用户名: 密码: 验证码:
基于Tesla变压器的高功率电磁脉冲发生器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率电磁脉冲在冲击脉冲雷达、探测隐蔽目标、清除地雷、管线检验、电子学效应试验等方面有着广阔的应用前景。相对于传统的脉冲功率技术,高功率电磁脉冲技术的关键在于亚ns电磁脉冲调节和高重复频率运行,本文即是从这两个方面开展高功率电磁脉冲发生器的理论研究、数值分析、工程设计和试验研究。
     本文从时间尺度脉冲功率压缩角度提出研制高功率电磁脉冲发生器的思路,即分别应用初级脉冲电源技术、Tesla变压器与形成线一体化技术、传输线充电技术实现脉冲宽度从ms量级至μs量级、μs量级至ns量级、ns量级至亚ns量级的转换。
     针对μs量级脉冲的产生,本文在对比分析国外研究机构初级脉冲电源的基础上,将其改进为三相全波整流结构,进一步提高市电的利用效率和降低对Tesla变压器变比的要求。详细阐明了这种电源的工作过程和工程设计依据,设计制作了一台输出脉宽30μs、输出电压550V、电流约11.5KA、重复频率100Hz的高功率初级脉冲电源
     针对ns量级脉冲的产生,本文应用复频域方法详细研究了Tesla变压器的理论模型。结果表明,初级脉冲电源中快速晶闸管的单向导通性使得理想Tesla变压器的运行状态无法实现。采用瞬态电路数值仿真方法确定了工程上能够实现的非理想Tesla变压器的主要参数。设计制作了原边2.7匝,副边1900匝,耦合系数为0.85,充电电压约300KV,输出脉宽3.6ns的紧凑型Tesla变压器与形成线一体化装置。
     在传输线充电技术基础上,将它与传统亚ns脉冲功率调节技术进行对比研究,提出了失配传输线充电技术和匹配传输线充电技术的新概念。首次分析了两种亚ns脉冲功率调节技术中的波过程,在理论上将两者统一起来。设计制作了长度为30mm、45mm和60mm的三种低阻抗传输线开展失配传输线充电技术的试验研究。
     把FDTD方法引入脉冲形成线放电过程研究,应用该方法研究了低阻抗脉冲形成线通过阻抗变换传输线对高阻抗负载放电的波过程。应用商用电磁仿真软件进一步研究了实际加工阻抗渐变传输线的功率传输和电压传输性能,仿真结果与本文FDTD数值结果基本吻合,理论上为脉冲形成线的放电过程研究提供了一种新的分析方法,工程上为本文装置中低阻抗传输线线上获得的功率增益能够在高阻抗负载上实现提供了理论上的依据。
     在上述工作的基础上,我们研制了一台高功率电磁脉冲发生器,该发生器以输出阻抗为27Ω的Tesla变压器为脉冲功率驱动源、应用失配传输线充电技术实现高功率亚ns电磁脉冲的调节,阻抗渐变传输线和同轴波导转换双脊喇叭天线实现亚ns电磁脉冲的辐射。装置能够产生重复频率100Hz,最大场强距离积294KV,频谱主要分布在0.4GHz-1.0GHz的高功率电磁脉冲。主要试验结果与前面的理论分析吻合较好。
     针对国内外广泛关注的高功率多电磁脉冲产生技术,本文提出一种实现猝发式高功率多电磁脉冲的新颖电路结构。该结构仅采用一个Tesla型脉冲功率驱动源对多段传输线并联充电,放电时由于空心电感的隔离作用,实现多个电磁脉冲的顺序输出。试验结果表明:研制完成的高功率多脉冲发生试验装置能够产生脉冲宽度约40ns,频谱分布在300MHz~600MHz,等效辐射功率100MW,重复频率100Hz的猝发式多脉冲。就我们所知,这是国内外首次应用单个脉冲驱动源实现多电磁脉冲辐射输出。
     针对工程实践中电磁脉冲发射机辐射的随机时间抖动周期性电磁脉冲信号,提出了基于分析随机时间抖动周期δ-函数的功率谱密度求解随机时间抖动周期性电磁脉冲串功率谱密度的新方法。分析结果表明,这类电磁脉冲串的功率谱密度由离散功率谱和连续功率谱组成,它们组成的总功率守恒。数值计算结果表明,随时间抖动范围增大,离散功率谱密度所占比例下降。
High power electromagnetic pulses (EMP) have a wide variety of applications including transient radar, concealed object detection, mine clearing, pipeline inspections, electronic effects testing and so on. Compared to traditional pulse power technique, the key of generating high power electromagnetic pulses lies in sub-nanosecond pulse conditioning and high repetition running. Under the aboved two directions, the theoretical study numerical simulation engineering design and experimental study involved in developing high power EMP generator will be demonstrated in the dissertation.
     From the angle of pulse power compression on timescale, the idea for developing high power EMP generator is proposed. Namely, primary pulse power source technique, Tesla transformer with pulse forming line incorporated technique, transmission line charging technique are adopted to realize the pulse width scaling from millisecond regime to microsecond regime then to nanosecond and eventually to sub-nanosecond regime respectively.
     Considering the generation of pulses on the microsecond regime, certain primary power sources reported by corresponding institutes are compared. On the basis of analysis, full wave rectified circuit is proposed to increase the available coefficient of electric supply and decrease the need for the turn ratio of Tesla transformer. The working process and engineering design guideline is illustrated in detail. A high power primary power source setup with pulse width 30μs, output voltage 550V, output current 11.5KA,and repetition rate 100Hz is developed.
     The model of Tesla transformer concerned the nanosecond pulse generation is thoroughly analyzed using complex frequence domain method. The analytic results show that the ideal Tesla transformer cannot be reached owing to the incapable of reverse current in the fast thysistor, which has be chosen in the primary power source. The parameters for nonideal Tesla transformer are decided by using the transient ciruit simulation method. A compact Tesla transformer and PFL with coupling coefficient 0.85, charged voltage 300KV, and output pulse width 3.6ns is developed.
     The traditional subnanosecond power conditioning technique is compared with the idea of transmission line charging. Based upon which, the new concepts of matched or mismatched transmission line charging are introduced and thus the two methods are united. To investigate mismatched transmission line charging technique, three low impendance transmission lines with length 30mm, 45mm, 60mm respectively are designed.
     The discharged process of low inpendance PFL to high impendance resistor through impendance transformer is analyzed by indroducing FDTD method. The result obtained by indroduced method shows a good agreement with that obtained by using commercial software. The result also shows that the power gain defined on low impendance PFL can be realized on high impendance load.
     In the high power EMP generator experimental setup, a high power pulse driving source with 27Ω. output impedance based on tesla transformer is utilized as charging source, the subnanosecond pulse conditioning and radiating is realized by using transmission line charging technology and double ridged horn connected with impedance transformer respectively. High power electromagnetic pulses with pulse repetition frequency (PRF) reached 100Hz and maximum field-range product equal to 294KV can be achieved by the setup. The experimental results agree well with theoretic analysis and simulation results.
     To investigate the generation of multi-pulses in burst mode. A novel topology to realize high power electromagnetic multi-pulses in burst mode is proposed in the dissertation. Only one pulse power driving source based on tesla transformer is adopted in the setup, the multi-transmission lines are charged in parallel and discharged in series owing to electric isolation of air core inductance, which thus results in multi-pulses output. The experimental results show that the developed high power multi-pulses generator can operate in burst mode at 100pps, the output multi-pulses with pulsewidth about 40ns, energy spectral density is concentrated between 300MHz and 600MHz , the equivalent radiation power(ERP) is up to 100MW.
     Aiming at the random timing jitter periodical electromagnetic pulses radiated by practical electromagnetic pulse transmitter, a new way based on the analysis of the power spectral density(PSD) of timing jitter periodical 8-functions ,to derive the PSD of arbitrary timing jitter periodical electromagnetic pulses was proposed. The results show that the PSD of the concerned electromagnetic pulses constituted by discrete PSD and continuous PSD. The total power of the two parts is conservative. The numerical results demonstrate that the more timing jitter the less discrete PSD.
引文
[1] 陈壁华,陈彬,高成.现代战争面临的高功率电磁环境分析.微波学报.1994,18(1):79-92.
    [2] Lehr J M, Baum C E , Prather W D ,et al. Aspect of ultrafast spark gap switching for UWB HPM generation. The 11th IEEE International Pulsed Power Conference.Maryland, 1997:1033-1041.
    [3] Frank Sabath, Mats Backstrom, Barbro Nordstrom, et al. Overview of four European high power microwave narrow band test facilities. IEEE Trans.Electromagn.Compat., 2004, 46(3):329-334.
    [4] Luybutin S K, Rukin S N, Konstantin A, et al. Nanosecond hybrid modulator for the fast-driving of X-band, gigawattopower microwave source. IEEE Trans. on Plasma Science, 2005,33(4):1220-1225.
    [5] Miller R B,William F M, Kim T L,et al. Super reltron theory and experiments.IEEE Trans. on Plasma Science,1992,20(3):332-343.
    [6] Barry M M, Clark M C, Larry D B,et al. The split cavity oscillator:a high power e-beam modulator and microwave source. IEEE Trans. on Plasma Science,1992, 20(3):312-331.
    [7] 阵代兵,刘庆想,何琥,等.X波段五腔渡越管振荡器的理论与实验研究.强激光与粒子束.2005,17(1):93-98.
    [8] 罗雄,廖成,孟凡宝,等.同轴虚阴极振荡器实验研究.强激光与粒子束.2006,18(2):249-252.
    [9] 樊亚军,石磊,刘国治,等.Chopping-peaking开关形成高功率超宽带双极脉冲的实验研究.强激光与粒子束.2004,16(4):501-504.
    [10] 樊亚军,石磊.带并联短路支节的超宽谱双极脉冲转换器研究.高电压技术.2004,30(10):52-53.
    [11] D.V.Giri. High-power electromagnetic radiators. Massachusetts: Harvard University Press, 2004.
    [12] D.V.Giri and F.M.Tesche. Classification of intentional electromagnetic environments (IEME). IEEE Trans. Electromagn.Compat., 2004,47(3):323-329.
    [13] Andreev Y A, Buyanov Y I, Efremov A M, et al. High power ultrawideband electromagnetic radiation generator. The 11th IEEE International Pulsed Power Conference. 1997:730-735.
    [14]孟凡宝,马弘舸,周传明,等.1GW超宽带单周期脉冲辐射源实验研究.强激光与粒子束.1999,11(4):473-476.
    [15]蒋鸿雁,龙云亮.实现小型超宽带天线的新方法.中山大学学报(自然科学版).2003,42(1):121-122.
    [16]谢处方,邱文杰.天线原理与设计.西安:西安电子科技大学出版社,1987.
    [17]孟凡宝.高功率超宽带电磁脉冲产生和辐射.西南交通大学博士学位论文,1999.
    [18]Gubanov V P, Korovin S D, Pegel I V, et al. Compact I000 PPS high-voltage nanosecond pulse generator. IEEE Trans. on Plasma Science, 1997,25(2):258-265.
    [19]Mesyats G A, Korrovin S D, Rostov V V, et al. The RADAN series of compact pulsed power generators and their applications. Proceedings of the IEEE, 2004,92(7):1166-1179.
    [20]Novac B M, Smith I R, Goh S E, et al. A novel flux compression/dynamic transformer technique for high-voltage pulse generation. IEEE Trans. on Plasma Science, 2000,28(5):1356-1361.
    [21]孙奇志,龚兴根,谢卫平,等.利用爆磁压缩发生器产生高功率脉冲高电压.强激光与粒子束.2004,16(7):905-908.
    [22]刘列,阵东群,张建德,等.爆磁压缩驱动的红外脉冲强光辐射源研究.红外技术.2002,24(4):4-7.
    [23]贺元吉,张亚洲,李传胪.爆电换能的理论分析.国防科技大学学报.2000,22(Sup):43-48.
    [24]Agee F J, Baum C E, Prather W D, et al. Ultra-wideband transmitter research.IEEE Trans. on Plasma Science, 1998, 26(3):860-873.
    [25]Prather W D, Baum C E, Lehr J M, et al. Ultra-wide source and antenna research. IEEE Trans. on Plasma Science, 2000,28(5):1624-1629.
    [26]Rinehart L F, Buttram M T, Denison G J, et al. Sandia national laboratoies'high power electromagnetic impulse sources. The 11th IEEE International Pulsed Power Conference. 1997
    [27]Rinehart L F, Buttram M T, Crowe W R., et al. An Enantiomorphic Blumlein Impulse Generator. The 20th IEEE Power Modulator Symposium. 1992,126-129.
    [28]Rinehart L F, Aurand J M, Lundstrom C A, et al. Development of UHF spark-switched L-C oscillators. The 9th IEEE International Pulsed Power Conference. 1993
    [29]Yalandin M I, Lyubutin S K, Rukin S N., et al. Subnanosecond hybrid modulator for UWB and HPM applications. Ultra-wideband,short-Pulse Electromagnetics 5, 2002, 248-251.
    [30]Yalandin M I, Lyubutin S K, Oulmascoulov M R, et al. High peak power and high average power subnanosecond modulator operating at a repetition frequency of 3.5 kHz. IEEE Trans. on Plasma Science, 2002,30(5):1700-1704.
    [31]Andreev Y A, Buyanov Y I, Efremov A M, et al. High-power ultrawideband electromagnetic pulse source. The 14th IEEE International Pulsed Power Conference. 2003,1458-1461.
    [32]Andreev Y A, Buyanov Y I, Efremov A M, et al. Gigawatt-power-level ultrawideband radiation generator. The 12th IEEE International Pulsed Power Conference. 1999,1337-1340.
    [33]Alex Pokryvalio, Yefim Yankelevich, M. Shapira. A compact source of subnanosecond pulses. IEEE Trans. on Plasma Science, 2004,32(5):1904-1918.
    [34]Somov V A, Ia. Chepurniy, Tkach Yu V, et al. Broadband pulsed generator based on H-waveguide. The 11th IEEE International Pulsed Power Conference.1997,1173-1176.
    [35]孟凡宝,杨周炳,马弘舸,等.100MW重复频率超宽带脉冲辐射源的实验研究.强激光与粒子束.1998,10(2):279-282.
    [36]孟凡宝,马弘舸,周传明,等.1GW超宽带单周期脉冲辐射源实验研究.强激光与粒子束.1999,11(4):473-476.
    [37]杨周炳,孟凡宝,马弘舸,等.高功率超宽带脉冲辐射试验装置研制.强激光与粒子束.2005,17(8):1180-1182.
    [38]Joler M, Christodoulou C, Schamiloglu E, et al. Modeling of a compact,portable transmission line for pulsed-power applications. The 12th IEEE International International pulsed power conference, 2003, 253-256.
    [39]Gaudet J A, Barker R J, Buchenauer C J, et al. Research issue in developing compact pulsed power for high peak power applications on mobile platforms. Proceedings of the IEEE, 2004,92(7):1144-1165.
    [40]O'Loughlin J P, Copeland R P. Subnanosecond power conditioning technique using transmission line to transmission line charging. The 20th IEEE power modulator symposium. 1992.351-354.
    [41]V. Shpak, M. Ulmaskulov, S. Shunailov, et al. Active former of monocycle high-voltage subnanosecond pulses. The 12th IEEE International pulsed power conference, 1999,1456-1459.
    [42]邵涛,孙广生,严萍,等.高压纳秒脉冲气体放电试验研究进展.高压电器.2004.40(4):279-282.
    [43]Martin T H. An empirical formula for gas switched breakdown delay.Res.Sci.Pulsed Power, Sandia Nat. Labs.,1991,73-79.
    [44]Mankowski J, Dickens J, Kristiansen M. A subnanosecond high voltage pulser for the investigation of dielectric breakdown. The 11th IEEE International Pulsed Power Conference. 1997,549-554.
    [45]Dick A R, Macgregor S J, Buttram M T, et al . Breakdown phenomena in ultra-fast plasma closing switches. IEEE Trans. on plasma Science, 2000,28(5):1456-1461.
    [46]石磊,樊亚军,朱四桃,等.高压氮气亚纳秒开关放电特性试验研究.强激光与粒子束.2005,17(7):1079-1082.
    [47]William D P, Baum C E, Torres R J. Survey of worldwide high-power wideband capabilities. IEEE Trans. on Plasma Science, 2004,46(3):335-344.
    [48]彭仲秋.瞬变电磁场.北京:高等教育出版社,1987.
    [49]汪文秉.瞬态电磁场.西安:西安交通大学出版社,1991.
    [50]阮成礼.电磁导弹概论.北京:人民邮电出版社,1994.
    [51]AS3100 太空 EMC 测试系统.电磁脉冲发生器,AMIDEON RF&MICROWAVE. http://www.amideon.com.
    [52]王书平,刘尚合,侯民胜.核电磁脉冲对单片机系统的辐照效应研究.军械工程学院学报.2002,14(1):12-15.
    [53]侯民胜,刘尚合,王书平.单片机系统在核电磁脉冲辐照下的效应研究.强激光与粒子束.2001,13(5):623-626.
    [54]Taylor. Ultra-wideband radar. IEEE MTT Digest, 1991.
    [55]张明友,汪学刚.雷达系统(第二版).北京:电子工业出版社,2006.
    [56]黎海涛.超宽带雷达关键技术研究.电子科技大学博士学位论文,2000.
    [57]Mankowski J, Kristiansen M. A review of short pulse generator technology. IEEE Trans. on Plasma Science, 2000, 28(1):102-108.
    [58]王新新,张卓,肖如泉.重复频率Marx发生器.电工技术学报.1997,12(6):59-62.
    [59]Mesyats G A, Shpak V G, Shunailov S A. Compact high-current accelerators based on the RADAN SEF-303 pulsed power source. The 9th IEEE International Pulsed Power Conference. 1993,835-838.
    [60]许建军,常安碧,夏世维,等.新型高功率高重复频率脉冲电源研制.高电压技术.2003,30(7):52-53.
    [61]东冲.线性脉冲调制器理论基础与专用电路.北京:国防工业出版社,1978.
    [62]李瀚荪.电路分析基础(第三册).第三版.北京:高等教育出版社,1993.
    [63]Mesyats G A, Shpak V G, Yalandin M A. Compact high-current pulse accelerators. The 8th IEEE International Pulsed Power Conference. 1991.
    [64]康强,常安碧,李名加,等.带传输线的1.OMV,100Hz紧凑性Tesla变压器的研制.强激光与粒子束.2006,18(3):451-454.
    [65]张嘉生.一种重复频率的高功率脉冲发生器.强激光与粒子束.1999,11(4):470-472.
    [66]宋晓欣,朱晓欣,邵浩,等.Tesla变压器的理论分析.全国第五届高功率微波学术研讨会,2002,334-338.
    [67]钟辉煌,李传胪,刘正云.Tesla变压器的理论分析与工程设计.全国高功率粒子束十年文集,中国粒子加速器学会,1995.
    [68]Cook E G, Reginato L L. Off-Resonance transformer charging for 250-kV Water Blumlein. IEEE Trans. on Electron device, 1979, 26(10):1512-1517.
    [69]李名加,常安碧,康强.具有大耦合系数的Tesla变压器理论分析.高电压技术.2006,32(5):51-53.
    [70]贾新章.OrCAD/PSpice9实用教程.西安:西安电子科技大学出版社,1999.
    [71]贺元吉.爆电能源高功率超宽带脉冲发生器研究.国防科技大学博士学位论文,2001.
    [72]Fan Y J, Liu G Z, Liu X L, et al. Study on the generation of ultra-wideband (UWB) high power microwave. Journal of systems engineering and electronics,2003,14(4):31-33.
    [73]唐兴祚.高电压技术.重庆:重庆大学出版社,1991.
    [74]彭迎,阮江军,张宇,等.脉冲变压器特快速暂态电压分布计算.中国电机工程学报.2005,25(11):140-145.
    [75]李名加,常安碧,康强,等.基于多导体传输线理论的脉冲变压器锥形绕组电压分布数值计算.强激光与粒子束.2005,17(11):1730-1734.
    [76]樊亚军,刘国治,石磊,等.“黄羊—CKP—5000”双路5GW超宽谱HPM产生装置研制.全国第六届高功率微波学术研讨会,2004,2-8.
    [77]许建军,廖成,肖开奇.传输线充电技术实现高功率亚ns电磁脉冲调节. 强激光与粒子束.2007,19(1):165-168.
    [78] Mankowski J, Dichens J, Kristiansen M. High voltage subnanosecond breakdown. IEEE Trans. on Plasma Science, 1998, 26(3):874-881.
    [79] 廖承恩.微波技术基础.西安:西安电子科技大学出版社,1994.
    [80] 杨儒贵.电磁定理和原理及其应用.成都:西南交通大学出版社,2002.
    [81] 冯晓辉,刘锡三.Blumlein传输线的解析分析.强激光与粒子束.2000,12(4):517-520.
    [82] 刘锡三.高功率脉冲技术.北京:国防工业出版社,2005.
    [83] 曾正中.实用脉冲功率技术引论.西安:陕西科学技术出版社,2003.
    [84] Xu Jianjun, Xiao Kaiqi, Liao Cheng. Analysis on complex PFL discharging process based on traveling wave propagation method. 2006 China-Japan joint microwave conference proceedings, 2006, volume 1, 55-57.
    [85] 梁昆淼.数学物理方程.北京:高等教育出版社,1994.
    [86] 杨儒贵.电磁场与波.北京:高等教育出版社,2003.
    [87] Yefim Yankelevich, Alex Pokryvalio. A compact former of high-power bipolar sunnanosecond pulses. IEEE Trans. on Plasma Science, 2004, 33(4) : 1186-1191.
    [88] 闫玉波,葛德彪.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2002.
    [89] Paul C R. Incorporation of terminal constraints in the FDTD analysis of transmission lines. IEEE Trans. on Electromagnetic Compatibility, 1994, 36(2) : 85-91.
    [90] Weselon W N. TLCODE-A Transmission Line Code For Pulsed Power Design. 7th IEEE Pulsed Power Conference 1989, 919-922.
    [91] Baum C E, Lehr J M. Tapered Transmission-Line Transformers for Fast High-Voltage Transients. IEEE Trans. on Plasma Science, 2002, 30(5): 1712-1721.
    [92] 阵依军,叶君永,黄卡玛.高功率微波同轴阻抗变换器优化设计及功率计算.强激光与粒子束.2005,17(4):586-590.
    [93] Ching-Wen Hsue, Hechtman C D. Transient analysis of nonuniform, high-pass transmission lines. IEEE Trans on Microwave Theory and Technique, 1990, 38(8):1023-1030.
    [94] Hill J L, Mathews D. Transient Analysis of Systems with Exponential Transmission Lines. IEEE Trans on Microwave Theory and Technique, 1977, 25(9):777-783.
    [95] Schutt-Aine J E. Transient Analysis of nonuniform transmission lines. IEEE Trans on Microwave Theory and Technique, 1992, 39(5):378-385.
    [96] Yue Ping Tang and Song Yue Tang. Transient Analysis of Tapered LinesBased on the Method of Series Expansion. IEEE Trans on Microwave Theory and Technique, 1996, 44(10): 1742-1744.
    [97] Roden J A,Paul C R, SMITH W T., et al. Finite-Difference, time-domain analysis of lossy transmission Lines. IEEE Trans. on Electromagnetic Compatibility, 1996, 38(1): 15-24.
    [98] 张敏.CST微波工作室.成都:电子科技大学出版社.2004.
    [99] Moran S L, Hardesty L W, Grothaus M G. Hydrogen spark gap for high repetition rates. The 9th IEEE International Pulsed Power Conference. 1992, 336-339.
    [100] 许建军,肖开奇,陈宏.单驱动源高功率多电磁脉冲的产生.中电科技集团公司第29所,2006年学术年会,38-41.
    [101] Moran S L, Hardesty L W, Grothaus M G.. Five pulse, 10GW, high-repetition rate hydrogen spark switch experiment. The 9th IEEE International Pulsed Power Conference[C]. 1992, 376-379.
    [102] 欧阳佳,刘金亮,杨建华,等.一种多组电极的高功率多脉冲气体开关.强激光与粒子束.2004,16(12):1615-1617.
    [103] Kazuto Takao, Katsumi Masugata. Generation of multiple pulses with extremely short pulse repetition interval. IEEE Trans.on Plasma Science, 2000, 28(5): 1382-1385.
    [104] Mayes J R, Carey W J. Nuannally W C, et al. The Gatling Marx Generator System. IEEE Conference on Ultra Wideband System and Technology, 2002.504-507.
    [105] 冯慈璋.电磁场.北京:高等教育出版社,1983.
    [106] 傅君眉,冯恩信.高等电磁理论.西安:西安交通大学出版社,2000.
    [107] 任朗.天线理论基础.北京:人民邮电出版社,1980.
    [108] 任朗,廖成,王敏锡.数学物理基础.成都:西南交通大学出版社,2001.
    [109] 刘小龙,王向晖,汪文秉,等.单极性亚纳秒脉冲激励口径的辐射特性.强激光与粒子束.2003,15(11):1103-1106.
    [110] 王向晖,蒋延生,汪文秉,等.口径天线瞬态辐射特性研究.强激光与粒子束.2004,38(2):170-173.
    [111] 陈汤铭,刘保安,等译.电感计算手册.北京:机械工业出版社,1992.
    [112] 于哲峰,周乐柱,班永灵,等.细线天线德瞬态响应特性的研究.北京大 学学报(自然科学版).2005,40(3):341-345.
    [113] 王均宏.脉冲电磁波通过偶极天线辐射的物理过程及其数值模拟.物理学报.1999,48(5):850-860.
    [114] Pozar D M, Schaubert D H, Mcintosh R E. The optimum transient radiation from an arbitrary antenna .IEEE Trans on antenna and propagation, 1984, 32(3):633-640.
    [115] Pozar D M, Kang Y M, Schaubert D H, et al .Optimization of the transient radiation from a dipole array. IEEE Trans on antenna and propagation,1985, 33(1):69-75.
    [116] Podosenov S A, Svekis Y G, Sokolov A A. Transient radiation of traveling waves by wire antennas. IEEE Trans. on Electromagnetic Compatibility, 1995, 37(3):367-383.
    [117] Matti Hamalainen, Veikko Hovinen, Raffaello Tesi, et al. On the UWB system coexistence with GSM900, UMTS/wcdma, and GPS. IEEE Journal on selected areas in communications, 2002, 20(9): 1712-1721.
    [118] Christine Uhl, Christophe L M, Jean Pla. Jamming assessment of impulse UWB signals on Galileo receivers. IEEE Conference on Ultra Wideband System and Technology[C]. IEEE, 2004, 55-59.
    [119] 王勇,王涛.PAM TH-UWB信号对窄带系统的干扰分析.浙江大学学报(工学版),2004,38(7):831-834.
    [120] Pvsn der wure. On the spectral density of a cyclostationary process. IEEE Trans on communications, October, 1974:1727-1730.
    [121] 王立霞,王文博,王德隽.周期平稳信号及其应用.电子与信息学报.1996,18(3):310-315.
    [122] Fontana R J. A note on power spectral density calculations for jittered pulse trains. Web:http://www.multispectral.com/pdf/uwb.psd.pdf.
    [123] Romme J, Piazzo L. On The Power Spectral Density of Time-Hopping Impulse Radio. IEEE Conference on Ultra Wideband System and Technology. Baltimore, IEEE, 2002, 241-244.
    [124] Win M Z. A Unified Spectral Analysis of Generalized Time-Hopping Spread-Spectrum Signals In The Presence of Timing Jitter. IEEE Journal on selected areas in communications, 2002, 20(9): 1664-1676.
    [125] Win M Z. Spectral density of random UWB Signals.IEEE Communications letters, 2002, 6(12):526-528.
    [126] 许建军,廖成,肖开奇.随机抖动电磁脉冲串的频域特性.西南交通大学学报.2007,42(2):190-193.
    [127] 陆大维.随机过程及其应用.北京:清华大学出版社,1986.324-337.
    [128] 管致中,夏恭恪.信号与线性系统.第三版.北京:高等教育出版社,1991
    [129] 薛年青.Matlab在数字信号处理中的应用.北京:清华大学出版社,2003.
    [130] 许建军,廖成,肖开奇.基于传输线充电技术的高功率电磁脉冲源.电工电能新技术.2007,26(2):73-75.
    [131] 毛乃宏,俱新德.天线测量手册.北京:国防工业出版社,1987.
    [132] 朱四桃,朱伯承,樊亚军.超宽谱电磁脉冲辐射场测量系统.强激光与粒子束.2006,18(12):261-264.
    [133] 朱四桃,朱伯承,樊亚军.TEM喇叭超宽带接收特性分析.强激光与粒子束.2005,17(8):1228-1230.
    [134] 刘小龙,刘国志,汪文秉.恒阻抗TEM喇叭辐射特性.强激光与粒子束.2003,15(11):1127-1129.
    [135] 刘小龙,樊亚军,刘国治,等.超宽带电磁脉冲辐射场测量技术研究.强激光与粒子束.1999,11(6):742-746.
    [136] Robertson R C, Morgan M A. Ultrawide-band impulse receiving antenna design and evaluation. Ultra-wideband short-pulse electromagnetics 2. New York: Plenum Press, 1995:179-186.
    [137] Scheers B, Acheroy M, Vander Vorst A. Time-domain simulation characterization of TEM horns using a normalized impulse response. IEE Proc Microw Antennas Propag, 2000, 147(6):463-469.
    [138] Baum C E, Farr E G. Impulse radiation antennas. Ultra-wideband short-pulse electromagnetics 2. New York: Plenum Press, 1995:159-170.
    [139] ETS Document. Model 3106 double-ridged waveguide horn manual. Web: http://www.ets.lindgren.com.
    [140] Shinobu Ishigami, Hitoshi Iida, Takashi Iwasaki. Measurements of complex antenna factor by the near-field 3-antenna method. IEEE Trans on Electromagnetic compatibility, 1996, 38 (3): 424-432.
    [141] 张志涌,徐彦琴.MATLAB教程—基于6.X版本.北京:北京航空航天大学出版社,2001.
    [142] 程佩青.数字信号处理教程.北京:清华大学出版社,2001.
    [143] Hayes H M, Lim J S, Oppenheim A V. Singal reconstruction from phase or magnitude. IEEE Trans on Acoustics, Speech, and Signal processing, 1980, 28(6): 672-680.
    [144] 谢彦召,王赞基,王群书,等.基于频域幅度谱数据重建电磁脉冲时域波形.强激光与粒子束.2004,16(3):320-324.
    [145] 石立华,周壁华,陈彬,等.基于幅频曲线的系统时域响应特性评价方法.电波科学学报.2000,15(4):467-471.
    [146] Teche F M. On the use of Hilbert transform for processing CW data. IEEE Trans on EMC, 1992, 34(2):259-266.
    [147] 谢文揩,王彬.强流束物理导论.成都:电子科技大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700