩石阻尼参数测试的试验研究[J].岩石力学与工程学报,2010,29(5):1036-1041.
    [16]张栋,武玉梁.无残余应力煤岩损伤演化模型分析[J].煤炭学报,2009,34(6):761-765.
    [17]喻勇,张宗贤,俞洁,等.岩石直接拉伸破坏中的能量耗散及损伤特征[J].岩石力学与工程学报,1998,17(4):386-392.
    [18]黎立云,王荣新,马旭,等.双向加压下岩石能量规律的实验研究[J].煤炭学报,2010,35(12):2033-2038.
    [19]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [20]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
    [21]苏承东,张振华.大理岩三轴压缩的塑性变形与能量特征分析[J].工程力学,2008,27(2):273-280.
    [22]华安增,孔园波,李世平,等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-392.
    [23]陈卫忠,吕森鹏,郭小红,等.基于能量原理的卸围压试验与岩爆判据研究[J].岩石力学与工程学报,2009,28(8):1530-1540.
    [24]黄达,谭清,黄润秋.高围压卸荷条件下大理岩破碎块度分形特征及其与能量相关性研究]J].岩石力学与工程学报,2012,31(7):1379-1389.
    [25]许国安,牛双建,靖洪文,等.砂岩加卸载条件下能耗特征试验研究[J].岩土力学,2011,32(12):3611-3617.
    [26]牛双建,靖洪文,梁军起.不同加载路径下砂岩破坏模式试验研究[J].岩石力学与工程学报,2011,30(supp.2):3966-3974.
    [27]朱泽奇,盛谦,肖培伟,等.岩石卸围压破坏过程的能量耗散分析[J].岩石力学与工程学报,2011,30(supp.1):2675-2681.
    [28]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [29]尹光志,鲜学福,代高飞.岩石非线性动力学及其应用-岩石失稳破坏与冲击地压发生机理及预测[M].重庆:重庆大学出版社,2004.
    [30]潘立友,钟亚平.深井冲击地压及其防治[M].北京:煤炭工业出版社,1997.
    [31]赵本钧.冲击地压及其防治[M].北京:煤炭工业出版社,1994.
    [32]HE M C, FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):286-298.
    [33]黎立云,徐志强,谢和平,等.不同冲击速度下岩石破坏能量规律的实验研究[J].煤炭学报,2011,36(12):2007-2011.
    [34]胡柳青,李夕兵,赵伏军.冲击荷载作用下岩石破裂损伤的耗能规律[J].岩石力学与工程学报,2002,21(增2):2304-2308.
    [35]Li Xibing, Lai Haihui, Gu Desheng. Energy absorption of rock fragmentation under impulsive loads with diferent waveforms [J]. Transactions of Nonferrous Metals Society of China,1993,3(1):1-5.
    [36]MIKHALYUK A V, ZAKHAROV V V. Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks[J]. Journal of Applied Mechanics and Technical Physics,1996,38(2):312-318.
    [37]Z.X. Zhang, S.Q. Kou, L.G. Jiang. Effects of loading rate on rock fracture:fracture characteristics and energy partitioning[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(3):745-762.
    [38]鞠杨,李业学,谢和平,等.节理岩石的应力波动与能量耗散[J].岩石力学与工程学报,2006,25(12):2426-2434.
    [39]Ju Y, Sudak L, Xie H. Study on stress wave propagation in fractured rocks with fractal joint surfaces[J]. International Journal of Solids and Structures,2007,44(13):4256-4271
    [40]李业学,刘建锋,秦丽.应力波穿越岩石节理时能量耗散规律的实验研究[J].实验力学,2011,26(1):85-90.
    [41]夏昌敬,谢和平,鞠杨,等.冲击载荷下孔隙岩石能量耗散的实验研究[J].工程力学,2006,23(9):1-5.
    [42]夏昌敬,谢和平,鞠杨.孔隙岩石的SHPB试验研究[J].岩石力学与工程学报,2006,25(5):896-900.
    [43]鞠杨,杨永明,毛彦喆,等.孔隙介质中应力波传播机制的实验研究[J].中国科学E辑:技术科学,2009,39(5):904-918.
    [44]高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散[J].岩石力学与工程学报,2003,22(11):1777-1780.
    [45]Gao Wenxue, Liu Yuntong. Dynamic damage model of britle rock and its appilcation[A]. In: Proc.of7th Intenrational Symposium on Rock Fragmentation by Blasting[C].Beijing:[s.n.].2002.11-15
    [46]黎立云,鞠杨,赵占文,等.静动态加载下岩石结构破坏时的能量分析[J].煤炭学报,2009,34(6):737-780.
    [47]鞠杨,王会杰,杨永明,等.应力波作用下岩石类孔隙介质变形破坏与能量耗散机制的数值模拟研究[J].中国科学E辑:技术科学,2010,40(6):711-726.
    [48]Li X.B., Gu D.S. The hazard control and cataclastic mutagenesis induced by high stress in hard rock mining at depth,[in] Proceedings of the175th Xiangshan Science Congress, Beijing,2002,101-105.
    [49]Li X.B., Zhou Z.L., LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):739-748.
    [50]李夕兵,周子龙,叶州元,等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报,2008,27(7):1387-1395.
    [51]左宇军,李夕兵,唐春安,等.受静载荷的岩石在周期载荷作用下破坏的试验研究[J].岩土力学,2007,28(5):927-932.
    [52]左宇军,李夕兵,唐春安.二维动静组合加载下岩石破坏的试验研究[J].岩石力学与工程学报,2006,25(9):1809-1820.
    [53]左宇军.动静组合加载下的岩石破坏特性研究[D].长沙:中南大学,2005.
    [54]周子龙.岩石动静组合加载实验与力学特性研究[D].长沙:中南大学,2007.
    [55]洪亮.冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D].长沙:中南大学,2008.
    [56]宫凤强.动静组合加载下岩石力学特性和动态强度准则的试验研究[D].长沙:中南大学,2008.
    [57]宫凤强,李夕兵,刘希灵,等.一维动静组合加载下砂岩动力学特性的试验研究[J].岩石力学与工程学报,2010,29(10):2076-2085.
    [58]宫凤强,李夕兵,刘希灵.三维动静组合加载下岩石力学特性试验初探[J].岩石力学与工程学报,2011,30(6):1179-1190.
    [59]喻勇,尹健民.三峡花岗岩在不同加载方式下的能耗特征[J].岩石力学与工程学报,2004,23(2):205-208.
    [60]X.P. Zhou, H.Q. Yang, Y.X. Zhang. Rate dependent critical strain energy density factor of Huanglong limestone[J]. Theoretical and Applied Fracture Mechanics,2009,51:57-61.
    [61]Bagde MN, Petros V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42:237-250.
    [62]Bagde MN, Petros V. Waveform effect on fatigue properties of intact sandstone in uniaxial cyclic loading[J]. Rock Mechanics and Rock Engineering,2005,38(3):169-196.
    [63]Bagde MN, Petros V. The effect of machine behaviour and mechanical properties of intact sandstone under static and dynamic uniaxial cyclic loading[J]. Rock Mechanics and Rock Engineering,2005,38(1):59-67.
    [64]Manoj N. Bagde, Vladimir Petros. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46:200-209.
    [65]刘杰,李建林,张玉灯,等.循环载荷下岩体能量特征及变形参数分析[J].岩石力学与工程学报,2010,29(supp.2):3505-3513.
    [66]许江,张媛,杨红伟,等.循环孔隙水压力作用下砂岩变形损伤的能量演化规律[J].岩石力学与工程学报,2011,30(1):141-148.
    [67]Giuseppe Ferro. On dissipated energy density in compression for concrete[J]. Engineering Fracture Mechanics,2006,73:1510-1530.
    [68]杨圣奇,徐卫亚,苏承东.岩样单轴压缩变形破坏与能量特征研究[J].固体力学学报,2006,27(2):213-216.
    [69]张志镇,高峰,高亚楠,等.高温后花岗岩应力脆性跌落系数的试验研究[J].实验力学,2010,25(5):589-597.
    [70]谢卫红,李顺才,高峰.岩石热损伤-力耦合能量破坏准则研究[J].西安科技大学学报,2007,27(3):341-346.
    [71]徐小丽,高峰,周清,等.高温后岩石变形破坏过程的能量分析[J].武汉理工大学学报,2011,33(1):104-108.
    [72]张志镇,高峰,徐小丽.花岗岩力学特性的温度效应试验研究[J].岩土力学,2011,32(8):2346-2352.
    [73]夏昌敬,鞠杨,谢和平.爆炸载荷下岩石损伤与能量耗散的数值分析[J].弹道学报,2006,18(3):1-5.
    [74]王学滨.缺陷数目对岩样声发射及应变能降低的影响[J].中国有色金属学报,2008,18(8):1-5.
    [75]许尚杰,尹小涛,党发宁.晶体及矿物颗粒大小对岩土材料力学性质的影响[J].岩土力学,2009,30(9):2581-2587.
    [76]孙倩,李树忱,冯现大,等.基于应变能密度理论的岩石破裂数值模拟方法研究[J].岩土力学,2011,32(5):1575-1582.
    [77]许江,李贺,鲜学福,等.对单轴应力状态下砂岩微观断裂全过程的实验研究[J].力学与实践,1986,4:16-21.
    [78]赵永红,黄杰藩,王仁.岩石微破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报,1992,11(3):284-294.
    [79]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304-312.
    [80]黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳过程SEM即时研究[J].东北大学学报,1999,20(4):426-429.
    [81]Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids:Axial splitting and shear failure[J]. Journal of Geophysical Research,1985,90(B4):3105-3125.
    [82]Alberto Carpinteri, Bernardino Chiaia. Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy [J]. Mechanics of Materials,1995,28:435-443.
    [83]Alberto Carpinteri, Bernardino Chiaia, Kamran M.Nemati. Complex fracture energy dissipation in concrete under different loading conditions [J]. Mechanics of Materials,1997,26:93-108.
    [84]朱珍德,孙林柱,王明洋.不同频率循环荷载作用下岩石阻尼比试验与变形破坏机制细 观分析[J].岩土力学,2010,31(增1):8-12.
    [85]朱珍德,张勇,王春娟.大理岩脆-延性转换的微观机制研究[J].煤炭学报,2005,30(1):31-35.
    [86]ZHU Z D, NI X H, WANG W, et al. Dynamic experimental study on rock meso-cracks growth by digital image processing technique [J]. Journal of Central South University of Technology,2008,15(Supp.2):114-120.
    [87]倪骁慧,李晓娟,朱珍德.不同频率循环荷载作用下花岗岩细观疲劳损伤特征研究[J].岩石力学与工程学报,2011,30(1):164-169.
    [88]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [89]耿乃光,崔承禹,邓明德.岩石破裂实验中的遥感观测与遥感岩石力学的开端[J].地震学报,1992,14(增):645-652.
    [90]崔承禹,邓明德,耿乃光.在不同压力下岩石光谱辐射特性研究[J].科学通报,1993,38(6):538-541.
    [91]Luong M P. Infrared thermovision of damage processes in concrete and rock[J]. Engineering Fracture Mechanics,1990,35(1-3):127-135.
    [92]Luong M P. Infrared thermographic observations of rock failure [A]. In:Hudson J A ed. Comprehensive Rock Engineering Principles-Practice&Projects[C]. New York:Pergamon,1993,4:715-730.
    [93]Wu L X, Wang J Z. Infrared radiation features of coal and rocks under loading[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):969-976.
    [94]刘善军,吴立新,吴焕萍,等.多暗色矿物类岩石单轴加载过程中热红外辐射定量研究[J].岩石力学与工程学报,2002,21(11):1585-1589.
    [95]Wu L X, Liu S J, Wu Y H, et al. Changes in IR with rock deformation [J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(6):825-831.
    [96]吴立新,刘善军,吴育华,等.遥感-岩石力学(Ⅳ)——岩石压剪破裂的热热红外辐射规律及其地震前兆意义[J].岩石力学与工程学报,2004,23(4):539-544.
    [97]Wu L X, Cui C Y, Geng N G,et al. Remote sensing rock mechanics (RSRM) and associated experimental studies[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(6):879-888.
    [98]吴立新,刘善军,吴育华,等.遥感-岩石力学(Ⅰ)——非连续组合断层破裂的热热红外辐射规律及其构造地震前兆意义[J].岩石力学与工程学报,2004,23(1):24-30.
    [99]吴立新,刘善军,吴育华,等.遥感-岩石力学(Ⅱ)——断层双剪粘滑的热热红外辐射规律及其构造地震前兆意义[J].岩石力学与工程学报,2004,23(2):192-198.
    [100]吴立新,刘善军,许向红,等.遥感-岩石力学(Ⅲ)——交汇断层粘滑的热热红外辐射与声发射规律及其构造地震前兆意义[J].岩石力学与工程学报,2004,23(3):401-407.
    [101]刘善军,吴立新,王川婴,等.遥感-岩石力学(Ⅷ)——论岩石破裂的热红外前兆[J].岩石力学与工程学报,2004,23(10):1621-1627.
    [102]Zhao Yixin, Jiang Yaodong. Acoustic emission and thermal infrared precursors associated with bump-prone coal failure[J]. International Journal of Coal Geology,2010,83(1):11-20.
    [103]M.П. BonapoBHH,Э.И. apхомоменко. ПbeЗOЭЛеклектpйй эффект горньх пороц[J]. Изв. AHCCCP, cep. reoфиз,1955,(2):215-222.
    [104]Nitson U.. Electromagnetic emission accompanying fracture of quartz-bearing rocks[J]. Geophysics Research letters,1977,4(8):333-336.
    [105]Ogawa T., Oike K., Miura T.. Electromagnetic radiation from rocks[J]. Journal of Geophysics Research,1985,90(D4):6245-6249.
    [106]钱书清,张以勤,曹惠馨,等.岩石破裂时产生电磁脉冲的观测与研究[J].地震学报,1986,8(3):301-308.
    [107]Brady B.T., Rowell G.A.. Laboratory investigation of the electrodynamics of rock fracture[J]. Nature,1986,321:488-492.
    [108]Cress GO., Brady B.T., Rowell G.A.. Sources of electromagnetic radiation from fracture of rock samples in the laboratory [J]. Geophysics Research letters,1987,14(4):331-334.
    [109]徐为民,童芜生,吴培稚.岩石破裂过程中电磁辐射的实验研究[J].地球物理学报,1985,28(2):181-190.
    [110]孙正江,王丽华,高宏.岩石标本破裂时的电磁辐射和光发射[J].地球物理学报,1986,29(5):491-495.
    [111]郭自强,郭子祺,钱书清,等.岩石破裂中的电声效应[J].地球物理学报,1999,42(1):74-83.
    [112]郭自强,尤峻汉,李高,等.破裂岩石的电子发射与压缩原子模型[J].地球物理学报,1989,32(2):173-177.
    [113]朱元清,罗祥麟,郭自强,等.岩石破裂时电磁辐射的机理研究[J].地球物理学报,1991,34(5):595-601.
    [114]刘明举.含瓦斯煤断裂电磁辐射及其在煤与瓦斯突出研究中的应用[D].徐州:中国矿业大学,1994.
    [115]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [116]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].徐州:中国矿业大学,1997.
    [117]王恩元,何学秋,刘贞堂,等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与 工程学报,2002,21(10):1473-1477.
    [118]窦林名.煤岩突变的声电效应规律及其应用研究[博士后研究报告].徐州:中国矿业大学,2001.
    [119]王云海.煤岩冲击破坏的电磁辐射前兆及预测研究[D].徐州:中国矿业大学,2003.
    [120]窦林名,何学秋,王恩元,等.由煤岩变形冲击破坏所产生的电磁辐射[J].清华大学学报(自然科学版),2001,41(12):86-88.
    [121]Frid V.. Rockburst hazard forecast by electromagnetic radiation excited by rock fracture [J]. Rock Mechanics and Rock Engineering,1997,30(4):229-236.
    [122]Frid V.. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal of Applied Geophysics,1997,38(2):97-104.
    [123]秦四清,李造鼎,张倬元.岩石声发射技术概论[M].成都:西南交通大学出版社,1993.
    [124]王其胜,万国香,李夕兵.动静组合加载下岩石破坏的声发射试验[J].爆炸与冲击,2010,30(3):247-253.
    [125]袁子清,唐礼忠.岩爆倾向岩石的声发射特征试验研究[J].地下空间与工程学报,2008,4(1):94-98.
    [126]李庶林,唐海燕.不同加载条件下岩石材料破裂过程的声发射特性研究[J].岩土工程学报,2010,32(1):147-152.
    [127]凌同华,张胜,易志强,等.岩石声发射信号能量分布特征的EMD分析[J].振动与冲击,2012,31(11):26-31.
    [128]尚晓吉,张志镇,田智立,等.基于声发射测试的岩爆倾向性预测研究[J].金属矿山,2011,(8):56-59.
    [129]陆菜平,窦林名,吴兴荣.组合煤岩冲击倾向性演化及声电效应的试验研究[J].岩石力学与工程学报,2007,26(12):2549-2555.
    [130]Kawakata H, Cho A, Yanagidani T, et al.The observations of faulting in Westerly granite under triaxial compression by X ray CT scan[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3/4):151-162.
    [131]Ge X R, Ren J X, Pu Y B. Real-in time CT test of the rock meso-damage propagation law[J]. Science in China(Series E),2001,44(3):328-336.
    [132]葛修润,任建喜,蒲毅彬,等.岩石细观损伤演化规律的CT实时试验研究[J].中国科学E辑:技术科学,2000,30(2):104-111.
    [133]朱红光,谢和平,易成,等.岩石材料微裂隙演化的CT识别[J].岩石力学与工程学报,2011,30(6):1230-1238.
    [134]宋大钊,王恩元,刘晓斐,等.煤岩循环加载破坏电磁辐射能与耗散能的关系[J].中国矿业大学学报,2012,41(2):175-181.
    [135]张后全,徐建峰,贺永年,等.脆性岩石真三轴能量强度准则研究[J].中国矿业大学学报,2012,41(4):564-570.
    [136]LIU Guanglian. A novel limiting strain energy strength theory[J]. Transactions of Nonferrous Metals Society of China,2009,(19):1651-1662.
    [137]Bazant Z P, Kazemi M T. Determination of fracture energy process zone length and brittleness number from size effect with application to rock and concrete [J]. International Journal of Fracture,1990,44(2):111-131.
    [138]Bemabe Y, Revil A. Porecale heterogeneity, energy dissipation and the transport properties of rocks[J]. Geophysical Research Letters,1995,22(12):1529-1532.
    [139]彭瑞东,谢和平,周宏伟.岩石变形破坏过程的热力学分析[J].金属矿山,2008,(3):61-65.
    [140]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报,2008,40(2):26-31.
    [141]赵忠虎,鲁睿,张国庆.岩石失稳破裂的能量原理分析[J].金属矿山,2006(10):17-21.
    [)42]王学滨,潘一山,马瑾.剪切带内部应变(率)分析及基于能量准则的失稳判据[J].工程力学,2003,20(21:111-115.
    [143]王学滨.岩样单轴压缩轴向及侧向变形耗散能量及稳定性分析[J].岩石力学与工程学报,2005,24(5):846-853.
    [144]王学滨.岩样单轴压缩塑性变形及断裂能研究[J].岩石力学与工程学报,2005,24(10):1735-1739.
    [145]柴文革,高全臣,李文利.岩石材料峰后失稳破坏研究[J].路基工程,2007,(4):14-16.
    [146]陈旭光,张强勇.岩石剪切破坏过程的能量耗散和释放研究[J].采矿与安全工程学报,2010,27(2):179-184.
    [147]Pietro Cornetti, Nicola Pugno, Alberto Carpinteri, et al. Finite fracture mechanics:A coupled stress and energy failure criterion[J]. Engineering Fracture Mechanics,2006,73:2021-2033.
    [148]Xie Heping, David J. Sandersor, D.C.P. Peacock. A fractal model and energy dissipation for enechelon fractures[J] Journal of China University of Mining and Technology,1994,4(2):12-19.
    [149]A. Thomas, L.O. Filippov. Fractures, fractals and breakage energy of mineral particles[J]. International Journal of Mineral Processing,1999,57:285-301.
    [150]李夕兵,古德生.岩石在不同加载波条件下能量耗散的理论探讨[J].爆炸与冲击.1994,14(2):129-139.
    [151]Petrov Y.V., Utkin A.A.. On the rate dependences of dynamic fracture toughness[J]. Soviet Material Science,1989,25(2),153-156.
    [152]Morozov N., Petrov Y.. Dynamics of Fracture[M]. Berlin:Springer press,2000.
    [153]Petrov Y.V., Morozov N.F.. On the modeling of fracture of brittle solids[J]. ASME Journal of Applied Mechanics,1994,61,710-712.
    [154]Petrov Y.V., Morozov N.F., Smirnov V.I.. Structural macromechanics approach in dynamics of fracture[J]. Fatigue and Fracture of Engineering Materials and Structures,2003,26,363-372.
    [155]V. Bratov, Y. Petrov. Optimizing energy input for fracture by analysis of the energy required to initiate dynamic mode I crack growth[J]. International Journal of Solids and Structures,2007,44:2371-2380.
    [156]DENG Jian, BIAN Li. Response and energy dissipation of rock under stochastic stress waves[J]. Journal of Central South University of Technology,2007,14(1):111-114.
    [157]李夕兵,左宇军,马春德.动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学与工程学报,2005,24(16):2814-2824.
    [158]左建平,谢和平,周宏伟.温度压力耦合作用下的岩石屈服破坏研究[J].岩石力学与工程学报,2005,24(16):2917-2921.
    [159]朱维申,张强勇,李术才.三维脆弹塑性断裂损伤模型在裂隙岩体工程中的应用[J].固体力学学报,1999,20(2):164-170.
    [160]陈卫忠,李术才,朱维申,等.考虑裂隙闭合和摩擦效应的节理岩体能量损伤理论与应用[J].岩石力学与工程学报,2000,19(2):131-135.
    [161]朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定性分析中的应用[J].岩石力学与工程学报,2000,19(3):261-264.
    [162]朱维申,李术才,程峰.能量耗散模型在大型地下洞群施工顺序优化分析中的应用[J].岩土工程学报,2001,23(3):333-336.
    [163]李树忱,李术才,朱维申.能量耗散弹性损伤本构方程及其在围岩稳定分析中的应用[J].岩石力学与工程学报,2005,24(15):2646-2653.
    [164]李海波,赵坚,李俊如,等.基于裂纹扩展能量平衡的花岗岩动态本构模型研究[J].岩石力学与工程学报,2003,22(10):1683-1688.
    [165]张安康,陈士海,杜荣强,等.岩石类材料的能量基率相关弹塑性损伤模型[J].岩土力学,2010,31(增1):207-211.
    [166]杨松林,徐卫亚,朱珍德.裂隙尖端能量释放和整体变形能量的等效性[J].河海大学学报,2003,31(5):552-555.
    [167]Sujatha V, Chandra Kishen J M. Energy release rate due to friction at bi-material interface in dams[J]. ASCE Journal of Engineering Mechanics,2003,129(7):793-800.
    [169]孙峰,冯夏庭,张传庆,等.基于能量增减法的深埋绿片岩隧洞稳定性评价方法[Jl.岩土力学,2012,33(2):467-475.
    [170]XIE Heping, LI Liyun, JU Yang, et al. Energy analysis for damage and catastrophic failure of rocks[J]. SCIENCE CHINA(Technological Sciences),2011,54(Suppl):199-209.
    [171]华安增.地下工程周围岩体能量分析[J].岩石力学与工程学报,2003,22(7):1054-1059.
    [172]王瑞芳,易少凤.能量耗散与释放原理在水压致裂法中的运用[J].河南理工大学学报,2007,26(6):707-711.
    [173]渠涛,韩立军,王德亮,等.巷道围岩间隔性区域断裂破坏的能量方法分析[J].金属矿山,2008,(6):23-26.
    [174]陈旭光,张强勇.高应力深部洞室模型试验分区破裂现象机制的初步研究[J].岩土力学,2011,32(1):84-90.
    [175]苏国韶,冯夏庭,江权.高地应力下地下工程稳定性分析与优化的局部能量释放率新指标研究[J].岩石力学与工程学报,2006,25(12):2453-2460.
    [176]J.-A. Wang, H.D. Park. Comprehensive prediction of rockburst based on analysis of strain energy in rocks[J]. Tunnelling and Underground Space Technology,2001,16:49-57.
    [177]王斌,赵伏军,尹土兵.基于饱水岩石静动力学试验的水防治屈曲型岩爆分析[J].岩土工程学报,2011,33(12):1863-1869.
    [178]刘滨,刘泉声.岩爆孕育发生过程中的微震活动规律研究[J].采矿与安全工程学报,2011,28(2):174-180.
    [179]张我华,金荑,陈云敏.煤/瓦斯突出过程中的能量释放机理[J].岩石力学与工程学报,2000,19(增):829-835.
    [180]邹德蕴,姜福兴.煤岩体中储存能量与冲击地压孕育机理及预测方法的研究[J].煤炭学报,2004,29(2).
    [181]姚精明,何富连,徐军,等.冲击地压的能量机理及其应用[J].中南大学学报,2009,40(3):808-813.
    [182]周光文,刘文岗,姜耀东,等.采场冲击地压的能量积聚释放特征分析[J].采矿与安全工程学报.2008,25(1):73-78.
    [183]蓝航,潘俊锋,彭永伟.煤岩动力灾害能量机理的数值模拟[J].煤炭学报,2010,35(增):10-14.
    [184]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [185]周筑宝.最小耗能原理及其应用[M].北京:科学出版社,2001.
    [186]周筑宝,卢楚芬,郑学军.最小耗能原理及其验证和应用前景展望[J].长沙铁道学院 学报,1997,15(4):57-64.
    [187]周筑宝,卢楚芬,郑学军.按能量原理建立强度理论的新探索与展望[J].长沙铁道学院学报,1996,14(4):1-9.
    [188]周筑宝,卢楚芬,郑学军.耗散型材料的本构关系理论[J].长沙铁道学院学报,1997,15(2):16-23.
    [189]周筑宝,卢楚芬,刘长文.最小耗能原理在结构分析中的应用[J].长沙铁道学院学报,1998,16(1):43-50.
    [190]蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用[J].北京科技大学学报,1997,19(4):325-328.
    [191]祝玉学,姚兆明.岩石工程系统理论与应用—能量路径和耗散结构[J].金属矿山,2000(11):44-48.
    [192]赵阳升,冯增朝,万志军.岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781-1783.
    [193]潘岳.岩石破坏过程的折迭突变模型[J].岩土工程学报,1999,21(3):299-303.
    [194]潘岳,王志强.岩体动力失稳的功、能增量-突变理论研究方法[J].岩石力学与工程学报,2004,23(9):1433-1438.
    [195]潘岳,张勇,于广明.岩体失稳前兆阶段准静态形变平衡方程和加载参数-能量输入率[J].岩石力学与工程学报,2005,24(22):4080-4087.
    [196]潘岳,王志强,吴敏应.岩体动力失稳终止点、能量释放量解析解与图解[J].岩土力学,2006,27(11):1915-1921.
    [197]潘岳,纪彩虹,李爱武.岩体系统动力失稳的总势能函数诠释[J].岩土工程学报,2007,29(6):831-836.
    [198]王志强,张立新,潘岳.岩体动力失稳及能量释放特征分析[J].金属矿山,2011(8):33-36.
    [199]王学滨.基于能量原理的岩样单轴压缩剪切破坏失稳判据[J].工程力学,2007,24(1):153-157.
    [200]马本堃,高尚惠,孙煜.热力学与统计物理学(第二版)[M].北京:高等教育出版社,1995.
    [201]赵忠虎,鲁睿,张国庆.岩石破坏全过程中的能量变化分析[J].矿业研究与开发,2006,26(5):8-11.
    [202]张晖辉,刘峰,常福清.岩石损伤破坏过程声发射试验及其能量特征分析[J].公路交通科技,2011,28(3):48-54.
    [203]刘向峰,汪有刚.声发射能量累积与煤岩损伤演化关系初探[J].辽宁工程技术大学学报(自然科学版),2011,30(1):1-4.
    [204]肖红飞,何学秋,王恩元.受压煤岩破裂过程电磁辐射与能量转化规律研究[J].岩土力学,2006,27(7):1097-1110.
    [205]王恩元,何学秋,李忠辉,等.煤岩电磁辐射技术及其应用[M].北京:科学出版社,2009.
    [206]高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应[J].岩石力学与工程学报,1994,13(3):240-246.
    [207]余为,缪协兴,茅献彪,等.岩石撞击过程中的升温机理分析[J].岩石力学与工程学报,2005,24(9):1535-1538.
    [208]郑在胜.岩石变形中的能量传递过程与岩石变形动力学分析[J].中国科学B辑,1990,(5):524-537.
    [209]高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报,1999,18(5):497-502.
    [210]谢和平,高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,2003,23(4):1-9.
    [211]何满潮,杨国兴,苗金丽,等.岩爆实验碎屑分类及其研究方法[J].岩石力学与工程学报,2009,28(8):1521-1529.
    [212]吴锵,刘瑛,丁锡锋.材料科学基础[M].北京:国防工业出版社,2012.
    [213]王亚男,陈树江,董希淳.位错理论基础[M].北京:冶金工业出版社,2007.
    [214]刘瑞殉.显微构造地质学[M].北京:北京大学出版社,1988.
    [215]Brian Lawn.脆性固体断裂力学[M].龚江宏,译.北京:高等教育出版社,2010.
    [216]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002:55-57.
    [217]尹小涛,葛修润,李春光,等.加载速率对岩石材料力学行为的影响[J].岩石力学与工程学报,2010,29(增1):2610-2615.
    [218]左宇军,李夕兵,张义平.动静组合加载下的岩石破坏特性[M].北京:冶金工业出版社,2008.
    [219]SUN J, WANG S J. Rock mechanics and rock engineering in China:developments and current state-of-the-art[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(3):447-465.
    [220]谢和平,周宏伟,刘建锋,等.不同开采条件下采动力学行为研究[J].煤炭学报,2011,36(7):1067-1074.
    [221]宋新宇,郭红建,师向云.脉冲微分方程理论及其应用[M].北京:科学出版社,2011.
    [222]马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2001.
    [223]余爱华.Logistic模型的研究[D].南京:南京林业大学,2003.
    [224]潘岳,赵志刚,张孝武.煤岩突出中孔深扩展与孔洞形成的阵发混沌模型[J].岩土力 学,2010,31(8):2064-2072.
    [225]安镇文.分形与混沌理论在地震学中的应用与探讨[J].地球物理学进展,1994,9(2):84-90.
    [226]罗灼礼,李志雄,王伟君.地震活动“密集—平静”现象的混沌特性探讨[J].地震,2007,27(4):1-17.
    [227]安镇文,姚栋华,陈顒.岩石声发射和地震活动的信息维特征[J].中国科学:B辑,1992,(7):736-742.
    [228]尹光志,代高飞,万玲,等.岩石微裂纹演化的分岔混沌与自组织特征[J].岩石力学与工程学报,2002,21(5):635-639.
    [229]秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,19(4):486-492.
    [230]梁正召,王述红,唐春安,等.非均匀岩石破裂的网格效应[J].岩石力学与工程学报,2005,24(增1):5108-5112.
    [231]祝方才,潘长良,郭然.一个新的岩爆倾向性指标一有效冲击能指标[J].矿山压力与顶板管理,2002,(3):83-84.
    [232]唐礼忠,潘长良,王文星.用于分析岩爆倾向性的剩余能量指数[J].中南工业大学学报,2002,33(2):129-132.
    [233]Tang C. A., Liu H., Lee P.K.K., et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression Part Ⅰ:effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences,2000,(37):555-569.
    [234]徐小丽.温度载荷作用下花岗岩力学性质演化及其微观机制研究[D].徐州:中国矿业大学,2008.
    [235]张志镇,高峰,刘治军.温度影响下花岗岩冲击倾向及其微细观机制研究[J].岩石力学与工程学报,2010,29(8):1591-1602.
    [236]林柏泉,张其智,沈春明,等.钻孔割缝网络化增透机制及其在底板穿层钻孔瓦斯抽采中的应用[J].煤炭学报,2012,37(9):1425-1430.
    [237]季明.湿度场下灰质泥岩的力学性质演化与蠕变特征研究[D].徐州:中国矿业大学,2009.
    [238]杨新乐.低渗透煤层煤层气注热增产机理的研究[D].阜新:辽宁工程技术大学,2009.
    [239]潘一山,杜广林,张永利,等.煤体振动后力学性质变化规律的试验研究[J].岩土工程学报,1998,20(5):41-43.
    [240]潘一山,杜广林,张永利,等.煤体振动方法防治冲击地压的机理研究[J].岩石力学与工程学报,1999,18(4):432-436.
    [241]Liu Yingke, Zhou Fubao, Liu Lang, et al. An experimental and numerical investigation on the deformation of overlying coal seams above double-seam extraction for controlling coal mine methane emissions[J]. International Journal of Coal Geology,2011,87(2):139-149.
    [242]SHI Xingjue, NIU Zhiren. Fractal dimension of fractured surface of rocks[J].Chinese Science Bulletin,1991,36(21):1845-1846.
    [243]彭瑞东,谢和平,鞠杨.二维数字图像分形维数的计算方法[J].中国矿业大学学报,2004,33(1):19-24.
    [244]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [245]李廷芥,王耀辉,张梅英,等.岩石裂纹的分形特性及岩爆机理研究关系[J].岩石力学与工程学报,2000,19(1):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700