用户名: 密码: 验证码:
脉冲电流凝固细晶技术的机理及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细化金属凝固组织是改善材料综合性能的有效手段,一直是材料界关注的热点课题。本文在前人研究的基础上,研究了脉冲电流细化金属凝固组织的条件和机制,探讨了脉冲电流凝固细晶技术的应用前景。
     实验研究发现,相同凝固条件以及脉冲电流参数下,以平行电极方式引入脉冲电流的细化效果优于其它电极引入模式,电极的插入深度和过热度对脉冲电流细化纯铝凝固组织的效果没有影响,纯铝凝固组织中等轴晶平均晶粒尺寸在0.3mm左右,等轴晶面积比率在70%左右。采用平行电极引入脉冲电流时,在熔点以上施加脉冲电流没有细化作用;在形核阶段施加脉冲电流细化效果最为显著,且与全程处理时的细化效果相当;在晶体生长阶段施加脉冲电流可促进柱状晶向等轴晶转变。在上述实验的基础上,采用平行电极引入脉冲电流时晶核主要来源于熔体的自由液面。利用游离晶粒隔离实验证实了这一推断,并在此基础上,提出了脉冲电流液面扰动凝固细晶方法。
     本文结合电磁场理论求解出脉冲电流及其引起的电磁场在导电熔体内的分布。结果显示,脉冲电流的作用区域主要集中在自由液面,且引起的各场强从表面向熔体内部呈指数衰减。本文建立了脉冲电流能量损耗与各参数之间的理论关系式,表明能量损耗不但与脉冲电流峰值、振荡频率和处理时间有关,还与脉冲电流的作用频率、电极有效宽度以及电极之间的距离有关。与实验相结合,发现在处理时间不变的条件下,提高脉冲电流在熔体内的功率损耗,有利于提高细化效率。分析认为,脉冲电流在熔体表面引起的功率损耗,延缓了自由表面的凝固时间,使自由液面不断产生晶核,晶核在自然对流和电磁力的共同作用下,沿着固液界面前沿向下漂移,若固液界面前沿存在热过冷,则漂移的晶核会逐渐长大,并在底部堆积,最终形成细化的凝固组织。
     本文研究了在实验室条件下脉冲电流对GCr15工业用轴承钢凝固组织的影响规律,发现脉冲电流能有效改善轴承钢的枝晶组织结构,且等轴晶随着放电频率的提高不断增多。在有热顶冒口的工艺条件下,应用较低功率损耗的脉冲电流即可达到较好的细化效果。本文在实验室研究的基础上,设计开发了工业试验用大功率脉冲电源以及相关辅助机构,并成功地在宝钢股份公司特殊钢分公司完成脉冲电流细化3.7吨模铸GCr15轴承钢的工业试验。分析初轧锭及成品轧材的内部质量后发现,经脉冲电流处理后铸锭的各质量指标,诸如疏松、组织致密度、碳化物带状、以及宏观碳偏析指数,均有显著的改善。上述试验为脉冲电流凝固细晶技术的大规模工业应用奠定了坚实的基础。
Refining solidification structure of metals is effective method to improving mechanical properties of metal materials. In the past few years, investigators utilized electric current pulse (ECP) for refining grain size during solidification, which become grandully current issue. This work systematically investigated process conditions of refining solidification structure by ECP, and theoretically analyzed refinement mechanism. At last, industrial experiments of refinement technique by ECP were carried out.
     Pure Al was firstly selected as the experimental material, and ECP employing modes were optimized. Experimental results showed that under the same conditions, refining effect by the parallel electrodes on the melt top surface was better than other modes used in the experiment. The refined equiaxed grain size and area rate of equaixed grain zone was about 0.3mm and 70%. The inserting depth of electrodes and the change of superheat degree had not influence on grain refinement effect. ECP can not influence the macrostructure of pure aluminium when treating at temperature above liquidus, treating of ECP at initial solidification or nucleating stage is most effective, its refinement efficiency was euqivalent to that of treating at the whole solidification processing, but treating of ECP at crystal growth stage also made structure change from columnar to equaixed (Columnar to Equiaxed Transition--CET). Based on all these results, the refinement method of ECP’s agitation on the melt top surface was presented.
     The distribution of current and magnetic fields caused by ECP in melt was analysed by using electrodynamics theory. The results showed that action zone of ECP focused on the top surface because of skin effect, and presented exponential attenuation from surface toward melt inside. And, power loss had relation not only with peak value current and vibrating frequency, but also with pulse discharging frequency, effective width of electrode, distance between electrodes. Increasing of ECP’s power loss in the melt could increase refining efficiency. It is considered that power loss prolong solidifying time near the top surface of melt, Joule heating casued by ECP in melt continually bring out floating crystal nucleus, which drift downward along the front of solid liquid interface by the natural convection and electromagnetic force. If the front of solid liquid interface exists undercooling, the floating nucleus will grandully grow up and sedimentate at the bottom of ingot, hence the fine equaixed grain is obtained.
     On the other hand, the influence of ECP on solidification structure of high carbon and chromium bearing steel was investigated. Results showed that under the laboratory conditions, the better refining effect could be achieved by ECP with low voltage and intermediate discharging frequency. With an increase in discharging frequency, the solidified structure and the central shrinkage porosity were gradually improved. With the hot top, lower power loss could achieve the better refining effects. Based on the investigation mentioned above, a large-power ECP generator for industry application were designed and made, subsequently plant trials about applying electric current pulse (ECP) to 3.7 ton weight high carbon and chromium bearing steel ingot were carried out in Baoshan Iron & Steel Co., Ltd. The inspection results by ultrasonic detection and macroscopic examination and so on suggested that compared with samples without ECP treatment, the inner quality of the forged billets treated by ECP was obviously improved, and the center porosity and shrinkage cavity were also reduced. For finished round bars, carbon distribution was more homogeneous. Moreover, maximum width and average width of carbide banding, especially average spacing between carbide bandings were decreased significantly. Therefore, ECP can refine the solidified structure of ingot and enhance its inner quality.
引文
[1]周尧和,胡壮麒,介万奇.凝固技术[M].机械工业出版社, 1998.10:1
    [2]傅恒志,魏炳波,郭景杰.凝固科学技术与材料[C].凝固科学技术与材料发展(香山科学会议第211次学术讨论会论文集).北京:国防工业出版社. 2004,1:2-24.
    [3]宋维锡.高等金属学[M].北京:机械工业出版社, 2000.
    [4] Finch NJ. The mutual solubilities of titanium and boron in pure aluminium [J]. Metall Trans A, 1972,3(10):2709-2711.
    [5] Guzowski MM, Sigworth GK, Sentner DA. The role of boron in the grain refinement of aluminium with titanium [J]. Metall Trans A, 1987,18(4):603-619.
    [6] Johnsson M, Backerud L, Sigworth GK. Study of the mechanism of grain refinement of aluminum after additions of Ti- and B- containing master alloys [J]. Metall Trans A, 1993,24(2):481-491.
    [7] Mohanty PS, Gruzleski JE. Mechanism of grain refinement in aluminium [J]. Acta Metall Mater, 1995,43(5):2001-2012.
    [8] Dahle AK. Arnberg L. Development of strength in solidifying aluminium alloys [J]. Acta Mater, 1997,45(2):547-559.
    [9] Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ. Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B [J]. Acta Mater, 2000,48(11):2823-2835.
    [10] Dahle AK, Nogita K, Zindel JW, McDonald SD, Hogan LM. Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels [J]. Metall Mater Trans A, 2001,32(4):949-960.
    [11] Heiberg G, Nogita K, Dahle AK, Arnberg L. Columnar to equiaxed transition of eutectic in hypoeutectic aluminium-silicon alloys [J]. Acta Mater, 2002,50(10):2537-2546.
    [12] Zhang YJ, Ma NH, Yi HZ et al. Effect of Fe on grain refinement of commercial purity aluminum [J]. Mater Design, 2006,27(9):794-798.
    [13]李庆春.铸件形成理论基础[M].北京:机械工业出版社, 1982.
    [14] Hunt JD. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. MaterSci Eng, 1984,65(1):75-83.
    [15] Lu SZ, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning [J]. Metall Trans A, 1987,18(10):1721-1733.
    [16] Trivedi R, Kurz W. Dendritic growth [J]. Int Mater Rev, 1994;39(2):49-74.
    [17]翟启杰,邢长虎,赵沛等.微区成分扰动生核处理基础研究[J].钢铁, 2002,37(6):39-41
    [18]翁宇庆等著.超细晶钢—钢的组织细化理论与控制技术[M].北京:冶金工业出版社, 2003.9:808-814.
    [19]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社, 1998, 10:323-328.
    [20]贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社, 2003.12.
    [21]张伟强.金属电磁凝固原理与技术[M].北京:冶金工业出版社, 2004.
    [22] Shigeo ASAI. Birth and Recent Activities of Electromagnetic Processing of Materials [J]. ISIJ International, 1989,29 (12):981-992.
    [23] Shigeo ASAI. Recent Development and prospect of electromagnetic processing of materials[J]. Science and Technology of Advanced Materials, 2000, 1(4):191-200.
    [24] Garnier Marcel. Electromagnetic processing of liquid materials in Europe [J]. ISIJ International, 1990, 30(1): 1-7.
    [25] Langenberg F C, Pestel G, Honeycutt C R. Grain refinement of steel ingots by solidification in a moving electromagnetic field [J]. Trans. Metall. Soc. AIME, 1961, 221:993-1000.
    [26] Ohno A. The effects of rotation of mold and electromagnetic stirring on the structure of aluminium ingots[J]. J Jap Inst Met, 1977,41(6):545.
    [27] Ohno A, Motegi T, Shimizu T. The formation of equiaxed crystals in ammonium chloride-water model and Al alloy ingots by electromagnetic stirring [J]. J Jap Inst Met, 1982,46(5):554.
    [28]大野笃美.金属的凝固、理论、实践及应用[M].北京:机械工业出版社, 1990.
    [29] Vivès C, Ricou R. Experimental study of continuous electromagnetic casting of aluminum alloy[J]. Metallurgical Transactions,1985,16B:377-384.
    [30] Vives C. Electromagnetic refining of aluminum alloys by the CREM process: Part I: Working principle and metallurgical results [J]. Metallurgical Transactions B, 1989, 20(5): 623-629.
    [31] Vives C. Electromagnetic refining of aluminum alloys by the CREM process: PartⅡ:Specific practical problems and their solutions [J]. Metallurgical Transactions B, 1989, 20(5):631-643.
    [32]毛大恒,严宏志.电磁搅拌对铝及其合金凝固和铸态组织的影响[J].轻合金加工技术, 1991,19(4):10-16.
    [33] J. A. Patchett, G.J. Abbaschian. Grain Refinement of Copper by the Addition of Iron and by Electromagnetic Stirring[J]. Metallurgical Transactions B, 1985,16B(9):505-511.
    [34] W.D. Griffiths, D.G. McCartney. The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys [J]. Mater Sci Eng A, 1996, 216: 47-60.
    [35] W.D. Griffiths, D.G. McCartney. The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminium alloy 7150[J]. Mater Sci Eng A, 1997,A222: 140-148.
    [36] Cao Zhiqiang, Ren Zhongming, Zhang Liping, Jin Junze. Separated eutectic in the solidification of Fe-C alloy with electromagnetic stirring[J]. Journal of Materials Science Letters, 1992,11(23):1579-1581.
    [37]毛卫民,李树索.电磁搅拌对过共晶Al-Si合金初生Si分布的影响[J].金属学报, 2001,37(7):781-784.
    [38] Han Yi, Ban Chunyan, Guo Shijie, Ba Qixian, You Xuechang, Cui Jianzhong. Effect of alternating magnetic field on the distribution of Fe containing phase in hypereutectic Al-2.89%Fe alloy [J]. Acta Metallurgica Sinica, 2006, 42(6):624-628.
    [39] Beijiang Zhang, Jianzhong Cui, Guimin Lu. Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy [J]. Materials Science and Engineering A, 2003,355:325-330.
    [40] Beijiang Zhang, Jianzhong Cui, Guimin Lu. Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys [J]. Materials Letters, 2003, 57:1707– 1711.
    [41]张北江.低频电磁场作用下铝合金半连续铸造工艺与理论研究[D].沈阳:东北大学博士学位论文, 2003.8.
    [42] Jie Dong, Jianzhong Cui, Xiaoqin Zeng, Wenjiang Ding. Effect of low-frequency electromagnetic field on microstructures and macrosegregation of A270 mm DC ingots of an Al–Zn–Mg–Cu–Zr alloy[J]. Materials Letters, 2005,59:1502–1506.
    [43] Guo Shijie, Cui Jianzhong, Le Qichi, Zhao Zhihao. The effect of alternating magnetic field on the process of semi-continuous casting for AZ91 billets[J]. Materials Letters, 2005, 59(14-15):1841-1844.
    [44] E.J. Zoqui, M. Paes, E. Es-Sadiqi. Macro- and microstructure analysis of SSM A356 produced by electromagnetic stirring[J]. Journal of Materials Processing Technology, 2002,120:365–373.
    [45] LIU Zheng, MAO Wei-min, ZHAO Zheng-duo. Effect of pouring temperature on semi-solid slurry of A356 Al alloy prepared by weak electromagnetic stirring[J]. Trans. Nonferrous Met. Soc. China, 2006,16:71-76.
    [46] Weimin MAO, Yuelong BAI, Guoxing TANG. Preparation for Semi-Solid Aluminum Alloy Slurry under Weak Electromagnetic Stirring Conditions[J]. J. Mater. Sci. Technol., , 2006,22(4): 447-451.
    [47] Z. Liu, W.M. Mao and Z.D. Zhao. Effect of grain refining on primaryαphase in semi-solid A356 alloy prepared by low superheat pouring and slight electromagnetic stirring[J]. Acta Metall. Sin.(Eng. Lett.) V01.21 No.1 pp57-64 Feb. 2008.
    [48] S. Nafisi, D. Emadi, M.T. Shehata, R. Ghomashchi. Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al–Si–Fe alloy[J]. Materials Science and Engineering A, 2006,432:71–83.
    [49] S.F. Liu, L.Y. Liu, L.G. Kang. Refinement role of electromagnetic stirring and strontium in AZ91 magnesium alloy[J].Journal of Alloys and Compounds, 2008,450(1-2): 546-550.
    [50] Zhang Xiao-li, Li Ting-ju, Teng Hai-tao, Xie Shui-sheng, Jin Jun-ze. Semisolid processing AZ91 magnesium alloy by electromagnetic stirring after near-liquidus isothermal heat treatment[J]. Materials Science and Engineering A, 2008,475:194–201.
    [51] Dehong Lu, Yehua Jiang, Guisheng Guan, Rongfeng Zhou, Zhenhua Li, Rong Zhou. Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring[J]. Journal of Materials Processing Technology, 2007,189:13–18.
    [52] Hideyuki YASUDA, Takehiko TOH, Kazuhiko IWAI, Kazuki MORITA. Recent Progress of EPM in Steelmaking, Casting, and Solidification Processing[J]. ISIJ International, 2007,47(4):619–626.
    [53] Kyung Shik OH, Young Won CHANG. Macrosegregation Behavior in Continuously CastHigh Carbon Steel Blooms and Billets at the Final Stage of Solidification in Combination Stirring[]. ISIJ Int., 1995,35(7):866-875.
    [54] Jianchao Li, Baofeng Wang, Yonglin Ma, Jianzhong Cui. Effect of complex electromagnetic stirring on inner quality of high carbon steel bloom[J]. Materials Science and Engineering A, 2006,425:201–204.
    [55] T. CAMPANELLA, C. CHARBON, M. RAPPAZ. Grain Refinement Induced by Electromagnetic Stirring: A Dendrite Fragmentation Criterion[J]. Metallurgical and Materials Transactions A, 2004,35(10):3201-3210.
    [56] Crossley F A, Fisher R D, Metacalfe A G. Viscous shear as an agent for grain refinement in cast metal [J]. Trans. Metall. Soc. AIME, 1961, 221:419-420.
    [57] Cole G S, Casey K W, Bolling G F. Solidification of inoculated aluminum ingots [J]. Met. Trans., 1970,1(5):1413-1416.
    [58] Morando R, Biloni H, Cole G S, Bolling G F. Development of macrostructure in ingots of increasing size [J]. Met. Trans., 1970, 1(5):1407-1412.
    [59] Vives, C. Effects of electromagnetic vibrations on the microstructure of continuously cast aluminium alloys[J]. Materials Science & Engineering A, 1993, 173(1-2):169-172.
    [60] Vives Charles. Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: Part II. Solidification in the presence of collinear variable and stationary magnetic fields [J]. Metallurgical and Materials Transactions B, 1996, 27(3):457-464.
    [61] Vives, Charles. Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: Part I. Solidification in the presence of crossed alternating electric fields and stationary magnetic fields[J]. Metallurgical and Materials Transactions B, 1996, 27(3): 445-455.
    [62] Vives, Charles. Crystallization of aluminium alloys in the presence of cavitation phenomena induced by a vibrating electromagnetic pressure[]. Journal of Crystal Growth, 1996, 158(1-2):118-127.
    [63] Radjai Alireza, Miwa Kenji, Nishio Toshiyuki. Investigation of the effects caused by electromagnetic vibrations in a hypereutectic Al-Si alloy melt [J]. Metallurgical and Materials Transactions A, 1998, 29(5):1477-1484.
    [64] Radjai Alireza, Miwa Kenji. Effects of the intensity and frequency of electromagneticvibrations on the microstructural refinement of hypoeutectic Al-Si alloys [J]. Metallurgical and Materials Transactions A, 2000, 31(3):755-762.
    [65] Radjai Alireza; Miwa, Kenji. Structural refinement of gray iron by electromagnetic vibrations[J]. Metallurgical and Materials Transactions A, 2002, 33(9):3025-3030.
    [66] Mizutani, Yoshiki; Ohura, Yoshinori; Miwa, Kenji; Yasue, Kazuo; Tamura, Takuya; Sakaguchi, Yasuji. Effect of the electromagnetic vibration intensity on microstructural refinement of Al-7%Si alloy[J]. Materials Transactions, 2004, 45(6):1944-1948.
    [67] Mizutani, Yoshiki; Kawai, Satoshi; Miwa, Kenji; Yasue, Kazuo; Tamura, Takuya; Sakaguchi, Yasuji. Effect of the intensity and frequency of electromagnetic vibrations on refinement of primary silicon in Al-17%Si alloy[J]. Materials Transactions, 2004, 45(6):1939-1943.
    [68] Mizutani, Yoshiki; Kawata, Jun; Miwa, Kenji; Yasue, Kazuo; Tamura, Takuya; Sakaguchi, Yasuji. Effect of the frequency of electromagnetic vibrations on microstructural refinement of AZ91D magnesium alloy[]. Journal of Materials Research, 2004, 19(10):2997-3003.
    [69] Mizutani, Yoshiki; Tamura, Takuya; Miwa, Kenji. Microstructural refinement process of pure magnesium by electromagnetic vibrations[J]. Materials Science and Engineering A, 2005, 413-414(12):205-210.
    [70] Mizutani, Yoshiki; Tamura, Takuya; Miwa, Kenji. Microstructural refinement of magnesium alloy by electromagnetic vibrations[J]. Magnesium Technology, TMS 2006 Annual Meeting, 2006:115-119.
    [71] Mingjun Li, Takuya Tamura, Kenji Miwa. Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding[J]. Acta Materialia, 2007,55:4635-4643.
    [72] TAKUYA TAMURA, KENJI AMIYA, RUDI S. RACHMAT, YOSHIKI MIZUTANI, KENJI MIWA. Electromagnetic vibration process for producing bulk metallic glasses[J]. Nature Materials Letters, 2005,4(4):289-292.
    [73] Kawai, S.; Wang, Q.; Iwai, K.; Asai, S. Generation of compression waves by simultaneously imposing a static magnetic field and an alternating current and its use for refinement of solidified structure[J]. Materials Transactions, 2001, 42(2):275-280.
    [74] Kento SUGIURA, Kazuhiko IWAI. Effect of Operating Parameters of an Electromagnetic Refining Process on the Solidified Structure[]. ISIJ International, 2004,44(8):1410–1415.
    [75] Wang, Qiang; He, Jicheng; Kawai, Satoru; Iwai, Kazuhiko; Asai, Shigeo. Direct generation of intense compression waves in molten metals by using a high static magnetic field and their application[J]. Journal of Materials Science and Technology, 2003, 19(1):5-9.
    [76]张勤.低频电磁半连续铸造铝合金工艺及理论研究[D].沈阳:东北大学博士学位论文, 2002.12.
    [77]张伟强,王小丽,裴延玲.电磁振荡对铝硅合金凝固组织的影响[J].铸造, 2005,11:90-91
    [78]李虎田.电磁振荡对Al-Cu和Al-Si合金凝固组织影响规律的研究[D].沈阳:辽宁工程技术大学硕士学位论文, 2002.12.
    [79]裴延玲.电磁振荡对Al-Si合金凝固组织规律的研究[D].沈阳:辽宁工程技术大学硕士学位论文, 2003.12.
    [80]余建波,任忠鸣,任维丽,李喜,王俊,邓康.电磁振荡下梯度磁场对纯Al凝固组织的影响[J].金属学报, 2007,43(11):1201-1206.
    [81]余建波,任忠鸣,任维丽,邓康,王俊.强磁场下电磁振荡对Al-4.5%Cu合金凝固组织的影响[J].金属学报, 2008,44(2):172-176.
    [82] Xi Li, Zhongming Ren, Yves Fautrelle. Effects of the simultaneous imposition of electromagnetic and magnetic forces on the solidification structure of pure Al and Al–4.5 wt.%Cu alloy[J]. Journal of Materials Processing Technology, 2008,195:125–134.
    [83]葛丰德,何洪亮,霍树海.脉动磁场铸造[J].机械工程学报, 1989, 3:1-7.
    [84]葛丰德.电磁场对铝合金凝固过程的影响[J].哈尔滨科技大学学报, 1983,1: 70-87.
    [85] Datsko, O.I., Postnikov, S.N., Buzynin, V.N., Reznikov, A.V., Kostetskaya, V.A., Pashinskaya, E.G., Siver, S.I. Effect of exposure of magnetic and non-magnetic materials to pulse magnetic field on their crystalline structure[J]. Elektronnaya Obrabotka Materialov, 1993,5:60-64.
    [86] Pashinskaya, E.G.; Pashinskii, V.V. Effect of weak pulsed magnetic fields on the structure and properties of a Cu-Sn-based alloy[J]. Physics of Metals and Metallography, 1998, 85(6):670-674.
    [87]訾炳涛,崔建忠,巴启先.脉冲电流和脉冲磁场作用下LY12铝合金凝固组织比较[J].热加工工艺, 2000, 4: 3-5.
    [88]訾炳涛,巴启先,崔建忠,白玉光,那兴杰.强脉冲电磁场对金属凝固组织影响的研究[J].物理学报, 2000,49(5):1010-1014.
    [89] Ban, C.Y.; Cui, J.Z.; Ba, Q.X.; Lu, G.M.; Zhang, B.J. Influence of pulsed magnetic field on microstructures and macro-segregation in 2124 Al-alloy[J]. Acta Metallurgica Sinica (English Letters), 2002, 15(4):380-384.
    [90] Li Qiu-shu; Liu Li-qiang; Zhai Qi-jie. Analysis of graphite morphology of gray cast iron in pulse magnetic field[J]. Journal of Iron and Steel Research International, 2005,12(2):45-48.
    [91] LI Qiushu, LI Haibin, ZHAI Qijie. Structure Evolution and Solidif ication Behavior of Austenitic Stainless Steel in Pulsed Magnetic Field. JOURNAL OF IRON AND STEEL RESEARCH , INTERNATIONAL, 2006,13(5):69-72.
    [92] Yu-Lai Gao, Qiu-Shu Li, Yong-Yong Gong, Qi-Jie Zhai. Comparative study on structural transformation of low-melting pure Al and high-melting stainless steel under external pulsed magnetic field[J]. Materials Letters, 2007,61: 4011-4014.
    [93] Qiushu Li, Changjiang Song, Haibin Li, Qijie Zhai. Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J]. Materials Science and Engineering A, 2007,466:101–105.
    [94] Gong YY, Jing JX, Zhai QJ et al. in: Han QY, Gerard Ludtka, Zhai QJ(Eds.), Materials Processing Under the Influence of External Fields, A Publication of TMS, Orlando, 2007, 55-60.
    [95] Yong-Yong Gong, Jun Luo, Jin-Xian Jing, Zan-Qi Xia, Qi-Jie Zhai. Structure refinement of pure aluminum by pulse magneto-oscillation[J]. Materials Science and Engineering A, 2008,497(1-2):147-152.
    [96] Nakada M, Shiohara Y, Flemings M C. Modification of solidification structures by pulse electric discharging[J]. ISIJ International, 1990,30(1): 27-33.
    [97] Li Jianming, Li Shengli, Li Jin et a1. Modification of solidification structure by pulsed electric discharging[J]. Scripta Metallurgica et Materialia, 1994, 31(12):1691-1694.
    [98] Branak J P, Sprecher A F, Conrad H. Colony(grain)size reduction in eutectic Pb-Sn castings by electropulsing [J]. Scripta Metallurgica et Materialia, 1995, 32(6): 879-884.
    [99]鄢红春,何冠虎,周本濂,秦荣山等.脉冲电流对Sn-Pb合金凝固组织的影响[J].金属学报, 1997, 33(4):352-358.
    [100]王建中.电脉冲孕育处理技术研究及液态金属团簇结构假说[D].北京:北京科技大学博士学位论文, 1998.11.
    [101]唐勇.电脉冲作用下液态金属结构及其对碳钢凝固组织改善的研究[D].北京:北京科技大学博士学位论文, 2000.4.
    [102]赵昱祥,苍大强,王建中.脉冲电压对GCr15轴承钢凝固组织的影响[J].北京科技大学学报, 2002,1:22-24.
    [103]陈庆福,王建中,蔡伟,赵连城.电脉冲孕育细化CuAlNi合金的宏观组织于铸态形状记忆效应[J].材料科学与工艺, 2001,9(3):240-242.
    [104]訾炳涛,崔建忠等.高密度脉冲电流作用下LY12铝合金的凝固组织[J].特种铸造及有色合金, 2000,(4):4-6.
    [105]班春燕,巴启先,崔建忠,路贵民,訾炳涛.脉冲电流作用下LY12铝合金的微观结构和合金元素分布[J].物理学报, 2001,50(10):2028-2031.
    [106] Zi Bingtao, Yao Kefu, Liu Wenjin, Cui Jianzhong, Ba Qixian. Effect of Higher Density Pulsed Current on Solidification Structures of 2024 Al-alloy[J]. Rare Metal Materials and Engineering, 2003,32(1):9-12.
    [107]何树先,王俊等.高密度脉冲电流对A356铝合金低温熔体凝固组织的影响[J].金属学报, 2002, 38(5):479-482.
    [108]何树先,王俊等.高密度脉冲电流对过共晶Al-Si合金凝固组织的影响[J].中国有色金属学报, 2002,12(3):426-429.
    [109] Chunyan Ban, Yi Han, Qixian Ba, Jianzhong Cui. Influence of pulse electric current on solidification structures of Al-Si alloys[J]. Materials Science Forum, 2007,546-549: 723-728.
    [110] Q.J Zhai, Y.L Gao, in: Q.Y. Han, Gerard Ludtka, Q.J. Zhai(Eds.), Materials Processing Under the Influence of External Fields, A Publication of TMS, Orlando, 2007, 45-54.
    [111]范金辉,陈宇,李仁兴,侯旭,翟启杰.脉冲电流作用下纯铝宏观凝固组织的变化[J].铸造技术, 2004,25(3):192-193.
    [112]方燕,廖希亮,甘长红等.中频低压脉冲电流对纯铝凝固组织的影响[J].特种铸造及有色合金, 2006,26(3):141-143.
    [113] X.L. Liao, Y.L. Gao, Q.J. Zhai et al., in: Q.Y. Han, Gerard Ludtka, Q.J. Zhai(Eds.), Materials Processing Under the Influence of External Fields, A Publication of TMS, Orlando, 2007, 189-194.
    [114]廖希亮.脉冲电流对金属凝固组织的影响[D].上海:上海大学博士学位论文, 2007.
    [115] Fan Jinhui, Chen Yu, Li Renxing, Zhai Qijie. Effect of Pulse Electric Current on Solidification Structure of Austenitic Stainless Steel[J]. Journal of Iron and Steel Research International, 2004, 11(6): 37-39.
    [116]翟启杰,赵沛,胡汉起,徐匡迪.金属凝固细晶技术研究[C].凝固科学技术与材料发展(香山科学会议第211次学术讨论会论文集).北京:国防工业出版社, 2004:172-183.
    [117] Qijie Zhai, Jie Li, Changjiang Song. Solidification structure refinement of metal by electric current pulse[P]. Baosteel BAC 2008, 2008.9.26.
    [118]范金辉,李仁兴,华勤,李祖齐,富知愚,翟启杰.脉冲电流对过共晶灰铸铁凝固组织的影响[J].钢铁研究学报, 2004,16(5):59-62.
    [119]范金辉.脉冲电流凝固细晶技术基础研究[D].上海:上海大学博士学位论文, 2005.
    [120]唐波,严超,赵志龙,张蓉,刘林.脉冲电流对Al-4%Cu合金铸造组织的细化作用[J].铸造技术, 2005,04:54-56.
    [121]王劲.直流电流及脉冲电流对ZA27合金凝固组织影响的实验研究[D].兰州:兰州理工大学硕士学位论文. 2003.
    [122]许广济,尹建军,丁雨田,寇生中,胡勇,王志华.方波脉冲电流对ZA27合金凝固组织的影响[J].机械工程学报, 2006,1:51-55.
    [123] Yuansheng Yang, Quan Zhou, Zhuangqi Hu. The influence of electric current pulses on the microstructure of magnesium alloy AZ91D[J]. Materials Science Forum, 2005,488-489:201-204.
    [124] Fucheng Zhang,Ming Zhang,Xiangfei Ren,Jianhui Li. Effect of High-Energy-Density Pulse Current on Solidification Microstructure of FeCrNi Alloy[J]. Materials science, 2007, 13(2):120-122.
    [125]秦荣山,鄢红春,何冠虎,周本濂.直接晶化法制备块状纳米材料的探索I:脉冲电流作用下无序金属介质的成核理论[J].材料研究学报, 1995, 9(3):219-222.
    [126]秦荣山,周本濂.直接晶化法制备块状纳米材料的探索II:脉冲电流作用下金属熔体结晶晶粒尺寸的理论估算[J].材料研究学报, 1997, 11(1):69-72.
    [127] R.S. Qin, S.X. Su, J.D. Guo, G.H. He, B.L. Zhou. Suspension Effect of Nanocrystalline Grain Growth Under Electropulsing[J]. Nanostructured Materials, 1998,10(1):71-76.
    [128] R.S. Qin, B.L. Zhou. Electric current pulse on grain size in casting[J]. International Journal of non-equillibrium processing. 1998,11:77-86.
    [129] Xiliang Liao, Qijie Zhai, Jun Luo, Wenjie Chen, Yongyong Gong. Refning mechanism of the electric current pulse on the solidification structure of pure aluminium[J]. Acta Materialia, 2007, 55: 3103-3109.
    [130]范金辉,翟启杰.电流凝固技术的理论与实践[J].机械工程学报, 2004,40(4): 10-15.
    [131] J.D克劳斯著.电磁学[M].北京:人民邮电出版社, 1979.3: 129.
    [132] Tarshis L A, Walker J L, Gigliotti M F X. Solidification[J]. Annu Rev Mater Sci, 1972,2:181-216.
    [133] Spittle J A. Columnar to equiaxed grain transition in as solidified alloys[J]. Int Mater Rev, 2006,51(4): 247-269.
    [134] Bruce Chalmers, Principles of solidification[M], John Wiley & Sons, Inc., New York, (1964).
    [135] Jackson K A,. Hunt J D, Uhlmann D R, et al. Trans Met Soc AIME, 1966,236:149.
    [136] Ohno A, Motegi T, Soda H. Origin of the equiaxed crystals in castings[J]. Trans Iron Steel Inst Jap, 1971,11(1):18-23.
    [137] Southin R T, Trans Met Soc AIME, 1967,239:220.
    [138] Davies G J. Solidification of Casting[M]. Applied Science Publishers Ltd. England, 1973: 105-113.
    [139] Ohno A, Motegi T, Formation mechanism of equiaxed zones in cast metals[J]. AFS Int Cast Met J, 1977,2(1):28-36.
    [140]林志瑷,杨铨让,沙玉钧.电磁场工程基础[M].北京:高等教育出版社, 1983,6: 181.
    [141]马信山,张济世,王平.电磁场基础[M].北京:清华大学出版社, 1995,5.
    [142]杨宪章.电磁场原理[M].北京:高等教育出版社, 1985,6: 326.
    [143]Л.Д.朗道, E.M.栗弗席兹著.连续媒介电动力学(上)[M].北京:人们教育出版社, 1963,7: 270.
    [144]杜保明. http://cn.big-bit.com/reg/UploadFile/BlogArticle_File/2006/20061227104437920.x ls. 2006,10.
    [145]林德云,李国定编著.电磁场理论基础[M].北京:清华大学出版社, 1990,2: 226.
    [146] [美] R.M范诺等著,王石安,虞厥邦译.电磁场,电磁能和电磁力[M].上海:上海科学技术出版社, 1965,8:257-291.
    [147]张友寿,谢志强,吴东周等.焊接铍使用的铝及Al-Si合金填充材料[J].http://www.opentec.cn/Article/UploadFiles/200710/20071009171417161.doc
    [148]胡汉起.金属凝固原理[M].北京:机械工业出版社(第二版), 2000,11: 80-81.
    [149]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社, 1998,10: 23.
    [150] D.J DAVIES. Solidification and casting[M]. London: Applied science publishers LTD, 1973: 15-18.
    [151]大野笃美.金属凝固学[M].唐彦斌,张正德译.北京:机械工业出版社, 1983.
    [152]龚永勇.脉冲磁致振荡凝固细晶技术基础研究[D].上海:上海大学博士学位论文, 2008
    [153]胡汉起.金属凝固[M].北京:机械工业出版社, 1985,3: 144.
    [154] Fredriksson H, Olsson A. Mechanism of transition from columnar to equiaxed zone in ingots[J]. Mater Sci Technol, 1986,2(5):508-516.
    [155] Jang J, Hellawell A. Use of NH4Cl-H2O analogue castings to model aspects of continuous casting Part 2: Columnar-equiaxed grain transition and crystal sedimentation rates[J]. Ironmaking and Steelmaking, 1991,18(4):275-283.
    [156]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社, 1982,5:38-41.
    [157] M.C. Flemings. Solidification Processing[M]. McGraw-Hill: Now York, 1974:168-172.
    [158]钟顺思,王昌生主编.轴承钢[M].北京:冶金工业出版社, 2000:8.
    [159] T. Kato, H. Jones, D. H. Kirkwood. Segregation and eutectic formation in solidification of Fe-1C-1.5Cr steel[J]. Materials Science and Technology, 2003,19(8): 1070-1076.
    [160] D.G. Zhou, J. Fu and P. Wang. Carbon segregation of bearing steel concasting billet. J. Mater SciTechnol, 2000, 16 (3): 273-276.
    [161] S. Nabeshima, H. Nakato, and T. Fujii et al. Control of centerline segregation in continuously cast blooms by continuous forging process. ISIJ International, 1995, 35 (6): 673-679.
    [162]钱江,阮小江等.连铸轴承钢大方坯中心偏析的成因及对策.钢铁, 2002, 37 (5): 16-18.
    [163]上海五钢有限公司研究一所工艺室. 3.7吨锭型的设计与应用(鉴定资料), 2001.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700