用户名: 密码: 验证码:
AC/DC流光放电等离子体烟气脱硫实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究目标是采用气体放电等离子体和化学的方法,开发一种流光放电等离子体氨法烟气脱硫的新工艺。其创新点在于:(1)采用交直流叠加电源技术在工业规模的反应器中发生分布良好的流光放电等离子体。交直流叠加电源的开发,使得等离子体发生装置不再受制于脉冲电源所需要的高频高压开关器件,等离子体电源的大规模工业应用成为可能。(2)采用分区湿式反应流程,将氨对二氧化硫的热化学吸收过程与等离子体自由基参与的链反应过程在不同的空间进行。分区湿式反应流程使二氧化硫的吸收主要在热化学反应区进行,而在等离子体反应区完成残余二氧化硫的强化吸收、亚硫酸铵氧化、控制氨逸出以及除酸雾的过程。(3)采用等离子体液相氧化高浓度的亚硫酸盐,将四价硫氧化为六价硫。在化学吸收区,吸收液反复循环,大部分的S02通过与NH3的快速结合从气相进入液相,使生成液的亚硫酸盐浓度达到摩尔量级,再将高浓度亚硫酸盐溶液进行等离子体氧化处理,放电功率集中作用于高浓度的亚盐溶液,因此显著提高氧化速度,降低能耗。通过半工业规模烟气试验,浓度1~3mol·L-1的亚硫酸铵溶液,等离子体一次作用氧化率达20%-60%,摩尔能耗低于20Wh·mol-1,获得有实用价值的反应速率。在SO2初始浓度500~1000μl·L-1下,脱硫率>95%,系统能耗小于3.5Wh·m-3,氨逸出在5μl.L-1以下,回收物为适合农用的氮肥。湿式反应环境使流程无传统等离子体干法技术的产物粘壁和堵塞问题,实现连续稳定的工艺流程,显示出流光放电氨法脱硫工艺良好的工业应用前景。
This research aims at developing a novel streamer plasma flue gas desulfurization technological process by use of a gas discharge plasma and chemical method. Its creative points lie in (1) Using power supplies with DC superimposed with AC (AC/DC) to generate well spatially distributed streamer plasmas in industrially scaled reactors. The development of AC/DC power supply, makes the plasma generator no longer limited by the pulse power device and its large-scale industrial application possible.(2) Using a partitioned wet reactive technological process to separate the multi-cycled thermal chemical absorption region of SO2with NH3from the plasma radical chain reaction region. The absorption of SO2mainly take place in the thermal chemical absorption region, while the enhanced absorption of remainder SO2, the oxidation of ammonium sulfites, the NH3slip control and the SO3mist removal be performed in the successive plasma region.(3) Using the plasmas to oxidize the sulfites in the concentrated solution to covert the sulfites into sulfates. By use of the partitioned wet reactor the electric discharge power is concentrated to act on the concentrated sulfite solution from the absorption region, so that the oxidation speed can be increased. Through semi-industrial scaled flue gas desulfurization tests under the conditions of initial SO2concentrations within500~1000μl·L-1the desulfurization efficiency greater than95%, one-cycle oxidation efficiency of ammonium sulfite of1~3mol-L-1within20%~60%, molar energy consumption less than20Wh·mol-1, energy consumption less than3.5Wh-Nm-3, ammonia slip less than5μl·L-1and a byproduct of qualified agricultural fertilizer are obtained. The wet reactive technological process avoided the problem of the solid byproducts sticking to the walls of the plasma reactor, and the entire technological process can be kept steady and continuous. That demonstrates that the desulfurization technological process with the streamer plasma ammonia method has a favorable prospect in industrial applications.
引文
[1]国家电力信息中心.2020年的电力发展展望[EB/OL]. http://www.sp.com.cn/.2006
    [2]国家电力信息中心.潘岳谈能源和环境[EB/OL]. http://www.sp.com.cn/.2006
    [3]火电厂烟气脱硫关键技术与设备国产化规划要点(2000-2010年).国经贸资源[2000]156号
    [4]雷仲存.工业脱硫技术[M].北京:化学工业出版社.2001:130
    [5]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社.2002
    [6]徐凤钢,易斌,庄德安,杨明珍,闫静,燕中凯.“十五”期间火电厂脱硫设施建设与运行情况调研报告[C].第四届全国脱硫工程技术研讨会.北京:2006
    [7]菅井秀郎[日].等离子体电子工程学[M].张海波,张丹.北京:科学出版社,2002
    [8]金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社,1983
    [9]胡希伟.等离子体理论基础[M].北京:北京大学出版社,2006
    [10]许根慧,姜恩永,盛京.等离子体理技术与应用[M].北京:化学工二业出版社,2006
    [11]李德元,赵文珍,董晓强.等离子技术在材料加工中的应用[M].北京:机械工业出版社,2005
    [12]邵福球.等离子体粒子模拟[M].北京:科学出版社.2002
    [13]庄钊文,袁乃昌,刘少斌,莫锦军.等离子体隐身技术[M].北京:科学出版社,2005
    [14]J.R.罗思.工业等离子体工程第1卷基本原理[M].北京:科学出版社.1998
    [15]H.G.布克.冷等离子体波[M].北京:科学出版社,1985
    [16]董丽芳.气体放电等离子体动力学[M].河北:河北大学出版社,2004
    [17]任家荣.非热等离子体在烟道气脱硫中的应用研究[D].北京:北京大学,2004
    [18]高树香,陈宗柱.气体导电[M].南京:南京工学院出版社,1988
    [19]杨津基.气体放电[M].北京:科学出版社,1983
    [20]J. S. Chang. Recent development of plasma pollution control technology: A critical review. Sci. Technol. Adv. Mater., vol.2,2001:571-576
    [21]K.Yan, S.Kanazawa, T.Ohkubo, and Y.Nomoto. Oxidation and Reduction Processes During NOx Removal with Corona-Induced Nonthermal Plasma. Plasma Chemistry and Plasma Processing, Vol.19, No.3,1999
    [22]Keping Yan, Hexing Hui, MiCui, jinsong Miao, Xiaoli Wu, Chongguang Bao, Ruinian Li. Corona Induced Non-Thermal Plasmas: Fundamental Study and Industrial Applications. Journal of Electrostatics, (44) 1998:17-39
    [23]Ruinian Li, Keping Yan, Jingsong Mao, Xiaoli Wu. Heterogeneous reactions in non-thermal plasma flue gas desulfurization. Chemical Engineering Science, Vol.53, (8) 1998:1529-1540
    [24]Hoeben W F L M., Van Veldhuizen E M., Rutgers W R., Kroesen G M W.,Gas phase corona discharges for oxidation of phenol in an aqueous solution, J.Phys.D:Appl.Phys.1999,32
    [25]S. A. Nair, K. Yan, A. J. M. Pemen, E. J. M. van Heesch, K. J. Ptasinski, and A. A. H. Drinkenburg. Tar Removal from Biomass-Derived Fuel Gas by Pulsed Corona Discharges. A Chemical Kinetic Study. Ind. Eng. Chem. Res.2004,43,1649-1658
    [26]Kawamura K. et al. Flue gas treatment by electron beam irradiation. J. Atomic Energy Soc. Japan,20,1978:359-367
    [27]Kawamura K. et al. Pilot plant experiment of NOx and SO2 removal from exhaust gases by electron beam irradiation. Radiat. Phys. Chem.13,1979:5-12
    [28]Frank N. W. et al. Design notes on testing conducted during the period of June 1985-Sept.1986 on the process demonstration unit at Indianapolis,Indiana" Electron Beam Processing of Combustion Gases, IAEA-TECDOC-428,1987:97-118
    [29]Person J C. and Ham D. O. Removal of SO2 and NOx from stack gases by electron beam irradiation. Radiat. Phys. Chem.31 (1-3)1-8, Int. J. Radiat. Appl. Instrum. Part C,1988
    [30]Jordan S. (1987)," Simultaneous DeSOx and DeNOx of flue gases in the agate pilot plant" Electron Beam Processing of Combustion Gases, IAEA-TECDOC-428,135-150
    [31]Busi F. et al. Radiation induced NOx/SO2 emission control for industrial and power plants flue gas. Radiat. Phys. Chem.31 (1~3) 1988:101~108, Int. J. Radiat. Appl. Instrum. Part C
    [32]毛本将.电子束脱硫关键技术与工艺研究[D].四川绵阳:中国工程物理研究院.2004
    [33]S. Masuda, M.H irano, and K.A kutsu. Enhancement of electronbeam denitrization process by means of electricfield. Radiat. Phys.Chem,1981,17:223-228
    [34]Masuda S. et al. Control of NOx by positive and negative pulsed corona discharges. IEEE/IAS Annual Conference, Denver 1986
    [35]Mizuno, A. et al. A method for the removal of sulphur dioxide from axhaust gas utilizing pulsed streamer corona for electron energization. IEEE Trans. Ind. Appl. IA-22,1986:516-521
    [36]Masuda S. pulse corona induced plasma chemical process: a Horizon of new plasma chemical technologies, pure & Appl. Chem.1988,60:727-731
    [37]S. Masuda, Y. Wu, T. Urabe, Y Ono. Pulse corona induced plasma chemical process for DeNOx De-SO2 and mercury vapor control of combustion gas. Third Int. Conf. Electrostatic Precipitation. M.Rea. Ed.,1987:667-676
    [38]S. Masuada, Y Wu. DeNO, and control of mercury vapor from combustion gas by pulse corona induced plasma chemical process (PPCP). ISPC-8.Tokyo,1987:2222-2227
    [39]Y. Wu, N. Wang, Y. Zhu, Y. Zhang, SO2 removal from industrial flue gases using pulsed corona discharge. Journal of Electrostatics. (44) 1998:11-16.
    [40]Song Y.H., Shin,W.H., Choi,Y.S.,et al. An Industrial-scale Experiment of Pulse Corona Process for Removing SO2 and NOx from Combustion Flue Gas.J. Adv. Oxid. Technol.,2 (2) 1997:268-273
    [41]Masuda S. and Nakao H., Control of NOx by positive and negative pulsed corona discharge. IEEE Trans./IA.26 (2) 1990:374-383
    [42]Masuda S., Report on novel dry DeNOx/DeSOx technology for cleaning combustion gases from utility thermal power plant boilers, In Non-thermal Plasma Techniques for Pollution Control: Part B; Penetrante, B. M., Schultheis, S. E., Eds., Springer-Verlag: Berlin,1993
    [43]G. Dinelli, L. Civitano, M. Rea. Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas. IEEE Trans. Ind Appl. (25) 1990:535-541.
    [44]Civitano L., Dinilli, G. and Rea M. Removal of NOx and Sox from combustion gasses by means of corona energization. Third International conference on gas discharges and their applications, Venezia,1987:19-23
    [45]Civitano L. and Sani E. DeNOx and DeSOx process by gas energization in Plasma Technology: Fundamental and Applications, ed. Capitelli M. and Gorse C., Plenum Press, 1987:153-166
    [46]K. Yan, Corona Plasma Generation, ph D thesis Eindhoven University of Technology, Eindhoven, The Netherlands, ISBN 90-386-1870-0.2001:9-11.
    [47]Kim Y et al. Development of demonstration plant using non-thermal plasma process to remove SO2 and NOx from flue gas. J. Adv. Oxid. Technol.6(1) 2003:35-40
    [48]J.S. Chang, K. Urashima, M. Arquilla, and T. Ito. Reduction of NOx from combustion flue gases by corona discharge activated methane radical injections. J. Combustion Sci. Technol., (133) 1998:29-45
    [49]J.S. Chang, K. Urashima, Y.X. Tong, W.P. Liu,H.Y. Wei, F.M. Yang, X.J. Liu. Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower systems:pilot plant tests. Journal of Electrostatics, (57) 2003:313-323
    [50][1]赵志斌,吴彦,王宁会.含水烟气脉冲放电脱硫脱硝的研究.大连理.工工大学学报.Vo1.6,No.4,1996 424-429
    [51]张彦彬,王宁会,吴彦.3000 Nm3.h-1烟气脱硫试验系统的设计与运行.大连理工大学学报.Vo1.37,No.5 1997:551-554
    [52]赵君科,王保健,任先文,朱祖良.脉冲电晕等离子体烟气脱硫工业试验研究.中国工程科学.Vol 4 No.2,2002
    [53]Yan K., van Heesch E.J.M., Pemen A.J.M., Huijbrechts P.A.H.J., van Gompel F.M., Matyas Z., and van Leuken H. A 2.0 kW pulsed corona system for inducing chemical reactions.35th IEEE Industry Application Society Annual meeting, Rome, Italy,8-12, October,2000: 592-599.
    [54]Yan K., van Heesch E.J.M., Pemen A.J.M., Huijbrechts P.A.H.J., and van der Laan P.C.T., A 10 kW high-voltage pulse generator for corona plasma generation. Rev. Sci. Instrum.,72 (2001a) 2443-2447.
    [55]Yan K., van Gompel F.M., van Heesch E.J.M., and Pemen A.J.M., Development of a 10-30 kW corona plasma system. The Third Int. Symp. on Nonthermal Plasma Technology for Pollution Control, April 23-27,2001e, Korea, p.7-12.
    [56]K. Yan, E.J.M. van Heesch, S.A. Nair, A.J.M. Pemen. A triggered spark-gap switch for high-repetition rate high-voltage pulse generation. Journal of Electrostatics 57,2003:29-33
    [57]A. J. M. Pemena, I. V. Grekhov, E. J. M. van Heesch, K. Yan, and S. A. Nair, S. V. Korotkov Pulsed corona generation using a diode-based pulsed power generator. Review of scientific instruments. Vol.74, No.10 2003
    [58]Yan K., Higashi D., Kanazawa S., Ohkubo T., Nomoto Y, and Chang J.S., NOx removal from air streams by a superimposed AC/DC energized flow stabilized streamer corona. Trans IEE Japan,118-A (1998c) 948-953
    [59]Yan K., Kanazawa S., Ohkubo T., and Nomoto during NOx removal with corona induced non-Plasma Processing,19(1999b) 421-443
    [60]K. Yan, Yamamoto T, Kanazawa S, Ohkubo T, Nomoto Y, Chang J. S., NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations, IEEE Trans. Ind. Applicat., Vol.37 №.5,2001:1499-1504
    [61]Creyghton Y.L.M., Pulsed positive corona discharges:fundamental study and applications to flue gas treatment, Ph.D. Dissertation, Eindhoven University of Technology, Sept.1994
    [62]Blom P.P.M. High power pulsed corona. Ph.D. Dissertation, Eindhoven University of Technology, The Netherlands,1997
    [63]Van Veldhhuizen E.M., Baede A.H.F.M., Hayashi D., and Rutgers W.R., "Fast imaging of streamer propagation", in Diagnostics of Non-equilibrium high-pressure plasmas, Physikzentrum Bad Honnef, Germany, Feb 18-21,2001.
    [64]K. Yan, Corona Plasma Generation, ph D thesis Eindhoven University of Technology, Eindhoven, The Netherlands, ISBN 90-386-1870-0. (2001) Chapter 1
    [65]Brunt R. J. van. Physics and chemistry of partial discharge and corona: recent advances and future challenges. IEEE Trans on Dielectric and Electric Insulation,1 (1994) 761-784
    [66]Achat S., Teisseyre Y., and Marode E. The scaling of the streamer to arc transition in a positive point-to-plane gap with pressure. J. Phys. D:Appl. Phys.,25 (1992) 661-668.
    [67]Sigmond R.S., "Corona Discharge" in Electrical Breakdown of Gases, edited by J.M. Meek and J.D. Craggs,1978, John Wiley & Sons, Ltd.
    [68]Yan K., Kanazawa S., Ohkubo T., and Nomoto Y. Oxidation and reduction processes during NOx removal with corona induced non-thermal plasma. Plasma Chemistry and Plasma Processing,19 (1999b) 421-443
    [69]Yan K., Kanazawa S., Ohkubo T., and Nomoto Y. Evaluation of NOx removal by corona induced non-thermal plasmas. Trans IEE Japan,119-A (1999d) 731-737
    [70]Paur H R,Jordan S. Aerosol formation in electron beam dry scrubbing process. Radiat Phys. Chem.,31 (1-3) 1988:9-13
    [71]Jordan, S. On the state of the art of flue gas cleaning by irradiation with fast electrons. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry. Vol.35,Nos.1-3,1990:409-415
    [72]Huie R E, Neta P. Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. Atmospheric Environment (1967),21 (8) 1987:1743-1747
    [73]Ruinian Li, Xin Liu. Main fundamental gas reactions in denitrification and desulfurization from flue gas by non-thermal plasmas, Chem. Eng. Sci.55 (2000):2491-2506
    [74]Adachi T. Experimental discussion on removal function of SO2 from stack gas by a wet type electrostatic precipitator. IEEJ, (6) 1997:521-528
    [75]Potapkin BV, Deminsky MA, Fridman AA. The effect of clusters and heterogeneous reactions on non-equilibrium plasma flue gas cleaning. NATO ASI Series,1993,G34 (A):91-106
    [76]Chao-Heng Tseng. Enhanced Pulsed Corona Method for the Removal of SO2 and NOx from Combustion Gas in a Wet Electrostatic Precipitator.Ph.D. thesis. University of Cincinnati. 2000
    [77]Kinoshita Youhei, Akira Mizuno. Removal of SO2 using a wet-type non-thermal plasma reactor. IEEE/IAS Meeting Record. Chicago 2001:693-697
    [78]Hyun-Ha Kim, Chunxi Wu,Youhei Kmoshita, et al. The influence of reaction conditions on SO2 oxidation in a discharge plasma reactor" IEEE Trans.Ind.Appl.37 (2) 2001:480-487
    [79]E. M. Van Veldhuizen. Electrical discharges for environmental purposes, Fundamentals and applications. Vova Science Publishers, Inc. New York.2000:Chapter 4.
    [80]Matzing H. Chemical kinetics of flue gas cleaning by irradiation with electrons. Advances in Chemical Physics, Vol LXXX, I. Prigigine and S.A. Rice eds. J.Wiley, New York,1991: 315-402
    [81]Abel E. Zur Theorie der Oxydation von Sulfit zu Sulfat durch Sauerstoff, Monastshefte fur Chemie,85 (3) 815-834
    [82]Potapkin B. V. Deminsky M. A., Fridman A. A., Rusano V. D. The effect of Clusters and Heterogeneous Reactions on Non-equilibrium Plasma Flue Gas Cleaning" Radiat. Phys. Chem.,45 (6) 1995:1081-1088
    [83]Chertkov B. A. On study of Oxidation of Sulfite-Bisulfite Solutions, Journal of Applied Chemistry 30 (9),1959:2609-2612
    [84]Backstrom, H L J., Der Kettenmechanismus bei der Autoxydation von Natriumsulfitlosungen Z. Phys. Chem. (B),25,1934:122
    [85]Hayon E. et al,, Electronic spectra, photochemistry and autoxidation mechanism of sulfite-bisulfite-pyrosulfite sestems, J. Am. Chem. Soc.94 (1) 1972:47-57
    [86]J.H. Seinfeld. Atmospheric Chemistry and Physics. Wiley. New York,1998.
    [87]Brandt, C., Fabian, I., and van Eldik, R.. Kinetics and mechanism of the iron (iii)-catalyzed autoxidation of sulfur (IV) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism. J. Inorg. Chem.,1994. Vol.33, No.3:687-701.
    [88]GB/T 18204.25-2000.公共场所空气中氨测定方法
    [89]HJ/T 56-2000,固定污染源排气中二氧化硫的测定一碘量法.2000
    [90]周同惠,汪尔康,陆婉珍等.分析化学手册,第二分册,化学分析,化学工业出版社,1997:441
    [91]Yuri P.Raizer. Gas Discharge Physicss. Springer-Verlag Berlin Heidelberg.1991. ISBN 3-540-19462-2
    [92]K.Yan, E.J.M.van Heesch, A.J.M.Pemen, P.A.H.J. Huijbrechts. Elements of pulsed corona induced non-thermal plasmas for pollution control and sustainable development. Journal of Electrostatics 51-52,2001:218-224
    [93]Kim Yongho, San Hee Hong, Min Suk Cha, Young-Hoon Song and Seock Joon Kim J. Adv. Oxid. Technol.6 (1) 2003:17-22
    [94]Sigmond R. S. The residual streamer channel: return strokes and secondary streamers. J. Appl. Physics 56 (5) 1984:1356-1370
    [95]Leonard B. Loeb. Electrical Coronaas. University of California press.1965
    [96]Perelman L. S. Study of positive and negative point corona pulses. Int. conf. on phenomena in ionized gases,1969
    [97]Yan K, Higashi D, Kanazawa S, Ohkubo T, Nomoto Y, Chang J. S., NOx Removal From Air Streamers by a Superimposed AC/DC Energized Flow Stabilized Streamer Corona. Trans. IEE of Japan, Vol.118-A, No.9, Sep.1998
    [98]Keping Yan, et al, Evaluation of NOx removal by corona induced non-thermal plasmas. Trans. IEE Japan Vol.119-A No.6 1999
    [99]S.A. Nair, K. Yan, A. Safitri, A.J.M Pemen, E.J.M. van Heesch, K.J. Ptasinski, A.A.H. Drinkenburg. Streamer corona plasma for fuel gas cleaning: comparison of energization techniques. Journal of Electrostatics (63) 2005:1105-1114
    [100]Keping Yan, Ruinian Li, Tianle Zhu, Hongdi Zhang, Xiaotu Hu, Xuedong Jiang, Hui Liang, Ruichang Qiu, Yi Wang, A semi-wet technological process for flue gas desulfurization by corona discharges at an industrial scale. Chemical Engineering Journal,116 (2006) 139-147.
    [101]Xuedong Jiang, Ruinian Li. Ruichang Qiu, Xiaotu Hu, Hui Liang. Kinetic model of non-thermal plasma flue gas desulfurization in a wet reactor. Chemical Engineering Journal. 116 (2006) 149-153
    [102]胡小吐,姜学东,朱天乐,王毅,邱瑞昌,张鸿迪,李瑞年,阎克平.流光放电等离子体氨法烟气脱硫工艺.化工学报(Huagong Xuebao) 2007,58 (4):1001-1006
    [103]胡小吐,王毅,朱天乐,姜学东,李瑞年.流光放电等离子体液相氧化亚硫酸铵.物理化 学学报(Acta Phys.-Chim. Sin.) 2007,23 (3):384-388
    [104]E. M. Van Veldhuizen. Electrical discharges for environmental purposes, Fundamentals and applications. Vova Science Publishers, Inc. New York.2000. Chapter 2.
    [105]E. Nasser. Fundamentals of gaseous ionization and plasma electronics, John Wiley & Sons, Inc. USA,1971:321-332
    [106]K. Yan, T. Yamamoto, S. Kanazawa, T. Ohkubo, and Y. Nomoto. Production of streamer corona for NO removal. in Proc. Meeting Institute of Electrostatics,1998:197-200.
    [107]McDaniel E. W., Collision Phenomena in Ionized Gases, Wiley New York,1964
    [108]Leonard B.Loeb, Electrical coronas, University of California press, Berkeley and Los Angeles, 1965:86-97
    [109]Yan K, Yamamoto T, Kanazawa S, Ohkubo T, Nomoto Y, Chang J. S., NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operation, Conf. Record of IEEE/IAS Annual Meeting, October 1998:12-16
    [110]Zhao Junke(赵君科),A pilot rig for flue gas De-SO2 and De-NOx by narrow pulsate high voltage corona. Electrostatic Precipitation & Gas Cleaning,2001,7 (1):4-7.
    [111]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社.2001
    [112]Vasishtha N. and Samashwar A. V. "Absorption characteristics of sulfur dioxide in water in the presence of a corona discharge" Ind. Eng. Chem. Res.27,1988:1235-1241
    [113]Maximuk E. P. and Bologa M. K. "Some mechanisms of electric field influence on mass transfer processes in the gas-liquid system", J Electrostatics,40&41,1997:663-668
    [114]南京化学工业公司研究院《硫酸工业》编辑部.低浓度二氧化硫烟气脱硫.上海科学技术出版社:1981,22
    [115]Seinfeld J. H. Atmospheric chemistry and physics of air pollution. Wiley, New York,1985
    [116]黄立维,松田仁树.化工学报(Huagong Xuebao),2004,55 (6)
    [117][1] Nair, S. A.; Yan, K.; Safitri,A.; Pemen, A.J.M.; van Heesch, E.J.M.; Ptasinski, K.J.; Drinkenburg,A.A.H. J. Electrostatics,2005,63:1105
    [118]Clarke A. G. and Radojevic M. Chloride ion effects on the aqueous oxidation of SO2. Atmospheric Environment,1983,17 (3):617-624
    [119]Li wei, Zhou Jinghong, Xiao wende. Oxidation of Concentrated Ammonium Sulfite. Journal of East China University of Science and Technology,06 2001, Vol.27 No.3,226-229
    [120]Zhou Jinghong, Li Wei, Xiao Wende. Kinetics of heterogeneous oxidation of concentrated ammonium sulfite. Chemical Engineering Science,2000,55:5637-5641
    [121]李伟,周静红,肖文德.高浓度亚硫酸铵氧化反应过程研究.华东理工大学学报.27(3)2001:226-229
    [122]Ermakov, A. N.; Poskrebyshev, G. A.; Purmal, A. P. Sulfite Oxidation: The State-of-the-Art of the Problem. Kinet. Catal.38 (3) 1997:295-308
    [123]Ermakov, A. N.; Purmal, A. P. Catalytic Mechanism of the "Noncatalytic" Autooxidation of Sulfite. Kinet. Catal.,42 (4) 2001:479-489
    [124]Christian Brant and Rudi van Eldik. Transition Metal-Catalyzed Oxidation of Sulfur (IV) Oxides. Atmospheric-Relevant Processes and Mechanisms. Chemical Reviews, Vol.95, №1, 1995:119-177
    [125]任家荣,刘霁欣,李瑞年,尉继英,赵璧英,谢有畅.气体放电法氧化高浓度亚硫酸盐.物理化学学报(Wuli Huaxue Xuebao),2004,20 (6):656
    [126]Yan, K.P. Corona Plasma Generation, Eindhoven University of Technology, Eindhoven,The Netherlands,2001
    [127]Kim Yongho, San Hee Hong, Min Suk Cha, Young-Hoon Song and Seock Joon Kim J. Adv. Oxid. Technol.6(1) 2003:17-22
    [128]R. Ono, T. Oda, Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge, J. Phys. D 35 (2002) 2133-2138.
    [129]任信荣,邵可声,缪国芳,唐孝炎.大气OH自由基浓度的测定.中国环境科学,21(2)2001:115-118
    [130]Linek V. and Vacek V Chemical engineering use of catalyzed sulfite oxidation kinetics for the determeination of mass transfer characteristics of gas-liquid contactors. Chem. Eng. Sci.36 (11) 1981:1747-1768
    [131]Keping Yan, et al, Evaluation of NOx removal by corona induced non-thermal plasmas. Trans. IEE Japan Vol.119-A No.6 1999
    [132]S.A. Nair, K. Yan, A. Safitri, A.J.M Pemen, E.J.M. van Heesch, K.J. Ptasinski, A.A.H. Drinkenburg. Streamer corona plasma for fuel gas cleaning: comparison of energization techniques. Journal of Electrostatics 63 (2005) 1105-1114
    [133]He Lin, Xiang Gao, Zhongyang Luo, Kefa Cen, Zhen Huang. Removal of NOx with radical injection caused by corona discharge. Fuel 83 1350,2004:1349-1355
    [134]Kuniko Urashima, Jen-Shih Chang, Jae-Yoon Park, Duck-Chool Lee, Alok Chakrabarti, Tair Ito. Reduction of NO from Natural Gas Combustion Flue Gases by Corona Discharge Radical Injection Techniques. IEEE transactions on industry applications, vol.34 (5),1998
    [135]Fujiwara M, et al, Trans. IEE Japan,118-A,1998:930-935
    [136]Penetrante B. M., Hsiao M.C., Merritt B. T., Vogtlin G. E., and Wallman P. H., Comparison of electrical discharge techniques for nonthermal plasma processing of NO in N2, IEEE Trans on Plasma Science,23,1995:679-687
    [137]Tas M. A., et al. Plasma Chem. & Plasma Processing,17,1997:371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700