用户名: 密码: 验证码:
大气压介质阻挡放电多针—同轴反应器结构优化及降解甲醛试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介质阻挡放电可以在常温大气压下产生低温等离子体,能耗低,且不需要昂贵的真空设备,特别适合于低温等离子体的工业化应用。大气压介质阻挡放电处理挥发性有机污染物是一种新型气态污染物治理技术,因其效率高、无选择性、使用范围广,近年来呈现出良好的应用前景。反应器电极结构是影响介质阻挡放电降解气态污染物效率的重要因素,因此优化反应器电极结构参数及其与电源参数的匹配对于提高气态污染物降解效率、降低能耗和介质阻挡放电大规模工业应用有重要的意义。
     为降低起始放电电压和运行电压、提高电子密度和污染物降解效率,本文首先构建多针-同轴结构电晕介质阻挡放电反应器,试验检测放电特性,结果表明其放电模式是细丝(流注)模式。根据气体放电理论,每个放电细丝在交流电压的一个周期内可以划分为三个阶段进行分析研究:放电的形成——放电的击穿;放电击穿后,电流细丝流过气隙并传输电荷;在微放电通道中原子、分子的激发和反应动力学的启动。基于此,本文的主要研究内容和创新性成果有:
     ①在检测并分析大气压空气中多针-同轴反应器电晕介质阻挡放电特性的基础上,建立基于有限元的电准静态空间电场分布计算模型,研究电极结构参数对反应器空间电场分布的影响;以大气压空气中不均匀场电子雪崩产生临界电场强度为判据,采用电准静态模型首次优化多针-同轴电极结构参数,并以试验验证。
     仿真结果还表明,相邻针之间相互作用显著影响反应器空间电场分布,所以本文进一步采用流注放电流体力学模型首次模拟相邻针相互作用对大气压空气中多针流注放电发展的影响:通过对比分析单针与多针流注放电过程中电场强度、电子和正离子数密度随时空发展过程,以及电子平均能量分布,表明多针流注的发展速度、流注发展轴线上电场强度、电子平均能量分布以及电子数密度和正离子数密度均比单针流注的小。但是,在相邻针相互作用下,多针结构的电晕放电性质较单针结构减弱,且反应器内非流注区域电场强度和电子平均能量能保持比单针结构大的水平,这对于降解气态有机污染物等DBD工业应用是有利的。
     ②正交试验研究周期传输电荷量最大的多针-同轴电极结构参数与电源参数的配合,方差分析结果表明试验因素对目标因素周期传输电荷量影响的显著性排序是电压幅值>频率>针间距>针长>相邻针夹角,长度3.5mm和2mm的针以纵向相邻针角度为45°间隔2.5mm排列的电极结构与电源频率21kHz的匹配令目标因素最大。
     ③正交试验研究甲醛降解率最高的电极结构参数与电源参数的匹配,结果与目标因素为周期传输电荷量的正交试验结果相同;借助分子模拟软件,首次采用密度泛函理论研究介质阻挡放电降解甲醛的机理:建立化学反应相对能计算模型,模型中考虑常压常温条件下的热力学焓校正值;设计介质阻挡放电降解甲醛过程中可能的主要自由基反应过程和自由基生成路径,并进行细致分析;最后将本文研究成果与文献研究成果对比分析,说明密度泛函理论研究可以作为试验研究的有效可靠补充手段。
Dielectric barrier discharge (DBD) can produce large volume and high-energy-density non-thermal plasma (NTP) at atmospheric pressure over a wide range offrequencies without expensive vacuum equipment, so it has a number of industrialapplications, such as surface modification, environmental protection, medicine, andplasma displays. Gaseous organic pollutant removal through DBD is a new techniquethat has appeared promising application prospect because of high efficiency andnon-selectivity. Reactor configuration has a major effect on DBD characteristics andpollutant removal efficiency, thus reactor configuration optimization and the match ofthe DBD reactor structure and the power supply is of great significance for large-scaleindustrial application of DBD.
     To decrease initial discharge voltage and operating voltage, increase electrondensity and pollutant removal efficiency, multineedle-to-cylinder (MC) corona-DBDreactor is designed at first in this thesis. Experimental discharge currents and imagesshow the discharge pattern at atmospheric air is filament (streamer). According todischarge theory, the life cycle of one such filament can be discerned three separate steps:the formation of the avalanche, i.e., the electrical breakdown; the ensuing current pulse ortransport of charge across the gap; and simultaneously the excitation of the atoms andmolecules present and thus initiation of the reaction kinetics. Researches have been madeaiming at the three separate steps of the filament:
     ①Based on the quasi-static maxwell equation, a quasi-static field model ispresented to calculate the electric field distribution in the reactor using finite-elementmethod. The critical electric field strength of avalanche production is adopted as thecriterion to optimize the structure and parameters of MC reactor, which is validated byfurther experiments.
     Simulation results also show that mutual effect among adjacent needles influenceDBD characteristics. Therefore, the fluid-hydrodynamic model is employed toinvestigate the the influence of the mutual effect on the multi-needle streamerpropagation. The comparison and analysis between the electric field, electrons andpositive ions number density, electron average energy of streamer discharge insingle-needle geometry (SNG) and three-needle geometry (TNG) show that the averagepropagation velocities, electric fields distribution, electron average energy, the electron density along the streamer propagation axis in TNG decreas compared with those in theSNG. However, the corona character is weakened in TNG. Meanwhile, the electric field,electrons and the electron average energies out of streamer domain in TNG are greaterthan those in SNG, which is favorable to gasous pollutant removal.
     ②The matching of electrode configuration and power supply parameters is studiedby orthogonal design in combination with Lissajous figures, in which the value oftransported charges per cycle is adopthe as the goal factor. The results of the varianceanalysis interpret that the influence of Upis the most remarkable. The next influencingfactor is f while NL and INRA do not affect the charges transferred remarkably. Theoptimal experiment plan is f=21kHz, and NL is3.5mm and2mm alternatively spacedwith INRA of45°. Orthogonal experiment results are experimentally validated byfurther experiments involved with all NL and INRA combinations.
     ③The orthogonal experiment is used to optimize the matching between MCstructure and the power supply to achieve the highest removal efficiency. Densityfunctional theory (DFT) is used to study the pathways of formaldehyde removal underDBDs plasma conditions through molecular simulation package. The calculation modelof the relative energy of the reactions is defined, in which adjustment term concerningthe actual experiment conditions is considered. Possible radical reactions and theformation reactions of radicals are designed and investigated with DFT. The previouslycorrelative theoretical or experimental results are also included in this work.Comparative results between the previous investigation and the present workdemonstrate that theoretical calculation with DFT is an efficient and reliable supplementfor experimental research.
引文
[1]王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-11.
    [2] U. Kogelschatz. Dielectric-barrier discharges: Their history, discharge physics, andindustrial applications [J]. Plasma Chemistry and Plasma Processing,2003,23(1):1-46.
    [3] L. I. Oseillations in ionized gases.[J]. Proceedings of the National Academy of Sciences ofthe United states of America,1928,14(8):627-637.
    [4]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [5]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [6]董丽芳.气体放电等离子体动力学[J].河北大学出版社2004.
    [7]杨津基.气体放电[M].北京:科学出版社,1983.
    [8]王洪昌.介质阻挡放电去除气态混合VOCs的研究[D].大连:大连理工大学博士论文,2010.
    [9]蒋洁敏,侯健,等.介质阻挡放电常压分解苯、二甲苯[J].中国环境科学,2001,21(6):531-534.
    [10] W. S. Kang, J. M. Park, Y. Kim, et al. Numerical study on influences of barrier arrangementson dielectric barrier discharge characteristics [J]. IEEE Transactions on Plasma Science,2003,31(4):504-510.
    [11] K. Takaki, M. Shimizu, S. Mukaigawa, et al. Effect of electrode shape in dielectric barrierdischarge plasma reactor for NOx removal [J]. IEEE Transactions on Plasma Science,2004,32(1):32-38.
    [12] M. B. Chang, C. C. Lee. Destruction of Formaldehyde with Dielectric Barrier DischargePlasmas [J]. Environmental Science&Technology,1995,29(1):181-186.
    [13] E. J. Clothiaux, J. A. Koropchak, R. R. Moore. Decomposition of an organophosphorusmaterial in a silent electrical discharge [J]. Plasma Chemistry and Plasma Processing,1984,4(1).
    [14]刘中文,孙咏梅,等.烹调油烟雾中有机成分的分析[J].中国公众健康,2002,18(9):1046-1048.
    [15]徐业林,徐东群,吕建萍,等.安徽省2004-2008年室内空气中甲醛浓度调查[J].中国卫生工程学,2009,8(2):93-96.
    [16]沈成钢,刘秀春,张志梅.温度对装修后室内空气中甲醛含量的影响[J].中国卫生检验杂志,2007,17(1):110-118.
    [17]张静.介质阻挡放电脱除甲醛的化学动力学模拟[D].大连:大连理工大学硕士论文,2007.
    [18] M. G. M, Y. A. O. Reevaluation of Mortality Risks from Nasopharyngeal Cancer in theFormaldehyde Cohort Study of the National Cancer Institute [J]. Regulatory Toxicology andPharmacology,2005,42.
    [19] H. M, L. J. H, S. P. A, et al. Mortality from Solid Cancers among Workers inFormaldehydeIndustries [J]. Am J EPidemio,2005,161:1090-1091.
    [20] C. J. J, L. G. A. A. Review and Meta-Analysis of Formaldehyde Exposure and Leukemia [J].Regulatory Toxicology and Pharmacology,2004,40:81-91.
    [21] T. C. Manley. The electric characteristics of the ozonator discharge [J]. Trans ElectrochemSoc.1943,84(1):83-93.
    [22] S. Palaskar, K. H. Kale, G. S. Nadiger, et al. Dielectric Barrier Discharge Plasma InducedSurface Modification of Polyester/Cotton Blended Fabrics to Impart Water RepellencyUsing HMDSO [J]. Journal of Applied Polymer Science,2011,122(2):1092-1100.
    [23] N. De Geyter, R. Morent, S. Van Vlierberghe, et al. Effect of electrode geometry on theuniformity of plasma-polymerized methyl methacrylate coatings [J]. Progress in OrganicCoatings,2011,70(4):293-299.
    [24] R. J. R. Industrial plasma engineering[M]. Bristol: Institute of physics publishing,1995.
    [25] H. T. Q. An, T. P. Huu, T. Le Van, et al. Application of atmospheric non thermalplasma-catalysis hybrid system for air pollution control: Toluene removal [J]. CatalysisToday,2010,176(1):474-477.
    [26] B. Eliasson, U. Kogelschatz. Modeling and Applications of Silent Discharge Plasmas [J].IEEE Transactions on Plasma Science,1991,19(2):309-323.
    [27] F. Massines, A. Rabehi, P. Decomps, et al. Experimental and theoretical study of a glowdischarge at atmospheric pressure controlled by dielectric barrier [J]. Journal of AppliedPhysics,1998,83(6):2950-2957.
    [28]王新新,芦明泽,蒲以康.空气中大气压均匀辉光放电的可能性[J].物理学报,2002,51(12):2778-2785.
    [29] S. H. Liu, M. Neiger. Electrical modelling of homogeneous dielectric barrier dischargesunder an arbitrary excitation voltage [J]. Journal of Physics D-Applied Physics,2003,36(24):3144-3150.
    [30] F. Massines, P. Segur, N. Gherardi, et al. Physics and chemistry in a glow dielectric barrierdischarge at atmospheric pressure: diagnostics and modelling [J]. Surface&CoatingsTechnology,2003,174:8-14.
    [31] C. Wichaidit, W. N. G. Hitchon. Simulation of breakdown in dielectric barrier discharges atatmospheric pressure [J]. Journal of Physics D-Applied Physics,2004,37(18):2545-2556.
    [32]刘勇,何湘宁,马飞.介质阻挡放电和大气压辉光放电的分析和仿真[J].高电压技术,2005,31(6):55-58.
    [33] R. Valdivia-Barrientos, J. Pacheco-Sotelo, M. Pacheco-Pacheco, et al. Analysis andelectrical modelling of a cylindrical DBD configuration at different operating frequencies [J].Plasma Sources Science&Technology,2006,15(2):237-245.
    [34] M. Lu, X. Wang, Y. Pu, et al. Study of atmospheric pressure glow discharge [J]. PlasmaSources Sci Technol,2003,12(3):358-361.
    [35] S. Kanazawa, M. Kogoma, T. Moriwaki, et al. Stable Glow Plasma at Atmospheric-Pressure[J]. Journal of Physics D-Applied Physics,1988,21(5):838-840.
    [36] J. G. McCarthy. Distraction osteogenesis in accompanying obstructive correction ofmicrognathia sleep apnea syndrome [J]. Plastic and Reconstructive Surgery,2003,112(6):1558-1559.
    [37] J. J. Shi, D. W. Liu, M. G. Kong. Effects of dielectric barriers in radio frequencyatmospheric glow discharges [J]. IEEE Transactions on Plasma Science,2007,35(2):137-142.
    [38] N. Gherardi, G. Gouda, E. Gat, et al. Transition from glow silent discharge tomicro-discharges in nitrogen gas [J]. Plasma Sources Science&Technology,2000,9(3):340-346.
    [39] C. Z. Y. Impendance matching for one atmospheric uniform glow discharge plasma(OAUGDP) reactors [J]. IEEE Trans Plasma Sci,2002,30(5):1922-1930.
    [40] J. I. Levatter, S. C. Lin. Necessary Conditions for the Homogeneous Formation of PulsedAvalanche Discharges at High Gas-Pressures [J]. Journal of Applied Physics,1980,51(1):210-222.
    [41]詹花茂,丁立健,李成榕,等.火花放电预电离对空气中介质阻挡放电的影响[J].电工电能新技术,2005,24(1):49-52.
    [42]詹花茂,李明,李成榕,等.介质阻挡放电中的紫外线预电离[J].高电压技术,2005,31(2):62-66.
    [43] I. Stefanovic, N. K. Bibinov, A. A. Deryugin, et al. Kinetics of ozone and nitric oxides indielectric barrier discharges in O-2/NOx and N-2/O-2/NOx mixtures [J]. Plasma SourcesScience&Technology,2001,10(3):406-416.
    [44] R. Ono, T. Oda. Ozone production process in pulsed positive dielectric barrier discharge [J].Journal of Physics D: Applied Physics,2007,40(1):176-182.
    [45] T. Yokoyama, M. Kogoma, S. Kanazawa, et al. The Improvement of theAtmospheric-Pressure Glow Plasma Method and the Deposition of Organic Films [J].Journal of Physics D-Applied Physics,1990,23(3):374-377.
    [46] N. Y. Babaeva, M. J. Kushner. Ion energy and angular distributions onto polymer surfacesdelivered by dielectric barrier discharge filaments in air: I. Flat surfaces [J]. Plasma SourcesScience&Technology,2011,20(3):035017-035027
    [47] M. B. Chang, J. H. Balbach, M. J. Rood, et al. Removal of SO2from Gas Streams Using aDielectric Barrier Discharge and Combined Plasma Photolysis [J]. Journal of AppliedPhysics,1991,69(8):4409-4417.
    [48] M. Rong, D. Liu, X. Wang, et al. Experimental study of SO2removal by pulsed DBD alongwith the application of magnetic field [J]. Plasma Science&Technology,2007,9(6):717-720.
    [49]江超,王又青.微空心阴极放电与准分子光源[J].量子电子学报,2005,22(2):142-149.
    [50] J. P. Boeuf. Plasma display panels: physics, recent developments and key issues [J]. Journalof Physics D-Applied Physics,2003,36(6): R53-R79.
    [51] K. A, K. H, K. J, et al. The influence of side groups and polarity of polylners on the kind andeffectiveness of their surface modilication by air plasma action [J]. European PolymerJournal2002,38(9):1915-1919.
    [52] U. D. J, B. N. V. Surface modification and charaeterization of dichioromethane plasmatreated polypropylene film [J]. Plasmas and Polymers,2003,8(4):237-257.
    [53]李成榕,王新新,詹花茂,等.等离子体表面处理与大气压下的辉光放电[J].高压电器,2003,39(4):46-51.
    [54]张燕.大气压均匀介质阻挡放电的实验研究及其对丙纶无纺布的表面改性[D].大连:大连理工大学博士论文,2008.
    [55] I. Traus, H. Suhr. Hydrogen-Sulfide Dissociation in Ozonizer Discharges and Operation ofOzonizers at Elevated-Temperatures [J]. Plasma Chemistry and Plasma Processing,1992,12(3):275-285.
    [56] M. E. Fraser, R. S. Sheinson. Electric Discharge-Induced Oxidation of Hydrogen-Cyanide[J]. Plasma Chemistry and Plasma Processing,1986,6(1):27-38.
    [57] R. H. Zhang, T. Yamamoto, D. S. Bundy. Control of ammonia and odors in animal housesby a ferroelectric plasma reactor [J]. IEEE Transactions on Industry Applications,1996,32(1):113-117.
    [58] L. A. Rosoch. Processing of hazardous chemicals using silent-discharge plasmas [J]. inPlasma Science and the Environment (WManheimer, L E Sugiyama, and T H Stix, eds), AIPPress, Woodbury, NY (1997),1997,(11):261-298.
    [59] S. Y, K. S, C. K, et al. Effects of adsorption and temperature on a nonthermal plasmaprocess for removaling VOCs [J]. Joumal of Electrostatics,2002,55(2):189-201.
    [60] Y. X. Zhou, P. Yan, Z. X. Cheng, et al. Application of nonthermal plasmas on toxic removalof dioxin-contained fly ash [J]. Powder Technology,2003,135-136(2):345-353.
    [61] D. Evans, L. A. Rosocha, G. K. Anderson, et al. Plasma Remediation of Trichloroethylene inSilent Discharge Plasmas [J]. Journal of Applied Physics,1993,74(9):5378-5386.
    [62] S. Masuda, S. Hosokawa, X. L. Tu, et al. Destruction of Gaseous-Pollutants bySurface-Induced Plasma Chemical Process (Spcs)[J]. IEEE Transactions on IndustryApplications,1993,29(4):781-786.
    [63] H. M. Lee, M. B. Chang. Abatement of gas-phase p-xylene via dielectric barrier discharges[J]. Plasma Chemistry and Plasma Processing,2003,23(3):541-558.
    [64]郑光云,侯健,蒋洁敏,等.非平稳态等离子体降解流动态低浓度甲苯气体的研究[J].复旦大学学报(自然科学版),2001,40(4):364-367.
    [65]李锻,刘江江,吴彦,等.针-板式流光放电结合脉冲电源降解甲苯[J].北京理工大学学报,2005,25(51):230-233.
    [66]李锻,刘明辉,吴彦,等.单极性脉冲电源结合介质阻挡放电降解VOCs [J].北京理工大学学报,2005,25(51):201-204.
    [67]李锻,刘明辉,吴彦,等.双极性脉冲高压介质阻挡放电降解氯苯和甲苯[J].中国环境科学,2006,26(51):23-26.
    [68] M. A. Jani, K. Takaki, T. Fujiwara. Low-voltage operation of a plasma reactor for exhaustgas treatment by dielectric barrier discharge [J]. Review of Scientific Instruments,1998,69(4):1847-1849.
    [69] M. A. Jani., K. Takaki., T. Fujiwara. Streamer polarity dependence of NOx removal bydielectric barrier discharge with a multipoint-to-plane geometry [J]. Journal of Physics D:Applied Physics,1999,32(19):2560-2567.
    [70] K. Takaki, M. A. Jani, T. Fujiwara. Removal of nitric oxide in flue gases by multipoint toplane dielectric barrier discharge [J]. IEEE Transactions on Plasma Science,1999,27(4):1137-1145.
    [71] M. A. Jani, K. Toda, K. Takaki, et al. An experimental comparison between electrode shapesfor NOx treatment using a dielectric barrier discharge [J]. Journal of Physics D-AppliedPhysics,2000,33(23):3078-3082.
    [72] K. Takaki, T. Fujiwara. Multipoint barrier discharge process for removal of NOx from dieselengine exhaust [J]. IEEE Transactions on Plasma Science,2001,29(3):518-523.
    [73] F. Daou, A. Vincent, J. Amouroux. Point and multipoint to plane barrier discharge processfor removal of NOx from engine exhaust gases: Understanding of the reactional mechanismby isotopic labeling [J]. Plasma Chemistry and Plasma Processing,2003,23(2):309-325.
    [74] A. N. Bhoj, M. J. Kushner. Multi-scale simulation of functionalization of rough polymersurfaces using atmospheric pressure plasmas [J]. Journal of Physics D: Applied Physics,2006,39(8):1594-1598.
    [75] K. Takaki, Y. Hatanaka, K. Arima, et al. Influence of electrode configuration on ozonesynthesis and microdischarge property in dielectric barrier discharge reactor [J]. Vacuum,2008,83(1):128-132.
    [76]周波.用于油烟雾VOCs治理的介质阻挡放电反应器的放电特性研究[D].重庆:重庆大学硕士论文,2009.
    [77] M. Rong, D. Liu, D. Wang, et al. A New Structure Optimization Method for the InterneedleDistance of a Multineedle-to-Plane Barrier Discharge Reactor [J]. IEEE Transactions onPlasma Science,2010,38(4):966-972.
    [78] D. xiaoqing, H. Jiayu, Chenlei, et al. Research on removal of dilute gaseous toluene usingdielectric barrier discharge with TiO2photocatalyst[C].Proceedings of the2010IEEEInternational Conference on Mechanic Automation and Control Engineering, Wuhan, China,26–28June,2010:2026-2031.
    [79]周波,王晓静,孙才新.电极结构对介质阻挡放电参数的影响研究[J].高压电器,2010,46:31-34.
    [80]何贤俊.电晕介质阻挡放电特性研究[D].合肥:中国科学技术大学硕士学位论文,2009.
    [81] J. Zhang, F.-G. Lue, Y. Xu, et al. Chemical kinetics of the removal of formaldehyde indielectric barrier discharges [J]. Acta Physico-Chimica Sinica,2007,23(9):1425-1431.
    [82]缪劲松,徐红丽,欧阳吉庭.利用低温等离子体技术脱除甲醛的研究[J].北京理工大学学报,2005,25:189-192.
    [83]何正浩,丁留华,邓东,等.应用介质阻挡放电处理甲醛气体[J].高电压技术,2005,31(12):37-44.
    [84] N. Q. Yan, Z. C. Wu, T. N. Tan. Modeling of formaldehyde destruction under pulseddischarge plasma [J]. Journal of Environmental Science and Health Part a-Toxic/HazardousSubstances&Environmental Engineering,2000,35(10):1951-1964.
    [85] D. G. Storch, M. J. Kushner. Destruction Mechanisms for Formaldehyde inAtmospheric-Pressure Low-Temperature Plasmas [J]. Journal of Applied Physics,1993,73(1):51-55.
    [86]李坚,李洁,梁文俊.高频电晕放电等离子体法处理甲醛的研究[J].环境科学学报,2006,26(6):882-886.
    [87]李坚,薛红弟,梁文俊.等离子体法去除HCHO的实验研究[J].高电压技术,2007,33(2):171-173.
    [88]李坚,薛红弟,梁文俊,等.等离子体法去除HCHO的实验研究[J].北京工业大学学报,2006,32(6):534-537.
    [89] H. H. Kim, G. Prieto, K. Takashima, et al. Performance evaluation of discharge plasmaprocess for gaseous pollutant removal [J]. Journal of Electrostatics,2002,55(1):25-41.
    [90] R. N. Li, X. Liu. Main fundamental gas reactions in denitrification and desulfurization fromflue gas by non-thermal plasmas [J]. Chemical Engineering Science,2000,55(13):2491-2506.
    [91] M. T. Advances in low temperature RF plasmas: basis for process design[M]. Amsterdam:Elsevier,2002.
    [92] T. T. Computational plasma physics[M]. Redwood City: Addison-Wesley,1988.
    [93] B. C. K, L. A. B. Plasma physics via computer simulation[M]. New York: McGraw-Hill,1985.
    [94] J. Dawson. One-Dimensional Plasma Model [J]. Physics of Fluids,1962,5(4):445-459.
    [95] C. K. Birdsall, W. B. Bridges. Space-Charge Instabilities in Electron Diodes and PlasmaConverters [J]. Journal of Applied Physics,1961,32(12):2611-&.
    [96] B. O. Dissipation of currents in ionized media [J]. Phys Rev,1959,115:503.
    [97] T. P., M. J. J. Monte Carlo calculation of noise near the potential minimum of ahigh-frequency diode [J]. Appllied Physics,1956,27:1067.
    [98] T. Makabe, N. Nakano, Y. Yamaguchi. Modeling and Diagnostics of the Structure of RfGlow-Discharges in Ar at13.56Mhz [J]. Physical Review A,1992,45(4):2520-2531.
    [99] S. K. Park, D. J. Economou. Analysis of Low-Pressure Rf-Glow Discharges Using aContinuum Model [J]. Journal of Applied Physics,1990,68(8):3904-3915.
    [100] D. B. Graves. Fluid model simulations of a13.56MHz RF discharge: time and spacedependence of rates of electron impact excitation [J]. Journal of Applied Physics,1987,62(1):88-94.
    [101] D. B. Graves, K. F. Jensen. A Continuum Model of DC and RF Discharges [J]. IEEETransactions on Plasma Science,1986,14(2):78-91.
    [102] Y. Zhuang., G. Chen., M. Rotaru. Numerical modelling of needle-grid electrodes fornegative surface corona charging system [J]. Journal of Physics: Conference Series2011,310(1):012011.
    [103] M. J. Kushner. Hybrid modelling of low temperature plasmas for fundamental investigationsand equipment design [J]. Journal of Physics D: Applied Physics,2009,42(19):194013-194032
    [104] S. Kumara, Y. V. Serdyuk, S. M. Gubanski. Charging of Polymeric Surfaces by PositiveImpulse Corona [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16(3):726-733.
    [105] T. Farouk, B. Farouk, D. Staack, et al. Simulation of dc atmospheric pressure argon microglow-discharge [J]. Plasma Sources Science&Technology,2006,15(4):676-688.
    [106] K. Nagayama, B. Farouk, Y. H. Lee. Particle simulation of radio-frequency plasmadischarges of methane for carbon film deposition [J]. IEEE Transactions on Plasma Science,1998,26(2):125-134.
    [107] K. Nagayama., B. Farouk., Y. H. Lee. Neutral and charged particle simulation of RF Arplasma [J]. Plasma Sources Science and Technology,1996,5(4):685-695.
    [108] J. Li, T. Yuan, Q. Yang, et al. Numerical and Experimental Investigation of GroundingElectrode Impulse-Current Dispersal Regularity Considering the Transient IonizationPhenomenon [J]. IEEE Transactions on Power Delivery,2011,26(4):2647-2658.
    [109] W. Sima, Q. Yang, C. Sun, et al. Potential and electric-field calculation along an ice-coveredcomposite insulator with finite-element method [J]. IEE Proceedings-GenerationTransmission and Distribution,2006,153(3):343-349.
    [110]杨庆.覆冰绝缘子沿面电场特性和放电模型研究[D].博士重庆大学,2006.
    [111]李景丽.接地网频域性能及杆塔接地极冲击特性的数值分析及试验研究[D].博士:重庆大学,2011.
    [112]张榴晨,张松.有限元法在电磁计算中的应用[M].北京:中国铁道出版社,1996.
    [113] Y. Sakiyama, D. B. Graves. Finite element analysis of an atmospheric pressure RF-excitedplasma needle [J]. Journal of Physics D: Applied Physics,2006,39(16):3451-3456.
    [114] G. E. Georghiou, R. Morrow, A. C. Metaxas. Characterization of point-plane corona in air atradio frequency using a FE-FCT method [J]. Journal of Physics D-Applied Physics,1999,32(17):2204-2218.
    [115] G. E. Georghiou, A. P. Papadakis, R. Morrow, et al. Numerical modelling of atmosphericpressure gas discharges leading to plasma production [J]. Journal of Physics D: AppliedPhysics,2005,38(20): R303-R328.
    [116] K. T, H. K, K. R, et al. Decomposition of adsorbed xylene on adsorbents using non-thermalplasma with gas circulation [J]. Industry Applications,2010,46(2):672-679.
    [117] R. Marquesa, S. D. Costab, P. D. Costa. Plasma-assisted catalytic oxidation of methane: Onthe influence of plasma energy deposition and feed composition [J]. Applied Catalysis B:Environmental,2008,82(1-2):50-57.
    [118] H. B. Ma, Y. C. Qiu. A study of ozone synthesis in coaxial cylinder pulse streamer coronadischarge reactors [J]. Ozone-Science&Engineering,2003,25(2):127-135.
    [119]王晓静,孙才新,李成祥,等.多针-同轴电极介质阻挡放电传输电荷产生条件分析[J].重庆大学学报(自然科学版),2011,34(9):134-141.
    [120] T. N. Tran, I. O. Golosnoy, P. L. Lewin, et al. Two dimensional studies of Trichel pulses inair using the finite element method [C].2009IEEE Annual Report Conference on ElectricalInsulation and Dielectric Phenomena (CEIDP2009),2009:559-562.
    [121] C. Li, J. Teunissen, M. Nool, et al. A comparison of3D particle, fluid and hybridsimulations for negative streamers [J]. Arxiv preprint arXiv:12035035,2012.
    [122] G. Wormeester, S. Pancheshnyi, A. Luque, et al. Probing photo-ionization: simulations ofpositive streamers in varying N2: O2-mixtures [J]. Journal of Physics D: Applied Physics,2010,43(50):505201
    [123]张赟,曾嵘,黎小林,等.大气中短空气间隙流注放电过程数值仿真[J].中国电机工程学报,2008,28(28):6-12.
    [124] S. Celestin, Z. Bonaventura, B. Zeghondy, et al. The use of the ghost fluid method forPoisson's equation to simulate streamer propagation in point-to-plane and point-to-pointgeometries [J]. Journal of Physics D: Applied Physics,2009,42(6).
    [125] S. C′elestin, Z. Bonaventura, B. Zeghondy, et al. Influence of surface charges on thestructure of a dielectric barrier discharge in air at atmospheric pressure: experiment andmodeling [J]. Eur Phys J Appl Phys,2009,47:22810.
    [126] U. Ebert, D. D. Sentman. Streamers, sprites, leaders, lightning: from micro-to macroscales[J]. Journal of Physics D-Applied Physics,2008,41(23).
    [127] W. J. Yi, P. F. Williams. Experimental study of streamers in pure N-2and N-2/O-2mixturesand a approximate to13cm gap [J]. Journal of Physics D: Applied Physics,2002,35(3):205-218.
    [128] U. Kogelschatz. Filamentary, patterned, and diffuse barrier discharges [J]. IEEETransactions on Plasma Science,2002,30(4):1400-1408.
    [129] R. Dorai, M. J. Kushner. A model for plasma modification of polypropylene usingatmospheric pressure discharges [J]. Journal of Physics D: Applied Physics,2003,36(6):666-685.
    [130] G. E. Georghiou, R. Morrow, A. C. Metaxas. The effect of photoemission on the streamerdevelopment and propagation in short uniform gaps [J]. Journal of Physics D: AppliedPhysics,2001,34(2):200-208.
    [131] H. Raether. Development of electron avalanche in the radio channel [J]. Zeitschrift FurPhysik,1939,112(7-8):464-489.
    [132] L. B. Loeb, J. M. Meek. The mechanism of spark discharge in air at atmospheric pressure. I[J]. Journal of Applied Physics,1940,11(6):438-447.
    [133] G. E. Georghiou, R. Morrow, A. C. Metaxas. Two-dimensional simulation of streamers usingthe FE-FCT algorithm [J]. Journal of Physics D: Applied Physics,2000,33(3): L27-L32.
    [134] C. Li, W. J. M. Brok, U. Ebert, et al. Deviations from the local field approximation innegative streamer heads [J]. Journal of Applied Physics,2007,101(12).
    [135] C. Li, U. Ebert, W. J. M. Brok, et al. Spatial coupling of particle and fluid models forstreamers: where nonlocality matters [J]. Journal of Physics D: Applied Physics,2008,41(3):032005.
    [136] C. Li, U. Ebert, W. Hundsdorfer.3D hybrid computations for streamer discharges andproduction of runaway electrons [J]. Journal of Physics D: Applied Physics,2009,42(20):202003
    [137] C. Li, U. Ebert, W. Hundsdorfer. Spatially hybrid computations for streamer discharges withgeneric features of pulled fronts: I. Planar fronts [J]. Journal of Computational Physics,2010,229(1):200-220.
    [138] C. Li, U. Ebert, W. Hundsdorfer. Spatially hybrid computations for streamer discharges: II.Fully3D simulations [J]. Journal of Computational Physics,2012,231(3):1020-1050.
    [139] S. Pancheshnyi, M. Nudnova, A. Starikovskii. Development of a cathode-directed streamerdischarge in air at different pressures: Experiment and comparison with direct numericalsimulation [J]. Physical Review E,2005,71(1):016407.
    [140]张赟,曾嵘,杨学昌,等.大气压下流注放电光电离过程的数值仿真[J].中国电机工程学报,2009,29(4):110-116.
    [141] R. Morrow, J. J. Lowke. Streamer propagation in air [J]. Journal of Physics D: AppliedPhysics,1997,30(4):614-627.
    [142] G. J. M. Hagelaar, L. C. Pitchford. Solving the Boltzmann equation to obtain electrontransport coefficients and rate coefficients for fluid models [J]. Plasma Sources Science&Technology,2005,14(4):722-733.
    [143] CPAT: http://www.codiciel.fr/plateforme/plasma/bolsig/bolsig.php.
    [144] S. V. Pancheshnyi, A. Y. Starikovskii. Two-dimensional numerical modelling of thecathode-directed streamer development in a long gap at high voltage [J]. Journal of PhysicsD-Applied Physics,2003,36(21):2683-2691.
    [145] L. Se-Hee, L. Se-Yeon, C. Young-Ki, et al. Finite-element analysis of corona dischargeonset in air with artificial diffusion scheme and under Fowler-Nordheim electron emission[J]. IEEE Transactions on Magnetics,2007,43(4):1453-1456.
    [146] D. K. Gupta, S. Mahajan, P. I. John. Theory of step on leading edge of negative coronacurrent pulse [J]. Journal of Physics D-Applied Physics,2000,33(6):681-691.
    [147] R. Morrow. Theory of Negative Corona in Oxygen [J]. Physical Review A,1985,32(3):1799-1809.
    [148] O. Ducasse, L. Papageorghiou, O. Eichwald, et al. Critical analysis on two-dimensionalpoint-to-plane streamer simulations using the finite element and finite volume methods [J].IEEE Transactions on Plasma Science,2007,35(5):1287-1300.
    [149]梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社,2003.
    [150] W. Sima., Q. Peng., Q. Yang., et al. Study of the Characteristics of a Streamer Discharge inAir Based on a Plasma Chemical Model [J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2012,19(2):660-670.
    [151] R. S. Sigmond. The Residual Streamer Channel-Return Strokes and Secondary Streamers[J]. Journal of Applied Physics,1984,56(5):1355-1370.
    [152] R. Y. P. Gas Discharge Physics [J]. Berlin: Springer-Verlag,1991:357-358.
    [153]赵选民.试验设计方法[M].北京:科学出版社,2006.
    [154]杨虎,刘琼荪,钟波.数理统计[M].北京:高等教育出版社,2004.
    [155]夏胜国,刘克富,何俊佳.介质阻挡放电中过零放电特性研究[J].高电压技术,2007,33(2):14-18.
    [156]王仪财,吴孟强,许峰云,等.石英玻璃的高温介电特性研究[J].四川大学学报,2005,42(2):387-392.
    [157] T. Zhu, J. Li, W. Liang, et al. Synergistic effect of catalyst for oxidation removal of toluene[J]. Journal of Hazardous Materials,2009,165(1-3):1258-1260.
    [158]唐雄民,孟志强,彭永进,等.串联负载谐振式DBD型臭氧发生器电源的基波分析法[J].中国电机工程学报,2007,27(21):38-42.
    [159]朱宇,陆小华,丁皓,等.分子模拟在化工应用中的若干问题及思考[J].化工学报,2004,55(8):1213-1223.
    [160] L. H. Thomas. The Calculation of Atomic Fields [J]. Proc Camb Phil Soc1927,23:542.
    [161] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas [J]. Physical Review B,1964,136(3B): B864-&.
    [162] P. A. M. Dirac. Note on Exchange Phenomena in the Thomas Atom.[J]. Proc CambridgePhil Soc1930,26:376.
    [163] J. P. Perdew. Density-Functional Approximation for the Correlation-Energy of theInhomogeneous Electron-Gas [J]. Physical Review B,1986,33(12):8822-8824.
    [164] A. D. Becke. Density-Functional Exchange-Energy Approximation with CorrectAsymptotic-Behavior [J]. Physical Review A,1988,38(6):3098-3100.
    [165] J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Atoms, Molecules, Solids, and Surfaces-Applications of the Generalized Gradient Approximation for Exchange and Correlation [J].Physical Review B,1992,46(11):6671-6687.
    [166] J. P. Perdew, K. Burke, Y. Wang. Generalized gradient approximation for theexchange-correlation hole of a many-electron system [J]. Physical Review B,1996,54(23):16533-16539.
    [167] F. A. Hamprecht, A. J. Cohen, D. J. Tozer, et al. Development and assessment of newexchange-correlation functionals [J]. Journal of Chemical Physics,1998,109(15):6264-6271.
    [168] D. B. From molecules to solids with the DMol3approach [J]. Journal of Chemical Physics,2000,113(18):7756-7764.
    [169] B. Delley. An All-Electron Numerical-Method for Solving the Local Density Functional forPolyatomic-Molecules [J]. Journal of Chemical Physics,1990,92(1):508-517.
    [170] R. N. Li, X. Liu. Active species injection in flue gas denitrification [J]. ChemicalEngineering Science,2000,55(13):2481-2489.
    [171] R. Atkinson, D. L. Baulch, R. A. Cox, et al. Evaluated kinetic and photochemical data foratmospheric chemistry, organic species: Supplement VII [J]. Journal of Physical andChemical Reference Data,1999,28(2):191-393.
    [172]王晓静,孙才新.介质阻挡放电去除甲醛的密度泛函分析[J].重庆大学学报(自然科学版),2010,33(11):46-52.
    [173] L. K. Huynh, M. Tirtowidjojo, T. N. Theoretical study on kinetics of the H2CO+O2→HCO+HO2reaction [J]. Chemical Physics Letters,2009,469:81-84.
    [174] Y. Zhao, B. Wang, H. Li, et al. Theoretical studies on the reactions of formaldehyde withOH and OH [J]. Journal of Molecular Structure-Theochem,2007,818(1-3):155-161.
    [175] M. Martinez-Avila, J. Peiro-Garcia, V. M. Ramirez-Ramirez, et al. Ab initio study on themechanism of the HCO+O2→HO2+CO reaction [J]. Chemical Physics Letters,2003,370(3-4):313-318.
    [176] B. Eliasson, U. Kogelschatz. Nonequilibrium Volume Plasma Chemical Processing [J].IEEE Transactions on Plasma Sciecce,1991,19(6):1063-1077.
    [177] D. L. Baulch, C. J. Cobos, R. A. Cox, et al. Evaluated Kinetic Data for CombustionModeling [J]. Journal of Physical and Chemical Reference Data,1992,21(3):411-734.
    [178] T. W, H. R. F. Chemical Kinetic Data Base for Combustion Chemistry, Part, Methane andRelated Compounds [J]. Journal of Physical and Chemical Reference Data,1986,15:1087-1279.
    [179] I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, et al. Kinetic scheme of the non-equilibriumdischarge in nitrogen-oxygen mixtures [J]. Plasma Sources Science&Technology,1992,1(3):207-220.
    [180] Y.-X. Pan, Y. Han, C.-J. Liu. Pathways for Steam Reforming of Dimethyl Ether Under ColdPlasma Conditions: A DFT Study [J]. Fuel,2007,86:2300-2307.
    [181] A. F. Jalbout, C. M. Chang. The H2CO potential energy surface: advanced ab initio anddensity functional theory study [J]. Journal of Molecular Structure-Theochem,2003,634:127-135.
    [182] A. C. Terentis, S. H. Kable. Near threshold dynamics and dissociation energy of the reactionH2CO→HCO+H [J]. Chemical Physics Letters,1996,258(5-6):626-632.
    [183]罗渝然.化学键能数据手册[M].北京:科学出版社,2005.
    [184] O. Eichwald, M. Yousfi, A. Hennad, et al. Coupling of chemical kinetics, gas dynamics, andcharged particle kinetics models for the analysis of NO reduction from flue gases [J].Journal of Applied Physics,1997,82(10):4781-4794.
    [185] J. S. Chang, P. A. Lawless, T. Yamamoto. Corona Discharge Processes [J]. IEEETransactions on Plasma Science,1991,19(6):1152-1166.
    [186] C. C. R., S. G. A., T. H. S. Theoretical Interpretation of the Optical and Electron ScatteringSpectra of H2O [J]. Journal of Chemical Physics,1971,54(9):3799-3816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700