用户名: 密码: 验证码:
整体叶轮叶片型面数控电解精加工的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解加工是整体叶轮的重要加工方法之一,现有的数控展成方法主要适用于直纹面或扭曲度不大的整体叶轮叶片加工,若用于自由曲面叶片整体叶轮加工,则加工误差较大。课题针对自由曲面整体叶轮叶片的加工难题,以提高叶片加工精度、加工稳定性和工作效率为研究目的,对整体叶轮叶片电解加工中的加工工艺、成形规律、阴极设计、加工路径规划、加工参数选择、加工过程故障诊断以及数字化制造等关键技术开展了研究。
     首先,开展了自由曲面整体叶轮电解加工工艺研究,提出了适用于自由曲面整体叶轮叶片加工的组合电解加工工艺,该工艺将叶片加工分为叶间通道加工、叶片精加工等多道工序,采用不同的加工方法满足自由曲面叶片加工要求。在叶间通道加工中采用了分步分区加工方法,并以φ600mm压气机叶轮为试验对象进行了试验,对叶间通道的加工方法进行了验证。以φ240mm整体涡轮为试验对象开展了自由曲面叶片精加工工艺试验,设计了开式叶片成形阴极电解精加工装置,采用脉冲电源和加工参数优化实现了小间隙加工,还运用了误差补偿法对阴极加工型面进行修正,提高了叶片加工精度,实现了自由曲面整体叶轮叶片电解精加工。
     其次,研究了整体叶轮数字化制造技术,开发了用于整体叶轮电解加工的数字化制造软件。在数值模拟研究中对电解加工过程进行离散,采用有限元法计算离散过程中加工间隙的电场分布及溶解量,从而模拟出零件的加工表面;开发了电解加工的数值模拟软件,运用该数值模拟软件辅助整体叶轮的工艺分析、阴极设计、加工参数优化。采用基于约束与尺寸驱动的方法实现了整体叶轮电解加工运动仿真,开发了运动仿真软件,利用该软件进行整体叶轮的加工路径规划、数控加工编程、加工误差分析。在整体叶轮的电解加工工艺研究中利用数字化制造软件进行设计与分析提高了阴极设计的成功率、加工参数选择的准确性。
     最后,研究了电解加工参数选择的方法,把加工参数的选择分为初选与优化两个阶段,先利用工艺数据库进行参数选择,再用模拟软件进行优化,加工参数准确选择提高了叶片加工精度。加强了对叶片电解加工过程的自动监控,建立了叶片加工过程故障诊断系统,利用加工电流、加工压力信息,经过特征提取、模式学习、故障判断等过程实现了加工过程监控和加工故障诊断,起到保护零件和阴极目的,提高了整体叶轮电解加工的稳定性和可靠性。
     研究结果表明,课题中采用的整体叶轮组合电解加工工艺是可行的,其分步分区法叶间通道加工方法使叶背与叶根的加工精度得到明显提高,成形阴极精加工后的叶片精度达到了
     ±0.1mm,叶片一致性和表面质量好。
The electrochemical machining (ECM) is one of main processes which are used toprocess integral impeller. The available NC Contour Evolution ECM methods aresuitable for the machining of the integral impeller with ruled surface or small angel twistblade. If they are used to process the free-from surface blade and the accuracy can notmeet the requirement. In order to process free-from surface blade of the integral impellerand increase its machining accuracy, stability and work efficiency, the research of the keytechnologies of the blade precision machining have been carry out. It includes: ECMprocess, shape law, cathode design, cutting path planning, process parameter selection,trouble diagnosis and the digital manufacture technology.
     Firstly,the blade machining process is researched, a combination ECM process forfree-from surface blade is proposed, which divides the blade process to rough and finishworking procedures, and the different method is applied to meet shape and precisiondemand. In processing of the blisk tunnel, the new method, fractional step, is applied toprocess600mm integral impeller. In the study of the finely process of the free-fromsurface blade the shape cathode is adopted. In order to verify the new process, the
     240mm integral turbine is selected as the test object. For this purpose, the processdevice with open structure has been developed, the pulse generator is used to achieve thesmall machining gape and the error compensation is adopted to reduce the machiningerror arise from the uniformity of the machining gap. The application of the abovemethods increases the machining accuracy of the blade.
     Then, the digital manufacture technology of impeller digital has been carried out.The ECM simulation method based on numerical calculation and process discretization ispresented in the paper. It uses finite element method to calculate the eclectic field,dissolution displacement and simulate the machined surface. The simulation software isdeveloped and applied to process analysis, cathode design, machining parameteroptimization in machining of the integral impeller. The component constrains anddimension drive methods are used to realize the motion simulation. The motionsimulation software is developed and applied to tool path planning, NC programming,error analysis. In the process of the integral impeller, the application of the digitalmanufacturing software increase the success rate of cathode design, the precision ofparameter selection and work efficiency.
     Finally, the selection method of process parameter is developed and it includes twostep, initial selection and optimization. The initial process parameter is selected by theaid of ECM database and then it is optimized by the simulation. The precise selection ofthe ECM parameter increases the accuracy of the blade. In order to improve themachining stability of integral impeller the trouble diagnosis system has been setup,which extracts the sensitive information from the machine current and electrolytepressure signals, then recognizes the machine pattern and judge the trouble. Thediagnosis system can avoid the damage caused by the trouble and protect the work piece.
     The research results show that the combination ECM process of the integralimpeller is feasible. The fractional-step method effectively increases the machiningprecision of blade root and blade back in machining of the blisk tunnel. The machiningaccuracy of the final machining blades increases to0.1mm. The blades have goodsurface finish and higher level of consistency.
引文
[1]齐学义.流体机械设计理论与方法[M].北京:中国水利水电出版社,2008
    [2]黄钟岳,王晓放.透平式压缩机[M].北京:化学工业出版社,2004
    [3]蔡国飙.液体火箭发动机设计[M].北京:北京航空航天大学出版社,2011
    [4]廉筱纯,吴虎.航空发动机原理[M].西安:西北工业大学出版社,2005
    [5]张津,洪杰,陈光.现代航空发动机技术与发展[M].北京:北京航空航天大学出版社,2006
    [6]黄春峰.航空发动机整体叶盘结构及发展趋势[J].现代零部件,2005,(4):98-101
    [7]陈光.整体叶盘在国外航空发动机中的应用[J].航空发动机,1999,(1):1-7
    [8]黄春峰.现代航空发动机整体叶盘及其制造技术[J].航空制造技术,2006,(4):94-100
    [9]江和甫.燃气涡轮发动机的发展与制造技术[J].航空制造技术,2007,(5):36-39
    [10]卢金铃,席光,祁大同.三元叶轮子午流道和叶片的优化方法[J].西安交通大学学报,2005,39(9):1021-1025
    [11] Martin Bu mann, Dr. Jürgen Kraus, Dr. Erwin Bayer. An Integrated Cost-Effective Approach toBlisk Manufacturing[C].International Symposium on Air Breathing Engines17th. MunichGermany:American Institute of Aeronautics and Astronautics,2005:1100-1108
    [12]于红英,唐德威,伞红军.汽轮机叶片参数化设计关键技术研究[J].计算机集成制造系统,2006,12(10):1537-1542
    [13] Idahosa U, Golubev Vladimir V, Balabanov Vladimir O. An automated optimal design of a fanblade using an integrated CFD/MDO computer environment [J]. Engineering application ofcomputational fluid mechanics,2008,2(2):141-154
    [14] Beirow Bernd, Kiihhom Arnold, Schrapes Sven. A discrete model to consider the influence ofthe air flow on blade vibrations of an intergral blisk compressor rotor[C]. Berlin:Proceedings ofthe ASME Turbo Expo,2008:38-392
    [15]虞跨海,岳珠峰.涡轮冷却叶片参数化建模及多学科设计优化[J].航空动力学报,2007,22(8):1346-1351
    [16]岳珠峰,王婧超等.航空发动机涡轮叶片多学科设计优化[M].北京:科学出版社,2007
    [17] Tsutsumi M,Saito A.Identification and compensation of systematic deviations particular to5-axis machining centers[J].International Journal of Machine Tools and Manufacture,2003,43(8):771-780
    [18] Ren Y Q, Yang J G. A new compensation method for geometry errors of five-axis machine tools[J]. International Journal of Machine Tools and Manufacture,2001,41(2):352-360
    [19]刘维伟,李杰光,赵明.航空发动机薄壁叶片加工变形误差补偿技术研究[J].机械设计与制造,2009,(10):175-177
    [20]张秋平.钛合金结构件加工新工艺[J].工艺与材料,2010,(1):86-90
    [21]李富长,宋祖铭,杨典军.钛合金加工工艺技术研究[J].新技术新工艺,2010,(5):66-69
    [22]赵秀芬,王玉华,刘阳.镍基高温合金的切削加工[J].航空制造技术,2010,(11):46-50
    [23]黄维,黄春峰,王永.先进航空发动机关键制造技术研究.航空制造技术,2009,(3):42-48
    [24]杨建国,张学秋,陈绪辉.电子束焊接在航空发动机制造中的应用及有限元热模型进展[J].焊接,2011,(1):50-56
    [25]宋敏霞,朱熹华,孟祥军.钛合金与其它金属材料扩散连接研究现状与发展[J].焊接,2006,(1):11-16
    [26]侯金保,董宝明,林强.钛合金整体叶盘扩散焊[J].航空制造技术,2002,(11):57-59
    [27]王文理,王焱,王君.航空发动机钛合金焊接式整体叶盘数控铣削工艺及编程技术[J].航空制造技术,2009,(25):100-102
    [28]张田仓,韦依,周梦慰.线性摩擦焊在整体叶盘制造中的应用[J].航空制造技术,2004,(11):56-58
    [29]郭恩明.航空先进制造技术发展趋势[J].航空制造技术,2007,(z1):1-5
    [30]丁立铭.21世纪航空制造技术将发生质的飞跃——谈高推重比发动机的关键制造技术[J].航空制造技术,2002,(1):53-62
    [31]精密铸造技术.精密铸造技术在航空工业中的应用和发展[J].航空制造技术,2008(,22):32-35
    [32] W odzimierz Wilk M.Sc., Jacek Tota M.Sc..Modern technology of the turbine blades removalmachining[C].8th International Conference on Advanced Manufacturing Operations,2007:347-355
    [33] Shi K,Shan D B,Xu W C,et al.Near net shape forming process of a titanium alloyimpeller[J].Journal of Materials Processing Technology[J],2007,(187):582–585
    [34] Shan Debin, Liu Fang, Xu Wenchen, et al.Experimental study on process of precision forging ofan aluminium-alloy rotor[J]. Journal of Materials Processing Technology,2005,(170):412–415
    [35]张国庆,田世藩,汪武祥.先进航空发动机涡轮盘制备工艺及其关键技术[J].新材料产业,2009,(11):16-21
    [36]田世藩,张国庆,李周.先进航空发动机涡轮盘合金及涡轮盘制造[J].航空材料学报,2010,23(10):233-238
    [37]汤鑫,曹腊梅,盖其东.高温合金双性能整体叶盘铸造技术[J].航空材料学报,2006,26(3):93-98
    [38]蔺小军,汪文虎,单晨伟.航空发动机叶片加工新工艺研究[J].航空精密制造技术,2009,45(5):46-48
    [39]陈皓晖,刘华明,孙春华.国内外叶轮数控加工发展现状[J].航天制造技术,2002,(2):45-48
    [40]任军学,张定华,王增强.整体叶盘数控加工技术研究[J].航空学报,2004,25(2):205-208
    [41]陈良骥,王永章.整体叶轮五轴侧铣数控加工方法的研究[J].计算机集成制造系统,2007,13(1):141-146
    [42]任军学,姜振南,姚倡锋.开式整体叶盘四坐标高效开槽插铣工艺方法[J].航空学报,2008,29(6):1692-1698
    [43]于源,赖天琴,员敏.基于特征的直纹面轴侧铣精加工刀位计算方法[J].机械工程学报,2002,38(6):130-133
    [44]罗明,吴宝海,李山.自由曲面五轴加工刀轴矢量的运动学优化方法[J].机械工程学报,2009,45(9):159-163
    [45]姬俊锋,周来水,安鲁陵.自由曲面叶片数控加工刀具轨迹规划方法[J].机械科学与技术,2008,27(5):652-656
    [46] Paczkowski T,Sawicki J.Electrochemical machining of curvilinear surfaces.Machining Scienceand Technology [J].2008,12(1):33-52
    [47]徐家文,王建业,田继安,杨占尧.电解加工在航空制造中的应用与发展[J].航空制造技术,2002:(4):27~30
    [48]徐家文,朱永伟,胡平旺.整体叶轮的数控电解加工及其在航天制造中的应用前景[J].宇航材料工艺,2003,(1):13-17
    [49]徐家文,云乃彰,严德荣.数控电解加工整体叶盘的研究、应用和发展[J].航空制造技术,2003,(6):31-34
    [50]刘家富.整体叶盘结构及制造工艺[J].航空科学技术,1998,(6):21-23
    [51]王刚,赵万生,于达仁等.整体涡轮盘通道电火花加工方法的研究[J].计算机辅助设计与制造,2001,(7):35-38
    [52]李刚,王振龙,赵万生等.带冠整体涡轮盘电火花加工CAD/CAM技术[J].南京航空航天大学学报,2007,39(2):253-257
    [53]刘晓,康小明,赵万生.带叶冠整体式涡轮盘的多轴联动数控电火花加工[J].航空制造技术,2009,(2):100-102
    [54]廖平强.带冠整体涡轮电火花加工技术研究.[硕士学位论文],西安:西北工业大学,2006
    [55] Martin Bu mann; Dr. Erwin Bayer. Blisk Production of the Future Technological and LogisticalAspects of Future-Oriented Construction and Manufacturing Processes of Integrally BladedRotors[C].International Symposium on Air Breathing Engines19th. Montreal: AmericanInstitute of Aeronautics and Astronautics,2009:1169-1177
    [56]徐正扬.发动机叶片精密电解加工关键技术研究[D].[博士学位论文],南京:南京航空航天大学,2008
    [57]朱永伟,徐家文,胡平旺.数控展成电解加工整体叶轮的研究与应用[J].航空学报,2001,22(4):376-378
    [58]康敏.整体叶轮的精密展成电解加工技术研究[D].[博士学位论文],南京:南京航空航天大学,2003
    [59]朱永伟,徐家文.复合平面摆动展成电解加工整体构件异形面的成形分析及应用[J].机械工程学报,2008,44(12):280-286.
    [60]吴建民,徐家文.整体叶轮数控展成电解加工运动轨迹及速度研究[J].机械科学与技术,2008,(8):1089-1091
    [61]干为民.数控展成电解磨削整体叶轮的基础研究[D].[博士学位论文],南京:南京航空航天大学,2003
    [62]朱荻.国外电解加工的研究进展[J].电加工与模具,2000,(1):11-16
    [63]陈远龙,任中根,徐家文.电化学加工技术的现状与展望[J].航空制造技术,2010,(5):46-49
    [64]田继安,华玉其,李国宏等.小间隙脉冲电流电解加工工艺试验研究[J].电加工与模具,1985,(1):2-6
    [65]张明岐,傅军英.高温合金整体叶盘精密振动电解加工方法的应用分析[J].航空制造技术,2009,(22):27-29
    [66]徐家文,云乃彰,王建业等.电化学加工技术-原理工艺及应用[M].北京:国防工业出版社,2008
    [67]徐家文,朱永伟,胡平旺.数控电解加工整体叶轮的关键技术[J].宇航材料工艺,2003,(2):48-52
    [68]康敏,徐家文,严德荣.整体叶轮叶片型面的展成电解精加工阴极设计[J].新技术新工艺,2004,(9):30-31
    [69]徐正扬,朱荻,朱栋.发动机叶片电解加工变间隙阴极修正法[J].机械工程学报,2009,45(9):187-191
    [70]王蕾,朱荻,李志永.发动机叶片电解加工阴极设计的基础研究[J].航空精密制造技术,2003,39(5):6-9
    [71]张丽娟,范植坚,刘辰.电解加工阴极的计算机辅助设计[J].西安工业学院学报,2006,26(3):205-209
    [72]李群,陈五一.基于UG的发动机整体叶轮三维造型研究[J].组合机床与自动化加工技术,2005,(9):5-10
    [73]郑金兴,程慧群.基于UG NX4.0整体叶轮的五轴数控加工仿真[J].组合机床与自动化加工技术,2007,(4):87-90
    [74]胡平旺,朱永伟,徐家文.整体叶轮数控展成电解加工分析[J].中国机械工程,2002,13(5):364-366
    [75]朱永伟,徐家文.电解加工直纹型面叶片的误差分析及处理[J].扬州大学学报(自然科学版),2003,6(3):39-44
    [76]钱密,徐家文.数控展成电解加工直纹曲面的误差分析[J].电加工与模具,2001,(6):28-31
    [77]张永俊.旋转阴极展成电解加工的间隙特性及光整直纹面的误差计算[J].中国机械工程,2002,13(12):1059-1061
    [78]朱永伟.数控展成电解加工扭曲叶片整体叶轮的研究与应用[D].[博士学位论文],南京:南京航空航天大学,2000
    [79]朱永伟,徐家文,胡平旺,等.数控电解加工整体叶轮的关键技术[J].宇航材料工艺,2003,(2):48-52
    [80]朱永伟,徐家文,胡平旺,等.直纹面整体叶轮展成电解加工关键问题研究[J].扬州大学学报(自然科学版),2002,5(4):40-45
    [81]康敏,徐家文.整体叶轮精密展成电解加工技术[J].农业机械学报,2006,37(7):208-210
    [82]钱密.提高数控展成电解加工精度的若干基础问题研究[D].[博士学位论文],南京:南京航空航天大学,2000
    [83]朱永伟,徐家文,赵建社.大扭曲度整体涡轮叶片展成电解加工成形规律及试验研究[J].中国机械工程,2006,17(17):1778-1783
    [84]朱永伟,徐家文.大扭曲叶片整体涡轮电解加工工艺研究[J].宇航材料工艺,2005,(6):51-55
    [85]吴建民.大直径整体叶轮数控电解加工技术研究[D].南京:南京航空航天大学,2008.
    [86]王福元,徐家文.整体叶轮分步法数控电解加工工艺与关键技术.华南理工大学学报(自然科学版),2010,38(8):72-77
    [87]王福元,徐家文,赵建社.整体叶盘电解扫掠成形精度分析及误差补偿.东南大学学报(自然科学版),2010,40(5):963-968
    [88]张文绍编著.电解加工的成型规律及阴极设计[M].北京:煤炭工业出版社,1987
    [89]朱树敏,陈远龙.电化学加工技术[M].北京:化学工业出版社,2006
    [90]张成光,缪娟,刘传绍,等.脉冲电化学加工现状与进展[J].工具技术,2007,41(2):19-23
    [91]刘红普,刘家平,张成光.脉冲电解加工研究现状及进展[J].装备制造技,2007.(4):86-89
    [92] J Kozak,K P Rajurka,Y Makkar. Study of Pulse Electrochemical Micromachining[J].Journalof Manufacturing Processes,2004,6(1):7-14
    [93] Zaytsev A, Agafonov I, Gimaev N.Precise pulse electrochemical machining by bipolarcurrent[J].Journal of Materials Processing Technology [J].2004,149(1-3):419-425
    [94]吴建民,徐家文.基于CFD技术的数控电解加工流场数值模拟[J].系统仿真学报,2009,29(1):73-75
    [95]李志永,朱荻.叶片电解加工CAD/CAE/CAM专家系统[J].北京航空航天大学学报,2006,32(1):104-107
    [96]王蕾,朱荻.采用BP神经网络的叶片电解加工精度预测[J].机械科学与技术,2006,25(7):777-780
    [97] Zhou Yuming, Derby Jeffrey S, Cathode design problem in electrochemical machining.Chemical Engineering Science[J],1995,50(17):2679-2689
    [98] Bhattacharyya S, Ghosh A Mallik A K. Cathode shape prediction in electrochemical machiningusing a simulated cut-and-try procedure[J]. Journal of Materials Processing Technology,1997,66,(1-3):146-152
    [99] Chang C S, Hourng L W, Chung C T. Tool design in electrochemical machining considering theeffect of thermal-fluid properties[J]. Journal of Applied Electrochemistry,1999,29(3):321-330
    [100]朱永伟,徐家文.整体构件异形曲面电解加工运动分析与设计[J].宇航材料工艺,2005,(3):47-53
    [101]康敏,徐家文.精密展成电解加工整体叶轮的数控编程[J].机械科学与技术,2002,21(5):748-750
    [102]朱永伟,徐家文,胡平旺,等.整体叶轮数控展成电解加工的数据处理及编程[J].中国机械工程,2002,13(16):1385-1388
    [103]王福元,徐家文.电场和流场数值模拟的电化学加工阴极设计[J].哈尔滨工业大学学报,2009,41(7):106-109
    [104]龚曙光主编. ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003
    [105]倪栋,段进,徐九成等编著.通用有限元分析ANSYS7.0实例精解[M].北京:电子工业出版社,2003
    [106]徐正扬,朱荻,王蕾,等.叶片电解加工三头柔性进给方向优化设计[J].中国机械工程,2003,18(24):2921-2925
    [107]李志永,朱荻,王蕾.电解加工发动机叶片阴极进给方向的优化[J].航空学报,2003,24(6):563-567
    [108]陈皓晖.整体叶轮加工关键技术的研究及软件开发[D].[博士学位论文],哈尔滨:哈尔滨工业大学,2003
    [109] Idahosa U, Golubev V V, Balabanov V O. An automated optimal design of a fan blade using anintegrated CFD/MDO computer environment[J]. Engineering Application of ComputationalFluid Mechanics,2008,2(2):141-154
    [110] Bortels Leslie, Purcar Marius, Van Den Bossche B, et al.A user-friendly simulation softwaretool for3D ECM[J]. Journal of Materials Processing Technology,2004,149(1-3):486-492
    [111] Marius Purcara,Andrei Dorochenkoa,Leslie Bortelsa,et al.Advanced CAD integratedapproach for3D electrochemicalmachining simulations[J].Journal of materials processingtechnology,2008,(203):58-71
    [112] Bortels Leslie, Purcar Marius, Van Den Bossche Bossche, Deconinck Johan.3Delectrochemical machining computer simulations [J].Journal of Fluids Engineering,2004,(149):472-478.
    [113]李志永,朱荻,孙春华.发动机叶片电解加工阴极设计有限元数值解法研究[J].中国机械工程,2004,15(13):1150-1153
    [114] Li Zhiyong, Niu Zongwei.Convergence Analysis of the Numerical Solution for Cathode Designof Aero-engine Blades in Electrochemical Machining[J].Chinese Journal of Aeronautics,2007,20(10):570-576
    [115] Sun Chunhua, Zhu Di, Li Zhiyong, et al. Application of FEM to tool design for electrochemicalmachining free form surface[J]. Finite Elements in Analysis and De-sign,2006,(43):168-172
    [116] Hardisty H, Mileham A R, Shirvarni H. A Finite Element Simulation of the ElectrochemicalMachining Process[J]. CIRP Annals–Manufacturing Technology,1993,42(1):201-204
    [117] Hardisty H, Mileham A R, Shirvani H. Analysis and computer simulation of the electrochemicalmachining process: a stepped moving tool eroding a plane surface[C]. Proceedings of theInstitution of Mechanical Engineers.Journal of Engineering Manufacture,1996,210(B2):109-111
    [118] Hourng L W, Chang C S. Numerical simulation of electrochemical drilling[J]. Journal ofApplied Electrochemistry,1993,23(4):316-321
    [119]陈远龙.电解加工工艺参数据库及电解加工基本规律研究[D].[博士学位论文],合肥:合肥工业大学,2000
    [120]王福元,徐家文,赵建社.整体构件数控电解加工CAD/CAM平台关键技术[J].计算机辅助设计与图形学学报,2010,22(6):978-983
    [121]王福元.异形型腔数控电解加工过程的计算机模拟仿真.[硕士学位论文],南京:南京航空航天大学,2005
    [122]葛媛媛,王福元.异形型腔数控电解加工过程的模拟仿真[J].制造技术与机床,2008,(2):51-53
    [123] Wang Fuyuan,Xu Jiawen, Zhao Jianshe. Numerical Simulation of Electrochemical MachiningProcess and Machined Surface Prediction [J]. Key Engeneering Material,2011,(458):99-105
    [124] Zhitnikov V P; Fedorova G I, Zinatullina O V, Kamashev A V, Simulation of non-stationaryprocesses of electrochemical machining[J]. Journal of Materials Processing Technology,2004,149(1-3):398-403
    [125] Jerzy Kozak,Antoni F Budzynski,Piotr Domanowski.Computer simulation electrochemicalshaping (ECM-CNC) using a universal electrode[J]. Journal of Materials ProcessingTechnology,1998,(76):161-164
    [126] Kozak J, Dabrowski L, Lubkowski K, et al. CAE-ECM system for electrochemical technologyof parts and tools[J]. Journal of Materials Processing Technology,2000,107(1-3):293-299.
    [127] Toshiaki Fujisawa, Kazuaki Inaba, Dai Kato. Multiphysics simulation of electrochemicalmachining process for three-dimensional compressor blade[J].Journal of Fluids Engineering,2008,130(8):621-628
    [128] Kozak J. Mathematical models for computer simulation of electrochemical machiningprocesses[J].Journal of Materials Processing Technology,1998,(76):170-175
    [129] Kozak Jerzy. Computer simulation system for electrochemical shaping [J]. Journal of MaterialsProcessing Technology,2001,109(3):354-359
    [130] Hourng Lih-Wu, Chen Chih-Cherng. Numerical simulation and analysis of the electrochemicalmachining[J]. Journal of the Chinese Society of Mechanical Engineers,1992,13(1):52-61
    [131] Adam Ruszaj, Maria Zybura Skrabalak. The mathematical modelling of electrochemicalmachining with flat ended universal electrode[J]. Journal of Materials Processing Technology,2001,(109):333-338
    [132] Marius Purcar,Leslie Bortels,Bart Van den Bossche,et al.3D electrochemical machiningcomputer simulations[J].Journal of Materials Processing Technology,2004,149(3):472-478
    [133] Filatov Evgueny I. Numerical simulation of the unsteady ECM process[J]. Journal of MaterialsProcessing Technology,2001,109(3):327-332
    [134] Xu Jiawen, Yun Naizhang, Tang Yangxin,et al. The modelling of NC-electrochemical contourevolution machining using a rotary tool-cathod [J]. Journal of Materials Processing Technology,2005,159(2):272–277
    [135] Zakiev S E, Kholpanov L P. Convenient system of FEM test functions for computational fluiddynamics[J]. Computational Mathematics and Mathematical Physics,2010,50(11):1859-1870
    [136] O C Zienkiewicz, R L Taylor, P Nithiarasu. The Finite Element Method For Fluid Dynamics[M].Oxford:Elsevier Butterworth-Heinemann,2005
    [137] Roland Wynne Lewis, Perumal Nithiarasu, K N Seetharamu. Fundamentals of the finite elementmethod for heat and fluid flow[M]. New York: John Wiley and Sons Inc,2004
    [138] Cheb-Terrab E S, von Bulow K. Computational approach for the analytical solving of partialdifferential equations[J]. Computer Physics Communications,1995,90(10):102-116
    [139] Das A S, Nandi A, Neogy S. Application of finite elements for determination of the dampingcoefficient of an eddy current damper using Matlab[J]. International Journal of MechanicalEngineering Education,2008,36(2):120-139
    [140]苏金明,张莲花. MATLAB工具箱应用[M].北京:电子工业出版社,2004
    [141]王福元,徐家文.基于约束与尺寸混合驱动的虚拟数控机床技术[J].中国机械工程,2010,21(15):1805-1808
    [142]许晓琴,王福元.五轴联动虚拟电火花成形加工机床设计与应用[J].制造技术与机床,2010,(8):49-53
    [143] Waurzyniak P. CAD/CAM software advances-latest packages add more simulation, supportfor multitasking machines and high-speed machining[J]. Manufacturing Engineering,2006,137(5):91-97
    [144] Schultz D F. Enhancing multiple-axis software: CAM software[J]. Cutting Tool Engineering,2008,60(7):36-38
    [145]王福元,徐家文.整体叶轮数控电解加工仿真与自动编程平台[J].计算机集成制造系统,2010,16(8):1673-1678
    [146] Zinovi Brusilovsk. Adjustment and readjustment of electro-chemical machines and control ofthe process parameters in machining shaped surfaces[J].Journal of Materials ProcessingTechnology,2008,196(1-3):311-320
    [147]王福元,徐家文,赵建社,等.基于加工过程数值模拟的电解加工参数选择方法[J].中国机械工程,2006,17(7):716-718
    [148] da Silva Neto J C; da Silva E M; da Silva M B. Intervening variables in electrochemicalmachining[J].Journal of Materials Processing Technology,2006,179(1-3):92-96
    [149]郑旭,康敏,傅秀清.基于BP神经网络的电解加工工艺参数优选研究[J].电加工与模具,2010,(6):58-61
    [150] Asokan P, Ravi Kumar R, Jeyapaul R.Development of multi-objective optimization models forelectrochemical machining process[J]. International Journal of Advanced ManufacturingTechnology.2008,39(1):55-63
    [151] Smels N, Van Damme S,De Wild D.Time averaged temperature calculations in pulseelectrochemical machining [J].Journal of Applied Electrochemistry.2007,37(11):1345-55
    [152] Mukherjee S K, Kumar S, Srivastava P K.Effect of electrolyte on the current-carrying processin electrochemical machining[J].Journal of Mechanical Engineering Science.2007,221(C11):1415-1419
    [153]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001
    [154] Datta D, Das A K.Tuning Process Parameters of Electrochemical Machining Using aMulti-objective Genetic Algorithm[C].Berlin:Springer Verlag,2010:485-493
    [155]陆永华,赵东标,朱荻等.基于六维力的电解加工间隙检测数值分析[J].中国机械工程,2004,15(23):2142-2145
    [156]王希.电解加工间隙智能监控方法研究[D].[博士学位论文],南京:南京航空航天大学,2006
    [157] Muir R N, Curry D R, Mil F, et al.Real-time parameterization of electrochemical machining byultrasound measurement of the interelectrode gap [J].Journal of Engineering Manufacture,2007,221(B4):551-558
    [158] Idrisov T R, Zaitzev A N, Zhitniko V P.Estimation of the process localization at theelectrochemical machining by microsecond pulses of bipolar current[J].Journal of MaterialsProcessing Technology.2004,149(1-3):479-485
    [159] Wei B, Rajurkar K P. Talpallikar S.Identification of interelectrode gap sizes in pulseelectrochemical machining[J]. Journal of the Electrochemical Society,1997,144(11):3913-3919
    [160]王福元,徐家文,吴祥.基于多信息融合的电解加工智能故障诊断系统[J].制造技术与机床,2005,(5):37-40
    [161]王福元,徐家文,赵建社.大直径整体叶轮分步法电解加工工艺与试验[J].航空学报,2010,31(12):2450-2456
    [162] Yang Hong, Ni Jim.Dynamic neural network modeling for nonlinear, non-stationary machinetool thermally induced error[J].International Journal of Machine Tools and Manufacture,2005,(45):455-465
    [163] Kotlyar L M, Minazetdinov N M. Anode-shape Deter-mination with Allowance for ElectrolyteProperties in Problems of Dimensional Electrochemical Machining of Metals[J]. Journal ofApplied Mechanics and Tech-nical Physics,2003,44(3):450-454
    [164] Chen G Q, Yuan J X, Ni J. A displacement measurement approach for machine geometric errorassessment[J]. International Journal of Machine Tools and Manufacture.2001,41(1):149-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700