用户名: 密码: 验证码:
高效微细电火花加工若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细电火花加工技术因具有非接触式加工、无宏观切削力、对工具的强度和刚度要求低、材料适用范围广及可加工异型腔模等特点,近年来呈现出了强大的微尺度制造潜能,并已逐渐成为航空航天、能源动力、运载及医疗等领域核心装备中微小特征结构制造的关键技术。但是,微细电火花加工具有脉冲放电频率高、放电间隙狭小、微细电极损耗严重、蚀除产物排出困难、噪声干扰严重等众多复杂特性,导致在加工过程中难以开展准确有效的控制,致使加工过程极不稳定、加工效率低下,严重的限制了微细电火花加工技术的发展。因此,提高微细电火花加工的效率,保障加工过程高效高质量的进行,是提高微细电火花加工技术能力、进而提升精微加工领域整体制造水平的关键途径。本论文致力于突破高效微细电火花加工的技术瓶颈,在全面分析微细电火花加工机理及特点的基础上,针对影响高效微细电火花加工的关键性技术难题,开展了一系列关键技术的研究工作,包括高精度三维微细电火花加工实验平台研制、工艺参数多目标优化、加工过程智能控制策略研究、伺服运动在线预测与控制及电极补偿方法研究等,并综合应用研究方法开展了难加工合金材料微细通道阵列的电火花加工。具体研究内容如下:
     根据高效微细电火花加工技术对加工系统提出的高精度和高灵敏性需求,研制了一台高精度三维微细电火花加工机床。该机床由直线电机驱动Z轴电极精密运动平台,由交流伺服电机驱动X/Y轴工件精密运动平台;采用工业控制机、PMAC多轴运动控制器搭载数据采集卡的方式组成上、下位机模式的开放式数控系统;机床的智能软件控制系统集成了伺服运动控制、间隙信号采集、脉冲电源设置等功能。该机床在实际运行中性能稳定,为开展高效微细电火花加工关键技术的研究工作提供了良好的实验平台。
     针对微细电火花加工工艺参数多目标优化难题,采用支持向量机回归方法建立工艺参数与工艺目标的关系模型,并提出了一种基于非支配排序的多目标优化遗传算法,以支持向量机工艺模型的决策函数作为遗传算法的适应度函数,开展兼顾加工时间和电极损耗量这两项重要工艺指标的工艺参数优化,实验表明优化后的工艺参数组合可以明显缩短加工时间并可将相应的大幅度减小微细电极的损耗量。
     为解决微细电火花加工过程中由于放电频率高、放电信号严重畸变和噪声过大等情况造成的加工信息不确定性大的问题,基于区间Type-2模糊集合理论,提出了微细电火花加工两阶模糊控制方法,其中第一阶模糊系统为采样点放电状态辨识系统,第二阶模糊系统为伺服运动控制系统。加工实验表明所提出的两阶模糊控制方法与传统控制方法相比能显著的提高加工效率,同时还能获得良好的加工质量,特别是当加工环境恶化时,其控制优势会更加明显。
     为了克服传统控制方法的滞后性,分别开展了放电状态预测与伺服运动在线预测控制方法的研究:结合经验模式分解原理和线性预测方法,提出了一种微细电火花加工放电状态预测方法,预测结果表明该方法预测精度高,十分适用于放电状态此类时变非线性信号的预测;基于灾变灰色预测理论,提出了一种微细电火花加工伺服运动状态在线预测方法,将电极的回退视为灾变伺服运动,在检测当前放电状态的同时,同步实现对未来周期伺服运动状态(进或退)的预测,并与两阶模糊控制法相结合形成带有预测功能的伺服运动综合控制策略。实验结果表明,所提出的伺服运动在线预测控制方法能够大幅消除微细电极的连续回退现象,并可显著提高加工效率和加工质量。
     针对微细三维零件加工中微细电极损耗严重且加工效率较低等问题,提出了一种基于单层大切深加工方式的微细电极定长补偿方法,通过观测微细电极在加工不同长度后的形状变化揭示了在微细电火花铣削加工过程中电极的损耗规律,并根据损耗规律对传统的电极补偿模型进行修正,建立了单层大切深加工方式下的微细电极补偿模型。加工实验表明,与传统的多次分层往复扫描加工方式相比,利用所提出的电极补偿模型对大切深微细槽进行一次性加工,能够获得更高的尺寸精度,并能大幅提高加工效率。
     针对难加工合金微细通道电火花加工的需求,结合正交加工试验研究了几种典型难加工合金材料的微细电火花加工工艺规律,并综合应用本文提出的高效微细电火花加工关键技术研究方法,开展了难加工合金微细通道阵列的电火花加工实验。实验结果表明,应用本论文提出的高效加工关键技术研究方法,能够获得良好的微细通道加工质量,并可获得较高的加工效率。因此,本论文开展的高效微细电火花加工关键技术研究工作,对于解决具有微尺度特征的难加工材料关键零部件的精密、高效和批量加工的难题、以及在扩展微细电火花加工技术的应用领域、提高精微领域制造技术水平等方面均具有重要的研究意义。
Recently, micro electric discharge machining (micro EDM) has been promising on micro-dimension manufacturing due to its non-contact process without macro cutting force, relatively low requirements for the strength and the stiffness of the tools and good applicability to machine allotype cavity mode. Thus, micro EDM is a crucial technique for micro structure manufacturing and has been widely used in applications of aerospace, aviation, national defense, energy, transportation and medical equipment. However, micro EDM generally releases extremely low energy in one single impulse accompanying with high electric impulse frequency and short discharging duration, and finally brings a difficulty in achieving precise and effective control to the manufacturing process, which leads to instability and low efficiency and thus limit the development of micro EDM technique. To expand the application range of micro EDM and improve the overall processing level of micro machining area, it is such a necessary way to improve the processing efficiency of micro EDM and ensure high efficiency and quality of micro EDM process. In this dissertation, in order to break through the bottle necks of micro EDM and to solve the key technologies on increasing its processing efficiency, a series of research activities were done based on a thorough analysis to the mechanism and the features of micro EDM technique, which includes3-D high-precision micro EDM system establishment, multi-objective optimization for processing parameters, intelligent control for the manufacturing process, discharge state prediction, servo motion on-line prediction and control and electrode compensation. In addition, the above solutions were applied to conduct high-efficiency micro groove array EDM on difficult-to-cut alloys. The detailed contents in this dissertation are as follows:
     A high-precision3-D micro EDM system was established under the requirement of high precision and high sensitivity. The system contains a Z axle micro-electrode ultra precision stage which is driven by a linear motor while the work piece on X/Y axles ultra precision stage is activated by AC servo motors. IPC industrial controller and the PMC multi-axis motion controller with PCI1714digital signal acquisition card are employed to compose an open digital system in upper-lower computer mode. An intelligent-software-controlled system offers many characteristics such as servo motion control, interval digital signal acquisition, impulse power setting etc. This system runs stably when it conduct actual machining and has provided a favorable platform for the study on key technology of high-efficiency micro EDM.
     A non-dominated based multi-objective genetic algorithm was proposed to solve the difficulty on optimizing the parameters of processing for micro EDM. The processing time and electrode wear were taken into account to optimize the parameters applied in processing. A processing relationship model was built to provide fitness function to the multi-objective genetic algorithm when imported the theory of supported vector machine under the micro and deep hole orthogonal machining experiments. The experimental evidence showed that the optimized parameter significantly decreased processing time and made the amount of the electrode wear within an accepted range.
     In order to solve such problems of manufacturing induced uncertainty in micro EDM process as high discharging frequency, severely distorted discharging signal and too much noise, the traditional fuzzy membership function was expanded to the Type-2mode to improve the ability of system describing uncertain information. Also, a two-step control method to the micro EDM was proposed based on the interval Type-2fuzzy set. The first step involved the sampling point discharge state inspection system while the servo motion control system was included in the second step. It was verified by experiments that the proposed control method could significantly increase the efficiency of processing compared to the average voltage and traditional fuzzy control method, and a good processing quality could be obtained, especially these advantages would become more significant in a worse machining environment.
     To avoid the hysteretic nature in traditional control, investigations on discharge state prediction and on-line servo motion prediction were performed. A predicted approach in discharge state using micro EDM was developed combining with the empirical mode decomposition principle and the linear predict method, which gave an accurately predicted result and was validated to be well suitable for the non-linear time-varying signal prediction. Besides, an on-line servo motion prediction and control method was proposed based on the grey catastrophic predicting principle. While inspecting the current discharge state, the servo motion in future cycles could be synchronously predicted, resulting in a comprehensive control strategy of the servo system. It was shown under the tests that the proposed feeding speed on-line prediction and control method had significantly diminished the rollback phenomena of the micro electrode and dramatically improved the processing efficiency.
     A deep sawing micro EDM slicing milling method was proposed with respect to the problem of the micro electrode wear during micro3-D part machining and low efficiency, and based on this method the fixed length compensation concept for the micro electrode was defined. The wear law of micro electrode was explained by observing the configuration variation of micro electrode processed as different length, and micro electrode compensation model for single-layer deep cutting was thus established. The experiments indicated that a relatively high precision of dimension was obtained and the processing efficiency was significantly improved when processed a micro groove of200μm depth one-time.
     According to the requirement for processing micro grooves on difficult-to-cut alloys, a particular processing law for difficult-to-cut alloys micro EDM was studied referred to orthogonal machining technique. The experiments using micro grooves EDM on difficult-to-cut alloys were also performed based on the proposed micro EDM processing approaches discussed previously. The experimental results showed micro EDM technique presented in this paper helped to bring a high processing quality for micro slots with high processing efficiency. Therefore, micro EDM technique developed by this dissertation was found to have an important influence on providing a high processing efficiency, solving the difficulty in processing difficult-to-cut material for micro parts, extending the industrial application and improving the capability of manufacturing in micro-precise area.
引文
[1]黄衍生.喷丝板异形孔的电火花加工——扁丝电极组合穿孔工艺[J].电加工与模具.1980,(02):40-50.
    [2]王续约,吕书森,胡亚峰,等.模具钢微流道沟槽的激光铣削试验研究[J].兵工学报.2010,31(5):592-597.
    [3]王明环.微细电解加工实验研究[D]:(博士学位论文).南京:南京航空航天大学,2007.
    [4]余亮英,程祖海,朱海红,等.强激光作用下水冷硅镜沟槽参数的模拟分析[J].强激光与粒子束.2007,19(3):3535-356.
    [5]邓波,韩光炜,冯涤.低膨胀高温合金的发展及在航空航天业的应用[J].航空材料学报.2003,(S1):244-249.
    [6]LIU H S, YAN B H, HUANG F Y, et al. A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications[J]. Journal of Materials Processing Technology.2005,169(3):418-426.
    [7]刘晋春,赵家齐,赵万生.特种加工[M].北京:机械工业出版社,1999.
    [8]李明辉.电火花加工理论基础[M].北京:国防工业出版社,1989.
    [9]刘宇.微细电火花加工中集肤效应的影响机理及相关技术研究[D]:(博士学位论文).大连:大连理工大学,2011.
    [10]李明辉.电火花加工理论基础[M].北京:国防出版社,1989.
    [11]Heeren P H, Reynaerts D, Van Brussel H. Micro-structuring of Silicon by Electro-discharge Machining (EDM)-part I:theory[J]. Sensors and Actuators A:Physical.1997,60(5):212-218
    [12]MASUZWA T, FUJINO M, KOBAYASHI K. Wire eiectro-discharge grinding for micro-machining[J]. Annals of the CIRP.1985,34(1):431-434.
    [13]Kai E, Yosuke M, Yasuki H. Electrical discharge machining of submicron holes using ultrasamll-diameter electrodes[J]. Precision Engineering.2010, (34):139-144
    [14]汤泽隆,真柄卓司,今井祥人,等.小径电极を用いた微细创成放电加工(第2报)[J].型技术.1997,12(8):104-105.
    [15]Yu Z Y, Masuzawa T, Fujino M. Micro-EDM for three Dimensional Cavities -Development of Uniform Wear Method[J]. Annals of the CIRP.1998,47(1):169-172.
    [16]王振龙,赵万生,李文卓.电火花加工技术的发展趋势与工艺进展[J].制造技术与机床.2001,(7):8-11.
    [17]Minami H, Masui K, Tsukahara H, et al. Coloring method of titanium alloy using edm process. ISEM-Ⅻ.1997:503-512
    [18]Rajurkar K P, Yu Z Y.3D micro-EDM using CAD/CAM[J]. Annals of the CIRP.2000,49(1): 127-130
    [19]Yu Z Y, Masuzawa T, Fujino M.3D Micro-EDM with Simply Shaped Electrode[J]. Annals of the CIRP.1997,46(1):1-8
    [20]Heeren P H, Reynaerts D, Van Brussel H et al. Microstructing of silicon by electro-discharge machining (EDM)-II:applications[J]. Sensors and Actuators A:Physical.1997,61(1-3):379-386.
    [21]董颖怀.一种微型涡轮发动机的设计及其关键制造技术研究[D]:(博士学位论文).哈尔滨:哈尔滨工业大学,2009.
    [22]Hao Tong, Yong Li, Yang Wang, et al. Servo scanning 3D micro-EDM based on macro/micro-dual-feed spindle[J]. Interntional Journal of Machine Tools&Manufacture.2008, (48): 85-869.
    [23]王振龙,赵万生.微制造系统中的微细电火花加工技术[J].制造技术与机床.2003,9:23-27
    [24]李文卓,赵万生,于云霞.新型多功能微细电火花加工机床及其应用[J].机械加工与自动化.2001,8:15-17
    [25]Web-pages of Leuven University http://www.mech.kuleuven.ac.be/pma/research/mpe/default en.phtml.
    [26]http://www.iwf.tu-berlin.de/fer/forschung/doll/mikroedm-d.html.Web-pages of PZT Technical University Berlin
    [27]Ivano B, Cedric J, Reymond C, et al. Micro and Nano Electric-discharge Machining[J]. Journal of Materials Processing Technology.2004, (149):263-265.
    [28]宋小中,刘正勋,张元胜.电火花细微孔加工方法的研究[J].电加工与模具.1994(04):2-9
    [29]李勇,王显军,郭旻等,微细电火花加工关键技术研究[J].清华大学学报.1999,39(8):45-48.
    [30]韦红雨.应用线电极磨削法的电火花精微轴孔加工机理与工艺研究[D]:(博士学位论文).哈尔滨:哈尔滨工业大学,1999.
    [31]史旭明,赵万生,韦红雨.四轴联动精微电火花加工机床的研制[J].哈尔滨理工大学学报.1999,14(2):1-4.
    [32]贾保贤.微细特种加工系统及加工技术的研究[D]:(博士学位论文).哈尔滨:哈尔滨工业大学,2004.
    [33]翟德梅,段维峰.基于正交试验的电火花加工工艺效果试验分析[J].电加工与模具,2004,增刊:73-76.
    [34]崔晶,李勇,熊英等.基于实验设计的电火花微小孔加工参数优化研究[J].电加工与模具,2006,(06):10-14.
    [35]宋小中,刘正埙,高长水.电火花微细孔加工工艺实验研究[J].航空精密制造技术.1995,31(6):8-1].
    [36]贾振元,顾丰,王福吉等.基于信噪比与灰关联度的电火花微小孔加工工艺参数的优化[J].机械工程学报,2007,43(7):63-67.
    [37]Natarajan N, Arunachalam R M. Optimization of micro-EDM with multiple performance characteristics using Taguchi method and Grey relational analysis[J]. Journal of Scientific & Industrial Research.2011,70(7):500-505.
    [38]Jong H J, Won T K. Optimization of EDM process for multiple performance characteristics using Taguchi method and Grey relational analysis[J]. Journal of Mechanical Science and Technology. 2010,24(5):1083-1090.
    [39]Singh P N, Raghukandan K, Pai B C. Optimization by Grey relational analysis of EDM parameters on machining Al-10%SiCp composites[J]. Journal of Materials Processing Technology.2004, 155(S1):1658-1661.
    [40]Somashekhar K P, Mathew J, Ramachandran N. Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science. 2011,225(C7):1742-1753.
    [41]黄定明,童朝平,康宜华.基于灰关联分析的电火花刻槽工艺参数优化[J].机械工程师.2007.(8):15-18.
    [42]任海滨.微细电火花线切割加工工艺规律研究[D]:(硕士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [43]井水淼.电火花微小孔加工控制方法及参数优化的研究[D]:(硕士学位论文).大连:大连理工大学,2008.
    [44]Pradhan B B, Bhattacharyya B. Modelling of micro-electrodischarge machining during machining of titanium alloy Ti-6A1-4V using response surface methodology and artificial neural network algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture.2009,223(6):683-693.
    [45]Kao J Y, Tsao C C, Wang S S. Optimization of the EDM parameters on machining Ti-6Al-4V with multiple quality characteristics[J]. Journal of Advanced Manufacturing Technology.2010,47(1-4): 395-402.
    [46]Mandal D, Pal S K, Saha P. Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-Ⅱ[J]. Journal of Material Processing Technology.2006,186(1-3):154-162.
    [47]Sarkar S, Mitra S, Bhattacharyya B. Parametric analysis and optimization of wire electrical discharge machining of gamma-titanium aluminide alloy[J]. Journal of Materials Processing Technology.2005,159(3):286-294.
    [48]Su J C, Kao J Y, Tarng Y S. Optimisation of the electrical discharge machining process using a GA-based neural network[J]. Journal of Advanced Manufacturing Technology.2004,24(1-2): 81-90.
    [49]高清,张勤河,苏树朋.多种群遗传算法优化的电火花加工模型[J].电加工与模具.2008,(2):21-24.
    [50]孔凡国,黄伟.电火花加上工艺参数优化蚁群-模糊C均值算法的研究[J].机械制造,2006,44(502):39-41.
    [51]焦建成,邢济收,杨大勇.电火花加工中最优加工条件的确定[J].北京机械工业学院学报.2004,19(1):66-70.
    [52]Yilmaz O, Eyercioglu O, Gindy N N Z. A user-friendly fuzzy-based system for the selection of electro discharge machining process parameters[J]. Journal of Materials Processing Technology. 2006,172(3):363-371.
    [53]Yan M T, Chen H T. Monitoring and control of the micro wire-EDM process[J]. Journal of Machine Tools & Manufacture.2007,47(1):148-157.
    [54]Liao Y S, Chang T Y, Chuang T J. An on-line monitoring system for micro electrical discharge machining (micro-EDM) process[J]. Journal of Micromechanics And Microengineering.2008, 18(3):035009-1-8.
    [55]Tarng Y S, Jang J L. Genetic synthesis of a fuzzy pulse discriminator in electrical discharge machining [J]. Journal of Intelligent Manufacturing.1996,7(4):311-318.
    [56]Tarng Y S, Tseng C M, Chung L K. A fuzzy pulse discriminating system for electrical discharge machining[J]. International Journal of Machine Tools and Manufacture,1997,37(4):511-522.
    [57]Boccadoro M, Dauw D F. About the application of fuzzy controllers in high-performance die-sinking EDM machines[J]. Annals of CIRP,1995,44(1):147-150.
    [58]Kao C C, Shih A J, Miller S F. Fuzzy logic control of microhole electrical discharge maching[J]. Journal of Manufacturing Science and Engineering.2008,130(6):064502-1-6.
    [59]罗元丰.电火花加工过程智能控制系统的研究[D](博士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [60]蒋毅,赵万生,顾琳,等.基于小波变换的电火花放电状态检测与分析[J].航天制造技术.2009,(6):1-5.
    [61]裴景玉.微细电火花加工智能模糊控制系统的研制[D]:(博士学位论文).南京:南京航空航天大学,2000.
    [62]Zhang J H, Zhang H, Su D S, et al. Adaptive fuzzy control system of a servomechanism for electro-discharge machining combined with ultrasonic vibration[J]. Journal of Materials Processing Technology.2002,129(1-3):45-49.
    [63]席洪波,张传才.电火花线切割工艺效果智能预测系统研究[J].制造技术与机床.2009,(5):45-48.
    [64]金顺南,白基成,周正干,等.线切割加工间隙状态预测系统的计算机仿真研究[J].电加工与模具.1992,(5):11-15.
    [65]倪益华,郑良桂,周继烈.EDM伺服系统灰色预测控制器的研制[J].电加工与模具.1994,(6):19-21.
    [66]Zhou M, Han F Z, Soichiro I. Atime-varied predictive model for EDM process[J]. Journal of Machine Tools & Manufacture.2008,48(15):1668-1677.
    [67]周明,韩福柱.电火花加工过程线性时变预测模型的建立与研究[J].电加工与模具.2008(5):40-45.
    [68]佟浩,李勇,崔晶,等.微细电火花伺服扫描加工实验研究[J].电加工与模具.2006,3:33-37.
    [69]Mahardika M, Mitsui K. A new method for monitoring micro-electric discharge machining process[J]. Journal of Machine Tools & Manufacture.2008,148(3-4):446-458.
    [70]Masuzawa T. Three-dimensional micro machining by machine tools[J]. Annuls of the CIRP.1997, 46(2):621-628.
    [71]Yu ZY, Masuzawa T, Fujino M. Micro-EDM for three dimensional cavities-development of uniform wear method[J]. Annals of the CIRP.1998,47(1):169-172.
    [72]邓容.微细电火花加工中电极损耗及补偿的算法与实验研究[D]:(硕士学位论文).上海:上海交通大学,2009.
    [73]许加利.微细电火花定长补偿方法[D]:(硕士学位论文).上海:上海交通大学,2009.
    [74]Yu H L, Luan J J, Li J Z, et al. A new electrode wear compensation method for improving performance in 3D micro EDM milling[J]. Journal of Micromechanics and Microengineering.2010, 20(5):055011-1-7.
    [75]Yan M T, Lin S S. Process planning and electrode wear compensation for 3D micro-EDM[J]. Journal of Advanced Manufacturing Technology.2011,53(1-4):209-219
    [76]Aligiri E, Yeo S H, Tan P C. A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM[J]. Journal of Materials Processing Technology.2010, 210(15):2292-2303.
    [77]郑新毅.深微孔电火花加工关键技术研究[D]:(博士学位论文).大连:大连理工大学,2010.
    [78]王振龙,迟关心,狄士春,等.钛合金深小孔的微细超声电火花加工技术[J].兵工学报.2000,21(4):346-349.
    [79]张云鹏,任中根,迟恩田.精密电火花加工钛合金的参数研究.机床与液压[J.,2007,35(5):88-90.
    [80]Auang C, Hsu F Y, Yao S J. Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM)[J]. Materials Science and Engineering A.2004,371(1-2):119-126.
    [81]刘江.低膨胀合金的应用和发展[J].金属功能材料.2007,14(5):33-37.
    [82]贾宝贤,胡富强,张勇等.花岗石构件的应用与设计.机械.2002,29(5):58-61.
    [83]VAPNIK, V N. The nature of statistical learning theory [M]. New York:Springer-Verlag,2005.
    [84]安文森.支持向量机回归机及其工业应用研究[D]:(博士学位论文).合肥:中国科学技术大学,2006.
    [85]]王凡.基于支持向量机的交通流预测方法研究[D]:(博士学位论文).大连:大连理工大学,2010.
    [86]王定成.支持向量机建模预测与控制[M].北京:气象出版社,2009.
    [87]Zhao C Y, Zhang H X, Zhang XY, et al. Application of support vector machine (SVM) for prediction toxic activity of different data sets[J]. Toxicology.2006,217(2-3):105-119.
    [88]张学工.关于统计学习理论与支持向量机[J].自动化学报.2000,26(1):32-42.
    [89]张志涌MATLAB6.5[M]北京:北京航空航天大学出版社,2002.
    [90]陈杰MATLAB宝典[M].北京:电子工业出版社,2007.
    [91]Duric P M. Model selection by cross-validation[J]. IEEE ISCAS.1990,4:2760-2763.
    [92]Lela B, Bajic D, Jozic S. Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling[J]. Journal of Advanced Manufacturing Technology.2009,42(11-12):1082-1088
    [93]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2004.
    [94]Kuriakose S, Shunmugam M S. Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm[J]. Journal of Materials Processing Technology. 2005,170(1-2):133-141.
    [95]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-11[J]. IEEE Trans. Evol. Comput.2002,6(2):182-197.
    [96]Kanagarajan D, Karthikeyan R, Palanikumar K,et al.Optimization of electrical discharge machining characteristics of WC/Co composites using non-dominated sorting genetic algorithm (NSGA-II) [J]. Journal of Advanced Manufacturing Technology.2008,36(11-12):1124-1132.
    [97]Passino M, Yurkovich S. Fuzzy control [M]. Beiijing:Tsinghua University Press,2001.
    [98]Karnik NN, Mendel JM. Introduction to type-2 fuzzy logic systems [J]. IEEE International Conference on Fuzzy Systems.1998,2:915-920.
    [99]Mendel J M, John R I B. Type-2 fuzzy sets made simple [J].IEEE Trans. Fuzzy Syst..2002,10(2): 117-127.
    [100]Lin T C, Lin H L, K M J. Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems [J]. Engineering Applications of Artificial Intelligence.2009,22(3):420-430.
    [101]Castillo O, Melin P. Type-2 fuzzy logic:theory and applications[M]. New York:Springer,2008.
    [102]Mendel J M, John RIB, Liu F L. Interval type-2 fuzzy logic systems made simple [J]. IEEE Trans. Fuzzy Syst..2006,14(6):808-821.
    [103]Uncu O, Turksen I B. Discrete interval type 2 fuzzy system models using uncertainty in learning parameters. IEEE Trans. Fuzzy Syst..2007,15(1):90-106.
    [104]Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning-1 [J]. J. Inform. Sci..1975,8(3):199-249
    [105]Karnik N N, Mendel J M. Operations on type-2 fuzzy sets[J]. Fuzzy Set Syst..2001,122:327-348.
    [106]Liang Q L, Mendel J M. Interval type-2 fuzzy logic systems:theory and design[J]. IEEE Trans. Fuzzy Syst..2000,8(5):535-550.
    [107]Choi B I, Rhee F C. Interval type-2 fuzzy membership function generation methods for pattern recognition[J]. Inform Sciences.2009,179(13):2102-2122.
    [108]Lin C, Lee C S G. Neural-network-based fuzzy logic control and decision system. IEEE Transactions on Computers.1991,40(12):1320-1336.
    [109]任小涛.微细电火花加工智能控制算法的研究与应用[D]:(硕士学位论文).大连:大连理工大学,2009.
    [1]0]廖倩芳.Ⅱ型T-S模糊建模与控制[D]:(硕士学位论文).匕海:上海交通大学,2009.
    [111]Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J]. The Royal Society,1998,454:903-995.
    [112]高升晖.微细及小孔电火花加工的关键技术研究[D]:大连:大连理工大学,2008.
    [113]李鹏波,胡德文等.系统辨识基础[M].北京:中国水利水电出版社,2006.
    [114]刘慧婷.EMD方法的研究与应用[D]:(硕士学位论文).合肥:安徽大学,2004.
    [115]刘兴堂.现代辨识工程[M].北京:国防工业出版社,2006.
    [116]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [117]党耀国,刘思峰,王正新,等.灰色预测与决策模型研究[M].北京:科学出版社,2009
    [118]李勇林.基于灰色模型的垃圾焚烧过程中二恶英排放量预测[D]:(硕士学位论文).武汉:华中科技大学,2008.
    [119]陈业华,邱菀华.灰色灾变预测模型及其应用[J].北京航空航天大学学报.1998,24(1):79-82.
    [120]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [121]Rees A, Dimov S S, Ivanov A, et al. Micro-electrode discharge machining:factors affecting the quality of electrodes produced on the machine through the process of wire electro-discharge machining[J]. P I Mech Eng B-J Eng.2007,221 (3):409-418.
    [122]Habib M A, Shaleh T and Rahman M. Modelling for fabrication of microelectrodes by localized electrochemical deposition for micro-electrodischarge machining. P I Mech Eng B-J Eng.2010, 224(11):741-1755.
    [123]Yan J W, Kaneko T, Uchida K, Yoshihara N and Kuriyagawa T. Fabricating microgrooves with varied cross-sections by electrodischarge machining[J]. Journal of Advanced Manufacturing Technology.2010,50 (9-12):991-1002.
    [124]Sanchez J A, Cabanes I, Lopez de Lacalle L N,et al. Development of optimum electrodischarge machining technology for advanced ceramics[J]. Journal of Advanced Manufacturing Technology. 2001,18(12):897-905.
    [125]Yan M T, Lin S S. Process planning and electrode wear compensation for 3D micro-EDM[J]. Journal of Advanced Manufacturing Technology.2011,53:209-219.
    [126]茆诗松,周纪芗,陈颖.试验设计[M].北京:中国统计出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700