用户名: 密码: 验证码:
电场作用下合金液相流动及凝固结晶生长规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电场、磁场、超声波声场和微重力场等外场作用的金属凝固技术范畴内,电场凝固技术以其设备相对简单和操作比较灵活的特点而得到铸造研究和工程技术领域的重视。与传统的凝固过程采用化学方法处理相比较,电场以其特有的外场能量形式同样可以达到细化铸造晶粒和改良组织结构的目的,而且对合金熔体无成分改变、对环境和人体健康也不会造成损害。虽然已有研究表明电场可对多种铸造合金材料进行晶粒细化、组织结构调整和析出相形态控制,但在电场作用下可影响的合金种类在深度和广度上仍存在问题,尤其是在电场作用方式、电场作用液相流动机理和电场作用凝固机理需要开展深入而系统的研究。
     本文综合运用数值模拟、相似性物理模拟和合金凝固实验的方法,研究了电场影响的合金液相流动及其凝固结晶生长过程。首先采用有限元方法,利用APDL(ANSYS Parametric Design Language)参数化设计语言,以Ti-(46-50at%)Al合金为例分别计算了在交流电场、脉冲电场及稳恒电场作用下,合金液相在型腔宽厚比分别为1:1、2:1、3:1、4:1、5:1及9:1铸型内电磁场及流场的分布规律,并对不同型腔中固/液界面前沿液相流动进行了数值模拟。其次根据相似性物理模拟准则,自行建立了用于研究电场影响的液相流动与结晶生长的多功能动态观测装置,分别选择NH4Cl-89.43at%H_2O、SCN-8.38at%ETH为单相类合金模拟物、NPG-90.45at%SCN为亚共晶类合金模拟物、AMPD-19at%SCN为过包晶类合金模拟物,观察了电场对其结晶生长的影响规律。最后采用型腔宽厚比为5:1的矩形铸型,通过直接通入电流,开展了电场影响下Al-9at%Si和Ti-50at%Al合金的铸造实验,并利用OM、XRD、SEM、EDS等分析测试手段分别对比分析了有无电场影响时两种合金的凝固组织、抗拉强度及维氏显微硬度变化。
     本文通过上述研究获得以下主要结果:(1)在三种电场作用方式下,与其它铸型型腔宽厚比相比,5:1型腔内合金液相的流动趋于均衡,而且通过与交流电场或者脉冲电场比较,由稳恒电场所驱动的合金液相流动更加平稳和持久。电场对枝晶前沿液相区流场所产生的影响表现为,在胞、枝晶尖端的一侧形成漩涡,形成所谓的流动上游区。(2)稳恒电场作用于单相合金模拟物NH4Cl-89.43at%H_2O时,由于其固、液两相的电导率差别大,Joule热效应将起主要作用,对其游离晶重溶和等轴树枝晶、柱状树枝晶的生长形态产生影响,而采用单相类合金模拟物SCN-8.38at%ETH时,电场的Pinch效应及TEMHD(Thermoelectric magnetohydro-dynamic)效应促进了“平-胞”转变并加快了胞晶生长速度,由于TEMHD造成胞晶尖端前沿过冷度增大,导致胞晶出现分叉现象,此两种效应会造成柱状树枝晶迎流倾斜生长。(3)稳恒电场作用于亚共晶类合金模拟物NPG-90.45at%SCN结晶生长时,电场的Pinch效应会导致初生NPG相出现冲断和重熔,并导致NPG/SCN共晶相中NPG相出现分叉现象。(4)稳恒电场作用于过包晶类合金模拟物AMPD-19at%SCN时,发现电场使得包晶β相由长柱状生长转变为颗粒状生长,这是由于电场改变了初生相及包晶相的化学位,抑制了包晶相变的发生,从而降低了包晶β相的产量,导致其不易向发达的长柱状生长。(5)在电场影响的Al-9at%Si和Ti-50at%Al合金浇注与凝固实验中,建立了同质复合电极电流施加方法,并导出矩形铸型型腔内电流作用合金液相流动均匀性的判断准则,即(D/W)/(1/7/) ,(电极接线柱半径R≥0.01m,两极板间作用区长度L≤10m),当铸型型腔尺寸和电极尺寸满足该式时,可使电场影响的型腔内的液相流动效果最佳。电场对Al-9at%Si和Ti-50at%Al合金宽厚比5:1板坯试样的凝固晶粒组织均产生一定程度的细化,这验证并支持了现有关于电场细化铸造合金组织的结果。在Al-9at%Si的共晶组织中出现了共晶Si相分叉的现象,而在Ti-50at%Al合金的凝固组织中也出现了包晶相含量相对偏少的现象,即在电场的作用下,其包晶相的生长受到抑制。
     本文最后从凝固热力学与凝固动力学角度分析和阐明了电场影响合金凝固的作用机制,这为促进电场凝固技术在铸造方面的应用奠定了一定的技术理论基础,同时也对Al-Si类合金和Ti-Al类合金在航空、航天和汽车等领域的进一步应用将产生积极影响。
Amongst the physical field assisting solidification techniques, including magnetic field, ultrasonic field and micro-gravity field as well as electric field solidification, the last has drawn much attention from many researchers and technicians due to its merits of easy facility, feasible operation and visible effect. In comprison to the normal solidification process modified by chemical additives, however, electric field can also result in refinement of the cast grains and improvement of the microstructures without changing alloy compisition, making surplus casting defects and damaging health and enviroment. In case of the advancement of casting and solidification assisted by the electric field, numerous results reveal that electric field is with the better abillity to refine grains, alter precipitate phase morphologies and distributions for a variaty of metals and alloys. Nevertheless, there are issues which should be resolved in terms of unstable chosen ways of electric current patterns, misunderstanding mechanisms of fluid flow and freezing and application of new generation materials when the electric field was intersected to solidification process.
     Aiming at the points mentioned above, a complex method which combined numerical and physical simulation and solidification experimental with and without electric field, was utilized subsequently to resolve the influence of electric current treatment on liquid phase flow and its crystal growth of alloys. In numerical simulation, FEM (Finite Element Method) and APDL(ANSYS Parametric Design Language) were chosen to calculate the intensity and distribution of electromagnetic field and flow field of alloy melt, taking Ti-(46-50at%)Al as an instance, inside mould cavities of width-to-thickness ratio in cross-section ranging from 1:1, 2:1, 3:1, 4:1, 5:1 to 9:1. The three excitation modes of electric field, e.g. alternate electric field, pulse electric field and steady electric field, were applied during the calculation respectively. The flow field in the front of the S/L interface was also simulated thereby. In physical simulation, a multi-functional and time-dependent dynamic observation appratus was set up according to the physical similarity laws. Metalloids or alloy-like binary solutions were selected to observe and examine the fluid flow and crystal growth under electric field. Mostly, NH4Cl-89.43at%H2O and SCN-8.38at%ETH were simulated to single phase and NPG-90.45at%SCN to hypoeutectic as well as AMPD-19at%SCN to hyperperitectic in their counterparts of alloys respectively. In experimental, the pouring and solidifying of binary alloys, Al-9at%Si and Ti-50at%Al has been investigated through exerting a steady electric field in which the alloys were cast into slabs with 5:1 in width-to-thickness ratio in cross-section. Finally, samples cutting from the 5:1 slab were analyzed through OM, XRD, SEM and EDS for observing structures and tensile test and microhardness test for measuring mechanical properties.
     Based on the above simulation and experiment, the results can be drawn into conclusion as followed. A width-to-thickness ratio of 5:1 mould cavity is appropriate for accommodating fluid because of the intensity and distribution of electromagnetic field are favorable in this case, where it leads to a more steady fluid flow in comparison with other mould cavity ratios under any electric field of the three modes. Moreover, the flow droven by steady electric field is much more stable and enduring than the others. Also, the fluid flow in the front of S/L interface presents turbulent votexes around dendrite tips at their same side which consolidates upstream flow in the fluid. Because NH4Cl-89.43at%H2O has large difference in electric conductivity of liquid phase and solid phase, Joule heating effect will play an important role to remelt the drifting crystals and surpress the growth of the second and third arms of equiaxed and columnar dendrites. For SCN-8.38at%ETH metalloid alloy, the Pinch effect and TEMHD (Thermoelectric Magneto- Hydrodynamic) effect simutaneously accelerate the planar to cellular transformation and speed up the cellular growth rate. Because TEMHD effect itself can arise increasing of the undercooling in the front of cellular tips, it leads to branching of cellular crystals. With their growth and further forcing the columnar grains grow inclinedly against the upstream flow in conjunction with Pinch effect. For NPG-90.45at%SCN metalloid alloy, Pinch effect causes the primary NPG phase to remelt and be broken down, and also makes the presented eutectic NPG phase in NPG/SCN eutectoid to branch. For AMPD-19at%SCN metalloid alloy, the steady electric field changes theβperitectic phase growth patern from columnar to granular due to the chemical potential varied by the electric field in both peritectic phase and primary phase, which means the peritectic phase transformation is being supressed, thereafter, the amount ofβproducts are reduced and growth of column grains are unable to develop in the next precipitate procedure. A method of inputing electric current into the mould cavity using electrodes with similar compisition to those of the alloys was created. In performance of the method, a criteria was also deduced for judging homogeneity of a curent conducting inside the melt, i.e. (D/W)/(1/7/) , where it needs to satisfy R≥0.01m, the radius of the binding post of electrode, and L≤10m the length of electric field acting zone. So far as the situation meeting the formula is satisfied, an optimal flow will be achieved consequently. The grain size of Al-9at%Si alloy and Ti-50at%Al alloy is decreased to some extent, which approves and supports the exsiting results on grain refininment of the cast alloys. In case of the eutectic colonies of Al-9at%Si alloy, the branching of eutectic silicon was also found. In the solidification microstrutures of Ti-50at%Al alloy a reduction of peritectic phase was observed, i.e. the peritectic phase was suppressd by elctric current under a electric field.
     In the end, this paper presents thermodynamic and kinetic interpretion on reseasons why the electric field affects solidification process of the casting alloys. It will make fundations for castings on the basis of electric field solidification technique. It is also expected to pave more ways on application of Al-Si alloy and Ti-Al alloy in aviation, aerospace and automobile industries.
引文
1.顾根大.电场作用下金属定向凝固行为的研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 1989:100-135
    2. Li X., Fautrelle Y., Zaidat K., et al. Columnar-to-Equiaxed Transitions in Al-Based Alloys During Directional Solidification under a High Magnetic Field[J]. Journal of Crystal Growth, 2010, 312(2):267-272
    3. Moreau R., Laskar O., Tanaka M., et al. Thermoelectric Magnetohydrodynamic Effects on Solidification of Metallic Alloys in the Dendritic Regime[J]. Materials Science and Engineering A, 1993, 173 (1-2):93-100
    4.傅恒志,魏炳波,郭景杰.凝固科学技术与材料[J].中国工程科学, 2003, 5(8):1-15
    5. Campbell J. The Concept of Net Shape for Castings[J]. Materials & Design, 2000, 21(4):373-380
    6. Jovanovic M., Dimcic B., Bobic I., et al. Microstructure and Mechanical Properties of Precision Cast TiAl Turbocharger Wheel[J]. Journal of Materials Processing Technology, 2005, 167(1):14-21
    7.张诤,杨晶.大型薄壁复杂铝件铸造技术的现状与发展[J].机械管理开发, 2005, (5):65-66
    8.王吉岱,闫承俊,孙静等.铝合金变质处理的现状和发展趋势[J].铸造, 2005, 54(9):844-846
    9.王玉琮,黄良余,翟春泉等.锶变质铝硅合金吸氢问题的研究及其精炼方法[J].铸造, 1986, (8):32-36
    10. Nogita K., Dahle A. K.. Effects of Boron on Eutectic Modification of Hypoeutectic Al-Si Alloys[J]. Scripta Materialia, 2003, 48:307-313
    11. Kotte B.. Strontium Modification Gives Critical Melt Control[J]. Modern Casting, 1985, (5):690-695
    12. David P.. Processing Molten Aluminum-part l: Understanding Silicon Modification[J]. Modern Casting, 1990, 1:24-27
    13. Hurley T. J., Atkinson R. G.. Effects of Modification Practice on Aluminum A-356 Alloys[J]. AFS Transactions, 1985, 39:291-296
    14. Shida Y., Anada H. The Influence of Ternary Element Addition on the Oxidation Behaviour of TiAl Intermetallic Compound in High Temperature Air[J]. Corrosion Science, 1993, 35(5-8):945-953
    15.黄旭,齐立春,李臻熙. TiAl基复合材料的研究进展[J].稀有金属材料与工程, 2006, 35(11):1845-1847
    16. Basrnak J., Sprecher A., Conrad H. Colony(Grain) Size Reduction of Eutectic Pb-Sn Castings by Electropulsing[J]. Scripta Materialia, 1995, 32(6):879-884
    17. Nakada M., Shiohara Y., Flemings M. Modification of Solidification Structures by Pulse Electric Discharging[J]. ISIJ International, 1990, 30(1):27-33
    18. Usui M., Iwai K., Asai S. Crystal Alignment of Sn-Pb Alloy by Controlled Imposition of a Static Magnetic Field and an Alternating Electric Current During Solidification[J]. ISIJ international, 2006, 46(6):859-863
    19. Liao X. L., Zhai Q. J., Song C., et al. Effects of Electric Current Pulse on Stability of Solid/Liquid Interface of Al-4.5wt%Cu Alloy During Directional Solidification[J]. Materials Science and Engineering A, 2007, 466(1-2):56-60
    20. Bae J., Kim T., Kang C. Experimental Investigation for Rheology Forming Process of Al-7%Si Aluminum Alloy with Electromagnetic System[J]. Journal of Materials Processing Technology, 2007, 191(1-3):165-169
    21. Kang C., Bae J., Kim B. The Grain Size Control of A356 Aluminum Alloy by Horizontal Electromagnetic Stirring for Rheology Forging[J]. Journal of Materials Processing Technology, 2007, 187:344-348
    22.傅明喜,吴晶.脉冲电流对Al-Si合金缩孔及凝固组织的影响[J].热加工工艺, 2003, (1):24-25
    23.富玉竹,王冰,王建中.脉冲电场处理温度对Al-5.0%Cu合金熔体结构的影响[J].辽宁工学院学报, 2006, 26(4):258-261
    24.甘长红,廖希亮,方燕等.脉冲电流对亚共晶Al-Si合金凝固组织的影响[J].铸造技术, 2006, 27(3):252-254
    25.王志华,王昕,邓军平等.三角波脉冲电流对近共晶Al-Si合金晶面取向的影响[J].铸造技术, 2005, 26(2):109-112
    26.訾炳涛,崔建忠.高密度脉冲电流作用下LY12铝合金的凝固组织[J].特种铸造及有色合金, 2000, (4):4-6
    27.曹丽云,曹力生.电脉冲孕育(EPM)处理对ZL101合金凝固组织和力学性能的影响[J].铸造, 2001, 50(10):590-593
    28.顾根大,安阁英,李庆春.电场作用下的材料凝固[J].材料科学与工程学报, 1989, (4):20-24
    29. Zhao J., Unuvar C., Anselmi-Tamburini U., et al. Microstructural Evolution During the Dissolution of Nickel in Liquid Aluminum under the Influence of an Electric Field[J]. Acta Materialia, 2008, 56(8):1840-1848
    30. Wu Y., Zhao X. Effects of Electric Field on Recrystallization Texture Evolution in Cold-Rolled High-Purity Aluminum Sheet During Annealing[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(1):143-147
    31. Hu Z. C., Zhang Y. D., Zhao X., et al. Electric Field Annealing on 3104 Aluminum Alloy Sheets: Evolution of Microstructure and Texture[J]. Solid State Phenomena, 2005, 105:169-174
    32.刘兵.静电场对铝合金的作用效应与机制[D].西安:西北工业大学博士学位论文, 2002:10-16
    33.刘霞,陈铮,张建军等.铝镁合金在电场作用下的自由能计算[J].有色金属, 2007, (2):14-17,40
    34.屈淑维.稳恒磁场及直流电场对铝硅合金凝固过程及组织性能的影响研究[D].太原:中北大学, 2009:10-16
    35.屈淑维,杨晶,郭志宏.耐火材料条件下电磁场对铝硅合金凝固组织的影响[J].热加工工艺, 2008, (23):49-50,54
    36.时海芳,裴延玲,李虎田.电磁振荡Al-Cu合金凝固组织分析[J].有色金属, 2003, (2):4-6
    37.张永.脉冲电流处理对Al-Si活塞合金凝固组织和性能的影响[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2007:36-54
    38.曲家惠,吴静婷,李四军等.电场作用下AZ31镁合金的组织与织构的演变[J].轻合金加工技术, 2006, (2):36-39,53
    39.李继高.电磁场作用下铝镁合金组织性能变化规律研究[D].武汉:武汉理工大学硕士学位论文, 2006:60-70
    40.周全,杨院生,唐军立等.脉冲电场下制备AZ91D镁合金部分重熔过程的组织演变[J].中国有色金属学报, 2006, (8):1417-1422
    41. Li M. J., Tamura T., Omura N., et al. Effects of Magnetic Field and Electric Current on the Solidification of AZ91D Magnesium Alloys Using an Electromagnetic Vibration Technique[J]. Journal of Alloys and Compounds,2009, 487(1-2):187-193
    42. Wang B., Yang Y. S., Sun M. L. Microstructure Refinement of AZ31 Alloy Solidified with Pulsed Magnetic Field[J]. Transactions of Nonferrous Metals Society of China, 2010, 9:1685-1690
    43.王劲,尹建军,丁雨田等.直流电场对ZA27合金凝固组织的影响[J].铸造, 2003, (2):84-88
    44.万刚,武保林,赵玉华等.脉冲电流对Zn-42%Al合金定向凝固行为的影响[J].铸造技术, 2005, 26(12):1124-1126
    45. Misra A. A Novel Solidification Technique of Metals and Alloys: Under the Influence of Applied Potential[J]. Metallurgical and Materials Transactions A, 1985, 16(7):1354-1355
    46. Misra A. Misra Technique Applied to Solidification of Cast Iron[J]. Metallurgical and Materials Transactions A, 1986, 17(2):358-360
    47. Misra A.Method and Apparatus for Controlling Solidification of Metals and Other Materials[P].USA,1993:30-52
    48.范金辉,华勤,侯旭等.脉冲电流对奥氏体不锈钢凝固组织的影响[J].钢铁, 2003, 38(5):44-46
    49.曹丽云,王建中.非稳态脉冲电流对Q235钢组织细化的影响[J].热加工工艺, 2001, (5):13-14
    50.范金辉,李仁兴,侯旭等.不同参数脉冲电流对不锈钢Cr18Ni9Ti凝固组织的影响[J].铸造技术, 2003, 24(6):534-536
    51.唐勇,王建中.电脉冲对高碳钢凝固组织的影响[J].钢铁研究学报, 1999, 11(4):44-47
    52.唐勇,王建中.电脉冲作用下T8钢凝固组织的改变[J].北京科技大学学报, 2000, 22(4):307-311
    53. Li Y. J., Yang Y. S., Feng X. H., et al. Effect of DC Electric Current on the Precipitation of Gamma'-Phase in a Ni-Based Single Crystal Superalloy[J]. Acta Metallurgica Sinica, 2006, 42(9):942-946
    54.李万锋,杨院生,于力等.直流电场作用对K417G镍基高温合金凝固组织的影响[J].材料工程, 2001, (9):7-22
    55. Yang Y. S., Feng X. H., Cheng G. F., et al. Solidification of Nickel-Based Single Crystal Superalloy by Electric Field[J]. Acta Metallurgica Sinica(English Letters), 2005, 18(6):679-685
    56. http: // focus.aps.org/story/v25/st8[EB/OL]
    57. Shercliff J. Thermoelectric Magnetohydrodynamics[J]. Journal of fluid mechanics, 1979, 91(02):231-251
    58. Ahmed S., McKannan E. Control of Morphologyin Nickel Base Superalloys through Alloy Design and Densification Processing under Electric Field[J]. Materials Science and Technology, 1994, 10(11):941-946
    59. Yamamoto T., Chan S. K., Lu J. G., et al. Enhanced High-Field Transport Critical Current-Density of Superconducting Bulk Y-Ba-Cu-O Prepared by Rapid Solidification and Directional Annealing[J]. Physical Review B, 1992, 46(13):8509-8514
    60. Imagawa Y., Kakimoto K., Shiohara Y. Effect of Unidirectional Solidification Rate on J(C) for Current Lead[J]. Physica C: Superconductivity, 1997, 280(4):245-252
    61. Imagawa Y., Kakimoto K., Shiohara Y. High J(C) YBCO Current Lead by Unidirectional Solidification[J]. Materials Science and Engineering B, 1998, 53(1-2):86-90
    62.王建中.电脉冲孕育处理技术研究及液态金属团簇结构假说[D].北京:北京科技大学博士学位论文, 1998:60-73
    63. Aigner M., Ritter F., Assmus W. Influence of an Electric Current on the Crystallization of YBa2Cu3O7- X in BaO/CuO/CuO0.5 Flux Melts[J]. Journal of Low Temperature Physics, 1999, 117(3):699-703
    64. Wang T. M., Xu J. J., Xiao T. Q., et al. Evolution of Dendrite Morphology of a Binary Alloy under an Applied Electric Current: An in Situ Observation[J]. Physical Review E, 2010, 81(4)
    65. Li J., Li S., Li J., et al. Modification of Solidification Structure[J]. Scripta Materialia, 1994, 31(12):1691-1694
    66. Liao X. L., Zhai Q. J., Luo J., et al. Refining Mechanism of the Electric Current Pulse on the Solidification Structure of Pure Aluminum[J]. Acta Materialia, 2007, 55(9):3103-3109
    67.黄立国,张伟强.连续电场作用下的铝-铜合金共晶片层形貌[J].机械工程材料, 2005, (11):25-27,63
    68.于盛睿,曾义和,冯浩等.交流电场作用下铝硅共晶合金凝固组织和力学性能的变化[J].热加工工艺, 2010, (9):47-50
    69. Vashchenko K., Chernega D., Vorobev S., et al. Effect of Electric Current on the Solidification of Cast Iron[J]. Metal Science and Heat Treatment, 1974, 16(3):261-265
    70.КоровинВ.А.,高业麟.直流电对铸铁组成的影响[J].铸造, 1987, (11):44
    71.徐前刚,武保林,万刚等.直流电场对Al-4.5%Cu合金定向凝固组织的影响[J].航空材料学报, 2006, (1):16-19
    72. Li F., Regel L., Wilcox W. The Influence of Electric Current Pulses on the Microstructure of the MnBi/Bi Eutectic[J]. Journal of Crystal Growth, 2001, 223(1-2):251-264
    73.郭发军,陆巧彤,李玲珍等.交流电场对定向凝固及界面溶质分配系数的影响[J].北京科技大学学报, 2006, (2):124-128
    74. Anyalebechi P. N., Tomaswick K. M. Effect of Application of Electric Current During Solidification on the Cast Microstructure of Aluminum Alloy 7050[J]. Epd Congress 2009, Proceedings, 2009:541-554
    75. Gao M., He G., Yang F., et al. Effect of Electric Current Pulse on Tensile Strength and Elongation of Casting ZA27 Alloy[J]. Materials Science and Engineering A, 2002, 337(1-2):110-114
    76. Garnier M. Electromagnetic Processing of Liquid Materials in Europe[J]. ISIJ international, 1990, 30(1):1-7
    77. Nogita K., Dahle A. Effects of Boron on Eutectic Modification of Hypoeutectic Al-Si Alloys[J]. Scripta Materialia, 2003, 48(3):307-313
    78.汪青杰,于智清,马振宁.脉冲电流对形核率影响机制的研究[J].辽宁工学院学报, 2006, 26(4):227-229
    79. Lu D., Jiang Y., Guan G., et al. Refinement of Primary Si in Hypereutectic Al-Si Alloy by Electromagnetic Stirring[J]. Journal of Materials Processing Technology, 2007, 189(1-3):13-18
    80.刘华泽,赵志龙,马连辉等.高密度脉冲电流对纯铝凝固晶粒组织及其过冷度的影响[J]. Foundry Technology, 2008, 1:29
    81.李杰.脉冲电流凝固细晶技术的机理及应用[D].上海:上海大学博士学位论文, 2009:12-20
    82. Chang G. W., Yuan J. P., Wang Z. D., et al. Effect of Electric Current on Stability of Solidification Interface Morphology[J]. Transactions ofNonferrous Metals Society of China, 2000, 10(4):445-448
    83. Brush L. N., Murray B. T. Crystal Growth with Applied Current[J]. Journal of Crystal Growth, 2003, 250(1-2):170-173
    84. Conrad H. Influence of an Electric or Magnetic Field on the Liquid-Solid Transformation in Materials and on the Microstructure of the Solid[J]. Materials Science and Engineering A, 2000, 287(2):205-212
    85. Iwai K., Usui M., Asai S. Crystal Alignment of Sn-Pb Alloy by a Simultaneous Imposition of a DC Current and a Static Magnetic Field During Solidification[J]. ISIJ International, 2008, 48(9):1206-1209
    86. Ma J. H., Li J., Gao Y. L., et al. Grain Refinement of Pure Al with Different Electric Current Pulse Modes[J]. Materials Letters, 2009, 63(1):142-144
    87. Murray B., Wheeler A., Glicksman M. Simulations of Experimentally Observed Dendritic Growth Behavior Using a Phase-Field Model[J]. Journal of Crystal Growth, 1995, 154(3-4):386-400
    88. Nikrityuk P. A., Ananiev S., Eckert K., et al. The Influence of a Direct Electric Current on the Growth of Solutal Dentrites[J]. Magnetohydrodynamics, 2009, 45(3):407-416
    89. Petrov S. S., Prigunov S. V., Prigunova A. G., et al. Structural and Phase Transformations in Silumines under Action of Liquid-Phase Processing by an Electric Current[J]. Metallofizika I Noveishie Tekhnologii, 2008, 30(8):1129-1137
    90. Petrov S. S., Prigunov S. V., Prigunova A. G., et al. Structural and Phase Transformations in Silumins under Liquid-Phase Electric-Current Processing[J]. Metallofizika I Noveishie Tekhnologii, 2009, 31(8):1161-1168
    91.边秀房.金属熔体结构[M].上海:上海交通大学出版社, 2003:30-50
    92.边秀房,蒋民华.金属熔体中程有序结构[J].中国科学: E辑, 2002, 32(2):145-151
    93.马立群,舒光冀.金属熔体在超声场中凝固的研究[J].材料科学与工程, 1995, 13(4):2-7
    94.张鉴.含化合物金属熔体结构的共存理论及其应用[J].特殊钢, 1994, 15(6):43-53
    95.何树先,王俊.高密度脉冲电流以对过共晶Al-Si合金凝固组织的影响[J].中国有色金属学报, 2002, 12(2):275-278
    96. Lorrain P., Corson D. Electromagnetic Fields and Waves[J]. 1970:20-35
    97.梁灿彬.电磁学[M].北京:人民教育出版社, 1980:50-70
    98. Jones D. The Theory of Electromagnetism[M]. New York: Macmillan 1964:20-100
    99.顾根大,安阁英,徐雁允等.电场作用下的枝晶间距[J].金属科学与工艺, 1991, (3):68-74
    100.郭发军,陆巧彤,李玲珍等.交流电场对定向凝固及界面溶质分配系数的影响[J].北京科技大学学报, 2006, (02):124-128
    101.吴金平,侯安新.凝固平界面的非线性不稳定性与动力学分岔[J].中国科学: E辑, 2000, 30(6):484-496
    102.张国志,冯妍卉,张欣欣等.氯化铵水溶液定向凝固实验的传热分析[J].热科学与技术, 2007, 6(2):113-118
    103. Asai S., Sahara T., Muchi I. Theoretical Analysis and Model Study of the Formation of A-Type Segregation in Ingots[J]. Tetsu-to-Hagane(Journal of the Iron and Steel Institute of Japan), 1977, 63(9):1512-1519
    104.段萌萌,陈长乐,李展耀等.重力对流对凝固界面形态的影响[J].中国科学: G辑, 2007, 37(3):396-402
    105. Witusiewicz V. T., Sturz L., Hecht U., et al. Thermodynamic Description and Unidirectional Solidification of Eutectic Organic Alloys: IV. Binary Systems Neopentylglycol-Succinonitrile and Amino-Methyl-Propanediol-Succinonitr -ile[J]. Acta Materialia, 2005, 53(1):173-183
    106. Voort G. F. V., Asensio-Lozano J. The Al-Si Phase Diagram[J]. Microscopy and Microanalysis, 2009, 15(S2):60-61
    107. Okamoto H. Al-Ti (Aluminum-Titanium)[J]. Journal of phase equilibria, 1993, 14(1):120-121
    108. http: //www. bjsailing.com.cn/product/images/wendu1.pdf[EB/OL]
    109. Biskamp D. Nonlinear Magnetohydrodynamics[M]. Cambridge: Cambridge Universiy Press, 1997:50-83
    110. Cowling T. Magnetohydrodynamics[J]. Reports on Progress in Physics, 1962, 25:244
    111. Davidson P., Belova E. An Introduction to Magnetohydrodynamics[J]. American Journal of Physics, 2002, 70:781
    112. Houston R.Magneto Hydro Dynamics System[P].USA,1988:1-4
    113. Moreau R. Magnetohydrodynamics[M]. Berlin: Springer, 1990:35-50
    114. Priest E. Solar Magneto-Hydrodynamics[M]. Berlin: Springer, 1984:20-35
    115. Roberts P. H. An Introduction to Magnetohydrodynamics[M]. London: Longmans, 1967:50-65
    116. Ruckert A., Pfeifer H. Mathematical Modelling of the Flow Field, Temperature Distribution, Melting and Solidification in the Electroslag Remelting Process[J]. Magnetohydrodynamics, 2009, 45(4):527-533
    117. Bau H., Zhong J., Yi M. A Minute Magneto Hydro Dynamic (MHD) Mixer[J]. Sensors and Actuators B: Chemical, 2001, 79(2-3):207-215
    118. Ben Salah N., Soulaimani A., Habashi W. A Finite Element Method for Magnetohydrodynamics[J]. Computer methods in applied mechanics and engineering, 2001, 190(43-44):5867-5892
    119. Fujisaki K., Ueyama T., Toh T., et al. Magnetohydrodynamic Calculation for Electromagnetic Stirring of Molten Metal[J]. Magnetics, IEEE Transactions on, 2002, 34(4):2120-2122
    120. Gunzburger M., Meir A., Peterson J. On the Existence, Uniqueness, and Finite Element Approximation of Solutions of the Equations of Stationary, Incompressible Magnetohydrodynamics[J]. Mathematics of Computation, 1991, 56(194):523-563
    121. Kirillov I., Reed C., Barleon L., et al. Present Understanding of MHD and Heat Transfer Phenomena for Liquid Metal Blankets[J]. Fusion engineering and design, 1995, 27:553-569
    122. Krause F., R dler K. Mean-Field Magnetohydrodynamics and Dynamo Theory[J]. 1980:21-42
    123. Lorrain P., Corson D. Electromagnetic Fields and Waves[J]. 1970:5-30,
    124.韩至成.电磁冶金技术及装备[M].北京:冶金工业出版社, 2008:217-219
    125.盛伟,卫运钢,李敬.工程流体力学[J].中国电力教育, 2008, (1):100-101
    126. Monin A., Yaglom A., Lundgren T. Statistical Fluid Mechanics, Vol. II[J]. Journal of Applied Mechanics, 1976, 43:521
    127. Fox R. W., McDonald A. T. Introduction to Fluid Mechanics[M]. New York: John Wiley and Sons Inc., 1985:50-61:125-321
    128.潘文全.工程流体力学[M].北京:清华大学出版社, 1988:117
    129.陈卓如,金朝铭.工程流体力学[M].北京:高等教育出版社,1992:4-6,10-20
    130. Anderson D., Tannehill J., Pletcher R. Computational Fluid Mechanics and Heat Transfer[J]. 1984:10-20,
    131. Bird R., Armstrong R., Hassager O. Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics[M]. New York: John Wiley and Sons Inc., 1987:320-500
    132. ANSYS C. Flotran Analysis Guide, [M]. Houston: ANSYS Inc, 1994:2-16
    133. Ansys C. Flotran Analysis Guide[J]. ANSYS Inc., Houston, 1994:4-25,
    134.李桃.涡流,温度耦合场的建模及有限元的数值分析[D].杭州:浙江大学硕士学位论文, 2006:20-45
    135. ANSYS A. Programmer's Guide[M]. Houston: ANSYS Inc, 1994:10-30
    136. Iida T., Guthrie R. I. L.,译冼爱国,王连文.液态金属的物理性能[M].北京:科学出版社, 2005:159-213
    137.徐祖耀,李麟.材料热力学[M].北京:科学出版社, 2005
    138. Liu D. R., Guo J. J., Wu S. P., et al. Stochastic Modeling of Columnar-to-Equiaxed Transition in Ti-(45-48at%)Al Alloy Ingots[J]. Materials Science and Engineering A, 2006, 415(1-2):184-194
    139. http: //www.eddy-current.com/condres.htm[EB/OL]
    140.高殿荣,吴晓明.工程流体力学[M].北京:机械工业出版社, 1999:77
    141.胡汉起.金属凝固原理[J].北京:机械工业出版杜, 1981:145,209
    142.介万齐,周尧和.铸锭凝固过程中的对流及液相区成分变化的模拟实验研究[J].金属学报, 1988, 24(6):379-384
    143.董慧迎,陈长乐,段萌萌.超声作用下模型合金的定向凝固行为[J].特种铸造及有色合金, 2009, (8):751-754
    144.段萌萌,陈长乐,董慧迎等.温度和溶质分布对枝晶竞争生长的影响[J].特种铸造及有色合金, 2009, 29(2):126-129
    145. Witusiewicz V., Sturz L., Hecht U., et al. Thermodynamic Description and Unidirectional Solidification of Eutectic Organic Alloys: I. Succinonitrile- (D)Camphor System[J]. Acta Materialia, 2004, 52(15):4561-4571
    146. Witusiewicz V., Sturz L., Hecht U., et al. Thermodynamic Description and Unidirectional Solidification of Eutectic Organic Alloys: III. Binary Systems Neopentylglycol-(D) Camphor and Amino-Methyl-Propanediol-(D) Camphor [J]. Acta Materialia, 2004, 52(19):5519-5527
    147. Witusiewicz V., Sturz L., Hecht U., et al. Thermodynamic Description andUnidirectional Solidification of Eutectic Organic Alloys:Ⅱ.(CH_3)_2C (CH_2OH) 2-(NH_2)(CH_3)C(CH_2OH)_2 System[J]. Acta Materialia, 2004, 52(17):5071- 5081
    148. Witusiewicz V. T., L S., U H., et al. Phase Equilibria and Eutectic Growth in Quaternary Organic Alloys Amino-Methyl-Propanediol-(D) Camphor- Neopentylglycol-Succinonitrile (AMPD-DC-NPG-SCN)[J]. Journal of Crystal Growth, 2006, 297(1):117-132
    149. Iwai Y., Onizuka H., Yoshida K., et al. Effect of a Direct-Current Electric Field on the Separation of Binary Systems Containing Organic Compounds Using Crystallization[J]. Industrial & Engineering Chemistry Research, 2003, 42(25):6638-6640
    150. Akamatsu S., Bottin-Rousseau S., Perrut M., et al. Real-Time Study of Thin and Bulk Eutectic Growth in Succinonitrile-(D) Camphor Alloys[J]. Journal of Crystal Growth, 2007, 299(2):418-428
    151. Iqbal N., van Dijk N., Offerman S., et al. In Situ Investigation of the Crystallization Kinetics and the Mechanism of Grain Refinement in Aluminum Alloys[J]. Materials Science and Engineering A, 2006, 416(1-2):18-32
    152. Rai U., Pandey P. Physical Chemistry of Binary Organic Eutectic and Monotectic Alloys: Durene-Pyrogallol System[J]. Thermochimica Acta, 2000, 364(1-2):111-119
    153. Rai U., Rai R. Solidification Behaviour of Binary Organic Monotectic Alloys[J]. Thermochimica Acta, 1996, 277:209-217
    154. Rai U. S., Singh O. P., Singh N. B. Some Thermodynamic Aspects of Organic Eutectics-Succinonitrile-Phenanthrene System[J]. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 1987, 26(11):947-949
    155. Rai U. S., Singh O. P., Singh N. B. Some Thermodynamic Aspects of Organic Eutectic in a Monotectic Type System[J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1987, 65(11):2639-2642
    156. Rai U. S., Singh O. P., Singh N. B. Solidification Behavior of Organic Eutectic, Succinonitrile-Neopentyl Alcohol System[J]. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1987, 84(4):483-487
    157. Rai U. S., Singh O. P., Singh N. P., et al. Solidification Behavior of Monotectic Alloy-Phenanthrene-Succinonitrile System[J]. Indian Journal of Pure & Applied Physics, 1985, 23(8):430-431
    158. Sharma B., Tandon S., Kant R., et al. Quantitative Essence of Molecular Interactions in Binary Organic Eutectic Melt Systems[J]. Thermochimica Acta, 2004, 421(1-2):161-169
    159. Shuleshova O., Holland-Moritz D., L ser W., et al. In Situ Observations of Solidification Processes in Gamma-TiAl Alloys by Synchrotron Radiation[J]. Acta Materialia, 2010, 58(7):2408-2418
    160. Singh N., Singh N. B., Rai U. S., et al. Structure of Eutectic Melts-Binary Organic-Systems[J]. Thermochimica Acta, 1985, 95(1):291-293
    161. Singh N., Singh N. B., Rai U. S., et al. Crystallization Behavior of Faceted Eutectic[J]. Journal of Metals, 1985, 37(8):A44-A44
    162. Singh N. B., Rai U. S., Singh O. P. Chemistry of Eutectic and Monotectic- Phenanthrene Succinonitrile System[J]. Journal of Crystal Growth, 1985, 71(2):353-360
    163. Singh O. P., Rai U. S., Singh N., et al. Direct Observations on the Monotectic CrystallizationI-Phenanthrene-Succinonitrile System[J]. Journal of Metals, 1985, 37(8):A20-A20
    164. Sturz L., Witusiewicz V., Hecht U., et al. Organic Alloy Systems Suitable for the Investigation of Regular Binary and Ternary Eutectic Growth[J]. Journal of Crystal Growth, 2004, 270(1-2):273-282
    165. Sugiura K., Iwai K. Refining Mechanism of Solidified Structure of Alloy by Electromagnetic Refining Process[J]. ISIJ international, 2005, 45(7):962-966
    166.张伟强.金属电磁凝固原理与技术[M].北京:冶金工业出版社, 2004:162-164,167
    167.杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社, 2005:20-52
    168.贺礼清.工程流体力学[M].北京:石油大学出版社, 2001:130
    169. Moreau R., Laskar O., Tanaka M., et al. Thermoelectric Magnetohydrodynamic Effects on Solidification of Metallic Alloys in the Dendritic Regime[J]. Materials Science and Engineering A, 1993, 173(1-2):93-100
    170. Burden M., Hunt J. Cellular and Dendritic Growth. I[J]. Journal of Crystal Growth, 1974, 22(2):99-108
    171. Hunt J., Jackson K. Binary Eutectic Solidification[J]. Transactions of the Metallurgical Society of AIME, 1966, 236:843-852
    172. Burden M. H., Hunt J. D. Cellular and Dendritic Growth. II [J]. Journal of Crystal Growth, 1974, 22(2):109-116
    173. Jaworski M. A., Xu W., Kim J., et al. Thermoelectric Magnetohydrodynamic (TEMHD) Stirring of Liquid Lithium[M]. California: American Physical Society, 2009:8131
    174. Jaworski M., Gray T., Antonelli M., et al. Thermoelectric Magnetohydrodynamic Stirring of Liquid Metals[J]. Physical review letters, 2010, 104(9)
    175. Li J., Ma J. H., Gao Y. L., et al. Research on Solidification Structure Refinement of Pure Aluminum by Electric Current Pulse with Parallel Electrodes[J]. Materials Science and Engineering A, 2008, 490(1-2):452-456
    176.孔凡涛,陈子勇,田竞等.提高TiAl基合金室温塑性的方法[J].稀有金属材料与工程, 2003, 32(3):81-86
    177. Kawabata T., Tamura T., Izumi O. Effect of Ti/Al Ratio and Cr, Nb, and Hf Additions on Material Factors and Mechanical Properties in TiAl[J]. Metallurgical and Materials Transactions A, 1993, 24(1):141-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700