用户名: 密码: 验证码:
脉冲磁场对枯草芽孢杆菌的灭活作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的提高,人们对食品质量的要求越来越高,传统的热加工已逐渐不能满足人们的需求。脉冲磁场作为非热加工技术之一,能够在低温下杀灭食品中的微生物,保持食品的风味及营养成分,已成为食品杀菌领域的研究热点之一。论文以枯草芽孢杆菌为例,就脉冲磁场对微生物灭活作用及其机理进行了研究,主要包括脉冲磁场对枯草芽孢杆菌的灭活效果、脉冲磁场对枯草芽孢杆菌细胞结构和功能的影响,初步探讨了灭活机理。主要研究结果如下:
     (1)微生物的不同生长期、磁场强度、脉冲数对枯草芽孢杆菌灭活效果均有影响。枯草芽孢杆菌在对数生长期对脉冲磁场最为敏感;随着磁场强度(>1.5T)和脉冲数(>15)的增加,枯草芽孢杆菌残留率呈下降趋势;但在磁场强度(≤1.5T)和脉冲数(≤15)相对较低时,脉冲磁场对枯草芽孢杆菌没有灭活作用,反而促进了其生长;对培养10h的枯草芽孢杆菌,采用磁场强度3.3T、脉冲数30个灭活时残留率最低为33.87%。对灭活曲线分别用Bigelow模型、Weibull模型和Hulsheger模型进行拟合,发现Weibull模型最好地拟合了脉冲磁场作用下枯草芽孢杆菌残留率的动力学曲线,R2最高为0.967。
     (2)介质的温度(5~45℃)、pH(4.5~8.0)和水分活度(0.88~1.00),介质中NaCl、糖类(葡萄糖、乳糖)、蛋白胨、乙醇等成分对脉冲磁场灭活枯草芽孢杆菌均会造成一定的影响,低温(5~20℃)或较高温介质(45℃)对脉冲磁场的灭活作用具有促进作用,酸性(4.5~6.5)或碱性介质(7.5~8.0)也促进了脉冲磁场的灭活作用,介质水分活度越低,灭活作用越强。枯草芽孢杆菌的残留率随着NaCl浓度(1.2%~1.8%)、乙醇浓度(15%~45%)的升高而降低,随着葡萄糖(6%~10%)、乳糖(3%~6%)和蛋白胨含量(2%~6%)的增大而上升。
     (3)加热(50~100℃)、超声(200W,5-30min)、nisin (100~350IU/mL)处理联合3.0T,30个脉冲数的脉冲磁场灭活枯草芽孢杆菌比单一处理方法灭活效果要好。且先脉冲磁场处理再加热、超声、nisin处理的灭活效果比先加热、超声、nisin处理后再脉冲磁场处理的灭活效果要好。联合灭活后,枯草芽孢杆菌的形态发生改变,细胞产生萎缩现象。
     (4)以DPH作为探针,在35℃标记45min后采用荧光偏振法测定枯草芽孢杆菌细胞膜的荧光偏振度和荧光各异向性的变化,结果发现脉冲磁场提高了细胞膜的荧光偏振度和荧光各异向性,枯草芽孢杆菌的细胞膜流动性下降,而细胞膜流动性的下降会引起细胞膜功能的丧失,这可能是导致细胞死亡的原因之一。而以碘化丙啶为染料,用流式细胞仪测定细胞膜的渗透性时发现脉冲磁场提高了细胞膜的渗透性,膜渗透性的增加也可能导致细胞失活。
     (5) Fura-2/AM探针可成功的负载于枯草芽孢杆菌细胞中,经脉冲磁场处理后,荧光强度增加;荧光比例法测定细胞[Ca2+]i后发现[Ca2+]i随着磁场强度和脉冲数的增加而增加;随着细胞[Ca2+]i的不断增加,细胞膜的渗透性也不断增加,细胞膜的破坏和细胞[Ca2+]i的超载可能是细胞最终死亡的原因之一。
     (6)扫描电镜和透射的观察结果显示脉冲磁场使枯草芽孢杆菌发生变形,破坏了细胞的细胞壁和细胞膜,同时使细胞胞内物质出现缩合现象;260nm和280nm处的紫外吸光值随着强度和脉冲数的增加不断增大,说明核酸、蛋白等胞内物质在脉冲磁场作用下出现了外泄;经脉冲磁场作用后,ERIC-PCR指纹图谱上不同程度地出现了新的条带,说明脉冲磁场造成了DNA的断裂;枯草芽孢杆菌胞内的游离氨基酸总量经3.0T,30个脉冲数的脉冲磁场处理后增加,这可能是因为脉冲磁场使胞内蛋白发生了降解。胞内物质的外泄、DNA的断裂、蛋白质的降解等都可能导致细胞死亡。
     (7)采用蛋白质组学方法,比较未经脉冲磁场处理和经3.3T,30个脉冲处理的枯草芽孢杆菌的蛋白质组,发现共有34个差异蛋白点,其中质的差异有9个(在处理组中消失或特有),量的差异有25个;膜蛋白的破坏再次证明脉冲磁场破坏了细胞膜结构;对成功鉴定的19个蛋白进行GO分析和KEGG分析后得知蛋白信息分为细胞定位、分子功能、生物过程三大类,有8个蛋白有pathway信息,共参与16个pathway;脉冲磁场对枯草芽孢杆菌的有机物代谢和能量代谢产生影响;脉冲磁场导致枯草芽孢杆菌某些生理学功能的丧失或改变,这可能是细胞死亡的又一大原因。
The increasing demand for higher quality products where a thermal process is hardly adoptable has significantly intensified with the improvement of living standard. The pulsed magnetic field (PMF) is a non-thermal method that is capable of inactivating microorganisms at lower temperatures and preserves the sensory and nutritional quality of the fresh-like food products, and is being one of research focuses in the field of food sterilization. This paper aims to study the effects on inactivation and on the cell structure and function of Bacillus subtilis by PMF. The mechanisms about PMF inactivation were also discussed preliminarily. The main conclusions were as follow:
     (1) Bacillus subtilis was most sensitive to the PMF at logarithmic phase. The survival rate of B. subtilis generally decreased with increasing intensity (>1.5T) and pulse numbers (>15). However, lower intensity (≤.1.5T) and pulse numbers (≤15) of PMF enhanced bacterial growth. A minimum survival rate of33.87%was obtained at an intensity of3.3T and30pulses with10h culture time of B. subtilis. Compared with the Bigelow and Hiilsheger models, the Weibull distribution model provided the best fit for B. subtilis inactivation data in relation to PMF treatments with the highest R2being observed at0.967.
     (2) Lower (5~20℃) and higher (45℃) temperature, and acidic (pH4.5~6.5) or alkaline (pH7.5~8.0) medium all increased the inactivation influence of PMF. The lower water activity, the stronger inactivation effect on B. subtilis. The survival rate decreased with increasing of NaCl (1.2%~1.8%) and ethanol concentration (15%~45%), the higher of concentration, the better effect of inactivation. The survival rate increased with increasing of glucose (6%~10%), lactose (3%~6%) and peptonein (2%~6%) content, the higher of concentration, the worse of inactivation.
     (3) The effect of PMF with the intensity of3.0T and30pulses combined with heat(50~100℃), ultrasonic(200W,5~30min), and nisin(100~350IU/mL) on the inactivation of B. subtilis was better than the effect of PMF used alone. The inactivation effect was better when B. subtilis were treated by PMF followed by heat, ultrasonic, and nisin than treated by heat, ultrasonic, and nisin followed by PMF. The morphology of B. subtilis changed and the cells shrunk after the combined treatments.
     (4)1,6-diphenyl-1,3,5-hexatriene (DPH) was used as fluorescence probe to label the membrane of B. Subtilis at35℃for45min to determine the changes of fluorescence polarization and fluorescence anisotropy of B. Subtilis membrane by fluorescence polarization technique. The results indicated that fluorescence polarization and fluorescence anisotropy increased after PMF treatment, meaning that membrane fluidity decreased which would result in the lost of the membrane function. This was one of the perhaps mechanisms for the cell death. The membrane permeability evaluated by propidium iodide staining and flow cytometry measurement enhanced after PMF treatment, which also suggested one of the reasons for cell inactivation.
     (5) Fura-2acetoxymethyl ester (Fura-2/AM), a ratiometric indicator was loaded in the cell of B. subtilis successfully. Fluorescence intensity improved when cell was treated by PMF. Intracellular free Ca2+ions assessed by ratiometric methods increased with increasing of the intenstiy and pulse numbers. The membrane permeability of cell also increased with increasing of [Ca2+]i The destruction of the cell membrane and [Ca2+]i overload in cell were perhaps the reasons for the cell death.
     (6) The SEM and TEM observation indicated that PMF caused a deformed morphology and damaged cell wall and membrane with the condensation of cell intracellular material. OD260and OD280values increased continuously with increasing of the intensity and pulsed numbers, suggesting the leakage of intracellular contents such as DNA and proteins. ERIC-PCR fingerprint showed DNA had been fragmented in different degree after PMF treatment. The total contents of free acids in cell increased after PMF treatment at the intensity of3.3T with30pulses, which implied that PMF treatment degradated the cell proteins. The leakage of intracellular conten, the fracture of DNA and the degradation of protein might result in the cell death.
     (7) Proteomic method was used for compare the protein profile of B. subtilis PMF-treated (3.3T with30pulses) and PMF-untreated. It was found that34proteins expressed differentially, including9proteins with qualitative difference(disappeared or appreared in PMF-treated samples) and25proteins with quantity difference. The destruction of the membrane protein proved that PMF destroyed the structure of the cell membrane again. GO and KEGG pathway analysis were employed to analyzed the different proteins.19proteins identified by mass spectrometry successfully were classed as cellular component, molecular function and biological process.8proteins had pathway information and participated in18pathways. Organic and energy metabolism of B. subtilis were effected by PMF and the loss or change of some physiology function might be one of the causes leading to the cell death.
引文
[1]Giacometti J, Tomljenovic AB, Josic D. Application of proteomics and metabolomics for investigation of food toxins. Food Research International, In press.
    [2]Havelaar AH, Brul S, de Jong A, et al. Future challenges to microbial food safety. International Journal of Food Microbiology,2010,139(Suppl):S79-S94.
    [3]徐怀德,王云阳.食品杀菌新技术,北京:科学技术文献出版社,2005.
    [4]肖素荣,李京东.天然食品防腐剂及其发展前景.中国食物与营养,2007,6:30-33.
    [5]秦楠,缪文玉.几种生物防腐剂的特性与研究进展.中国食品添加剂,2007(G00):250-252.
    [6]Morihiko M, Takashi I, Yoshie K. Studies on taste modifiers II:purification and structure determination of grmnemic acids, antisweet active principle from grmnema sylvestre leaves. Tereahedron Letters,1989,30(12):1547-1550.
    [7]Yoshikawa K, Nakagawa M, Yamamoto R, et al. Anti-sweet natural products. V. structures of gymnemic acids Ⅷ-Ⅻ from gymnema sylvestre. Chemical & pharmaceutical bulletin,1992, 40(7):1779-1782.
    [8]Mcauliffe O, Ryan MP, Ross RP, et al. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Applied Environmental Microbiology,1998, 64(2):439-445.
    [9]Oostendorp JG Natamycin. Antonie van Leeuwenhoek,1981,47(2):170-171.
    [10]Fente CA, Vazquez BB, Franco AC, et al. Distribution of fungal genera in cheese and dairies: Sensitiv-ity to potassium sorbate and natamycin. Arichiv fur Lebensmitt Elhygiene,1995, 46(3):62-65.
    [11]Pedersen JC. Natamycin as a fungicide in agar media. Applied and Environmental Microbiology, 1992,58:1064-1066.
    [12]Welscher YM, Napel HH, Miriam MB, et al. Natamycin blocks fumgal growth by binding specifically to ergosterol without permeabilizing the membrane. Journal of Biological Chemistry,2008,283(10):1-23.
    [13]Patras A, Brunton NP, Tiwari B, et al. Modelling the effect of different sterilization treatments on antioxidant activity and colour of carrot slices during storage. Food Chemistry,2009, 114(2):484-491.
    [14]Patras A, Brunton N, O'Donnell C, et al. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Scieuce and Technology, 2010,21(1):3-11.
    [15]Rawson A, Koidis A, Rai DK, et al. Influence of Sous Vide and water immersion processing on polyacetylene content and instrumental color of parsnip (Pastinaca sativa) disks. Journal of Agricultural and Food Chemistry,2010,58(13):7740-7747.
    [16]Manas P, Mackey BM. Morphological and physiological changes induced by high hydrostatic pressure in exponential-and stationary-phase cells of Escherichia coli:relationship with cell death. Applied and Environmental Microbiology,2004,70(3):1545-1554.
    [17]Malone AS, Shellhammer TH, Courtney PD. Effects of high pressure on the viability, morphology, lysis, and cellwall hydrolase activity of Lactococcus lactis subsp. cremoris. Applied and Environmental Microbiology,2002,68(9):4357-4363.
    [18]Ritz M, Freulet M, Orange N, et al. Effects of high hydrostatic pressure on membrane proteins of Salmonella typhimurium. International Journal of Food Microbiology,2000,55(1-3): 115-119.
    [19]Russell NJ. Bacterial membranes:the effects of chill storage and food processing. An overview. International Journal of Food Microbiology,2002,79(1-2):27-34.
    [20]Pagan R, Mackey B. Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells:differences between exponential-and stationary-phase cells and variation among strains. Applied and Environmental Microbiology,2000,66(7):2829-2834.
    [21]Kaletunc G, Lee J, Alpas H, et al. Evaluation of structural changes induced by high hydrostatic pressure in Leuconostoc mesenteroides. Applied and Environmental Microbiology,2004,70(2): 1116-1122.
    [22]Considine KM, Kelly AL, Fitzgerald GF, et al. High pressure processing effects on microbial food safety and food quality. FEMS Microbiology Letters,2008,281(1):1-9.
    [23]Chilton P, Isaacs NS, Mackey B, et al. The effects of high hydrostatic pressure on bacteria. In K. Heremans (Ed.), High pressure research in the biosciences and biotechnology. Belgium: Leuven University Press,1997:225-228.
    [24]Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Progress in Nucleic Acid Research & Molecular Biology,1985,32:115-154.
    [25]Kiefer J. Biological Radiation Effects. Springer, Berlin, Germany.1990:88-120.
    [26]Morris C, Brody AL, Wicker L. Non-thermal food processing/preservation technologies:a review with packaging implications. Packaging Technology & Science,2007,20(4):275-286.
    [27]Berry D. Keeping foods fresh. Food product design. Posted in Articles, Food and Drug Administration (FDA), Microbial, Processing, Food Safety, Meat Products, Topics.2004,5.
    [28]Rababah TM, Hettiarachchy NS, Eswaranandam S, et al. Sensory evaluation of irradiatedand nonirradiated poultry breast meat infused with plant extracts. Journal of Food Science,2005, 70(3):228-235.
    [29]King B, Kesavan J, Sagripanti JL. Germicidal UV sensitivity of bacteria in aerosols and on contaminated surfaces. Aerosol Science and Technology,2011,45(5):645-653.
    [30]Friedberg EC, Walker GC, Siede W. DNA Repair and Mutagenesis. ASM Press, Washington, D.C.1995.
    [31]Krisko A, Radman M. Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proceedings of the National Academy of Sciences of the United States of America,2010,107(32):14373-14377.
    [32]Schenk M, Raffellini S, Guerrero S, et al. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae by UV-C light:study of cell injury by flow cytometry, LWT-Food Science and Technology,2011,44(1):191-198.
    [33]Koutchma T. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology,2009,2(2):138-155.
    [34]Spikes J. Photodegradation of foods and beverages. In:Smith KC. (Ed.). Photochemical and Photobiological Reviews. New York:Plenum Press,1981,6:39-81.
    [35]Matak KE, Sumner SS, Duncan SE, et al. Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science,2007,90(7):3178-3186.
    [36]Ahmed J, Ramaswamy HS. Microwave pasteurization and sterilization of foods. In Rahman MS. (Ed.). Handbook of food preservation. Boca Raton FL:CRC Press,2007:691-712.
    [37]樊伟伟,黄慧华.微波杀菌技术在食品工业中的应用.食品与机械,2007,23(1):143-147.
    [38]Sakai N, Mao W, Koshima Y, et al. A method for developing model food system in microwave heating studies. Journal of Food Engineering,2005,66(4):528-531.
    [39]Kozempel MF, Annous BA, Cook RD, et al. Inactivation of microorganisms with microwaves at reduced temperatures. Journal of Food Protection,1998,61(5):582-585.
    [40]Vadivambal R, Jayas DS. Non-uniform temperature distribution during microwave heating of food materials-a review. Food and Bioprocess Technology,2010,3(2):161-171.
    [41]Ugarte-Romero E, Feng H, Martin SE, et al. Inactivation of Escherichia coli with power ultrasound in apple cider. Journal of Food Science,2006,71(2):E102-E108.
    [42]Bilek SE, Turantas F. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. International Journal of Food Microbiology,2013,166(1): 155-162.
    [43]Manas P, Pagan R. Microbial inactivation by new technologies of food preservation. Journal of Applied Microbiology,2005,98(6):1387-1399.
    [44]Pingret D, Fabiano-Tixier AS, Chemat F. Degradation during application of ultrasound in food processing:A review. Food Control,2013,31(2):593-606.
    [45]Wekhof A. Disinfection with flash lamps. PDA Journal of Pharmaceutical Science and Technology,2000,54(3):264-276.
    [46]Elmnasser N, Dalgalarrondo M, Orange N, et al. Effect of pulsed-light treatment on milk proteins and lipids. Journal of Agricultural and Food Chemistry,2008,56(6):1984-1991.
    [47]Fine F, Gervais P. Efficiency of pulsed UV light for microbial decontamination of food powders. Journal of Food Protection,2004,67(4):787-792.
    [48]Aronsson K, Borch E, Stenlof B, et al. Growth of pulsed electric field exposed Escherichia coli in relation to inactivation and environmental factors. International Journal of Food Microbiology,2004,93(1):1-10.
    [49]Wouters PC, Bos AP, Ueckert J. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Applied and Environmental Microbiology,2001,67(7):3092-3101.
    [50]Heinz V, Alvarez L, Angersbach A, et al. Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends in Food Science & Technology,2002, 12(3-4):103-111.
    [51]Vega MH, Martin BO, Qing BL, et al. Non-thermal food preservation:Pulsed electric fields. Trends in Food Science &Technology,1997,8(5):151-157.
    [52]Li, YQ, Tian WL, Mo, HZ. Effects of pulsed electric field processing on quality characteristics and microbial inactivation of soymilk. Food Bioprocess Technology,2013,6(8):1907-1916.
    [53]Van Nostran FE, Reynolds RJ, Hedrick HG. Effects of a high magnetic field at different osmotic pressures and temperatures on multiplication of Saccharomyces cerevisiae. Journal of Applied Microbiology,1967,15(3):561-563.
    [54]Moore RL. Biological effects of magnetic fields. Studies with microorganisms. Canadian Journal of Microbiology,1979,25(10):1145-1151.
    [55]Pothakamury UR, Barbosa-Canovas GV, Swanson BG. Magnetic-field inactivation of microorganisms and generation of biological changes. Food Technology,1993,47(12):85-93.
    [56]Hofmann, GA. Deactivation of microorganisms by an oscillating magnetic field. U.S. Patent 4524079,1985.
    [57]San Martn MF, Harte FM., Lelieveld H. et al. Inactivation effect of 18T static and pulsed magnetic fields on Escherichia coli and Saccharomyces cerevisiae. Journal of Food Processing and Preservation,2001,25(3):223-235.
    [58]San Martin MF, Harte FM., Lelieveld H, et al. Inactivation effect of an 18-T pulsed magnetic field combined with other technologies on Escherichia coli. Innovative Food Science & Emerging Technologies,2001,2(4):273-277.
    [59]Mehedintu M, Berg H. Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochemistry and Bioenergetics.1997,43(1):67-70.
    [60]Ye Shengying, Huang Wei, He Mingshu et al. Preliminary study on technology of magnetic field non-thermal sterilization. Transaction of Chinese Agricultural Engineering,2003,19(5): 156-160.
    [61]雷鸣书,黄勇,蒋正宇.脉冲磁场杀菌.食品科学,1994,15(12):12-14.
    [62]王洪朔,叶盛英,宋贤良,等.从微观层面研究两极交变磁场对微生物的影响.农业工程学报,2007,23(8):253-256.
    [63]王丽敏.苹果中微生物的分离鉴定及脉冲强磁场对苹果汁中腐败菌的影响.硕士学位论文.中国农业大学,2004.
    [64]李梅,曲久辉,彭永臻.脉冲磁场水处理技术在杀菌灭藻方面的研究.环境科学学报,2004,24(2):260-264.
    [65]马海乐,邓玉林,储金宇.生啤酒的磁激发脉冲电磁场杀菌试验研究.食品科学,2003,24(4):52-55.
    [66]马海乐,邓玉林,储金宇.西瓜汁的脉冲磁场杀菌试验研究及杀菌机理分析.农业工程学报,2003,19(2):163-166.
    [67]杨巧绒,高梦祥,马海乐.强脉冲磁场的杀菌效果及对食品品质的影响.微波学报,2004,20(3):82-85.
    [68]高梦祥,马海乐,郭康权.强脉冲磁场对牛奶的杀菌效果及其营养成分的影响研究.农业工程学报,2005,21(3):181-184.
    [69]高梦祥,马海乐,郭康权.脉冲磁场杀菌在牛奶杀菌中的应用研究.食品工业科技,2004,25(7):76-80.
    [70]骆新峥,马海乐,高梦祥.牛初乳脉冲磁场杀菌试验.中国乳品工业,2004,32(8):22-23.
    [71]刘涛,马海乐.脉冲电磁场的杀菌实验研究.南开大学学报(自然科学版),2006,39(4):54-57.
    [72]马海乐,高梦祥.介质特性参数对脉冲磁场杀菌效果的影响.食品科学,2004,25(8):42-46.
    [73]Ma HL, Pan ZL, Gao MX, et al. Efficacy in microbial sterilization of pulsed magnetic field treatment. International Journal of Food Engineering,2008,4(4):1-14.
    [74]王合利,马海乐,祝子坪,等.大肠杆菌的脉冲磁场杀菌效果及规律性的研究.食品工业科技,2008,29(7):79-81.
    [75]许审时,马海乐.金黄色葡萄球菌脉冲磁场杀菌实验、生物学窗效应及其失活动力学.食品科学,2010,31(21):20-23.
    [76]马海乐,吴琼英,高梦祥,等.微生物不同生长期及介质参数对脉冲磁场杀菌效果的影响.农业工程学报,2004,20(5):215-217.
    [77]牛中奇,侯建强,王海彬,等.电磁波的生物学窗效应.中国生物医学工程学报,2003,22(2):126-132.
    [78]肖凯军,郭丹丹.高强度脉冲磁场对腐乳的杀菌效果研究.广东农业科学,2009,12:12-14.
    [79]金江涛,郑必胜.强脉冲磁场对草莓汁的杀菌效果研究.食品工业,2009,6:55-57.
    [80]金江涛,郑必胜,肖凯军.强脉冲磁场对草莓过氧化物酶的钝化及对草莓汁的杀菌效果研究.食品工业科技,2010,31(3):99-101.
    [81]Tenforde TS, Liburdy RP. Magnetic deformation of phospholipid bilayers:effects on liposome shape and solute permeability at prephase transition temperatures. Journal of Theoretical Biology,1988,133:385-396.
    [82]周蔚红,张钧.电磁脉冲灭菌研究.微波学报,2000,16(3):318-321.
    [83]Rosen AD. Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochimica et Biophysica Acta(BBA)-Biomembranes.1996,1282(1):149-159.
    [84]Rosen AD. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cellular Biochemistry Biophysics,2003,39(2):163-173.
    [85]方敏,薛绍白.程序性细胞死亡.生物学通报,1996,31(1):7-10.
    [86]Oltval ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell,1994,79: 189-192.
    [87]徐传骧,钟力生,崔秀芳.生物体的介电性质及外电磁场对其影响作用探讨.电气应用,1993,7(1):25-27.
    [88]Berg H. Problems of weak electromagnetic field effects in cell biology. Bioelectrochemistry and Bioenergetics,1999,48(2):355-360.
    [89]Binhi VN. Interference of ion quantum states within a protein explains weak magnetic field's effect on biosystems. Electro and Magnetobiology,1997,16(3):203-214.
    [90]Binhi VN. Interference mechanism for some biological effects of pulsed magnetic fields. Bioelectrochemistry and Bioenergetics,1998,45(1):73-81.
    [91]Binhi VN, Alipov YD, Belyaev IY. Effect of static magnetic field on E.coli cells and individual rotations of ion-protein complexes. Bioelectromagnetics,2001,22(2):79-86.
    [92]唐伟强,周宇英.基于食品电磁杀菌机理的几种理论学说.粮油加工与食品机械,2001,10:16-18.
    [93]Gerncer VF, Barnothy MF, Barnothy JM. Inhibition of bacterial growth by magnetic fields, Nature,1962,196:539-541.
    [94]Mertens B, Knorr D. Developments of nonthermal processes for food preservation. Food Technology,1992,46(5):124-133.
    [95]Fangio MF, Roura SI, Fritz R. Isolation and identification of Bacillus spp. and related genera from different starchy foods. Journal of Food Science,2010,75(4):218-221.
    [96]Nicorescu I, Nguyen B, Moreau-Ferret M, et al. Pulsed light inactivation of Bacillus subtilis vegetative cells in suspensions and spices. Food Control,2013,31(1):151-157.
    [97]Budde I, Steil L, Scharf C, et al. Adaptation of Bacillus subtilis to growth at low temperature:a combined transcriptomic and proteomic appraisal. Microbiology,2006,152(Pt3):831-853.
    [98]Bigelow WD, Bohart GS, Richardson AC, et al. Heat penetration in processing canned foods. National Canners Association Bulletin,1920,16-L.
    [99]Bigelow WD. The logarithmic nature of thermal death time curves. Journal of Infectious Diseases,1921,29:528-536.
    [100]Esty JR, Meyer KF. The heat resistance of the spore of B.botulinus and allied anaerobes XI. Journal of Infectious Diseases,1922,31:650-663.
    [101]Gaillard S, Leguerinel I, Mafart P. Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores. Journal of Food Science,1998, 63(5):887-889.
    [102]Mafart P, Leguerinel I. Modelling combined effects of temperature and pH on heat resistance of spores by a Linear-Bigelow equation. Journal of Food Science,1998,63(1):6-8.
    [103]Coroller L, Leguerinel I, Mafart P. Effect of water activities of heating and recovery media on apparent heat resistance of Bacillus cereus spores. Applied and Environmental Microbiology, 2001,67(1):317-322.
    [104]Weibull W. A statistical distribution function of wide applicability. Journal of Applied Mechanics-Transaction of the ASME,1951,18:293-297.
    [105]Mafart P, Couvert O, Gaillard S, et al. On calculating sterility in thermal preservation methods: application of Weilbull frequency distribution model. International of Journal of Food Microbiology,2002,72(1-2):107-113.
    [106]Van Boekel MAJS. On the use of the Weilbull model to describe thermal inactivation of microbial vegetative cells. International of Journal of Food Microbiology,2002,74(1-2): 139-159.
    [107]Collado J, Fernandez A, Rodrigo M, et al. A. Kinetics of deactivation of Bacillus cereus spores. Food Microbiology,2003,20(5):545-548.
    [108]Peleg M. Calculation of the non-isothermal inactivation patterns of microbes having sigmoidal isothermal semi-logarithmic survival curves. Critical Reviews in Food Science and Nutrition, 2003,43(6):645-658.
    [109]Hulsheger H, Potel J, Niemann EG Killing of bacteria with electric pulses of high field strength. Radiation and Envionmental Biophysics,1981,20:53-65.
    [110]Zhong K, Chen F, Wang ZF, et al. Inactivation and kinetic model for the Escherichia coli treated by a co-axial pulsed electric field. European Food Research and Technology,2005, 221(6):752-758.
    [111]Zhao W, Yang RJ, Shen XH. Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields. Food Control,2013,32(1):6-12.
    [112]沈萍,范秀容,李广武.微生物学实验(第三版).北京:高等教育出版社,2000:92-94.
    [113]Ross T. Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Microbiology,1996,81(5):501-508.
    [114]Ortuno C, Martinez-Pastor MT, Mulet A, et al. Supercritical carbon dioxide inactivation of Escherichia coli and Saccharomyces cerevisiae in different growth stages. The Journal of Supercritical Fluids,2012,63:8-15.
    [115]Bawin SW, Adey WR, Sabbot IM. Ionic factors in release of 45Ca2+from chicken cerebral tissue by electromagnetic fields. Proceedings of the National Academy of Sciences of the United States of America,1978,75(12):6314-6318.
    [116]Ross SM. Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics,1990,11(1):27-36.
    [117]Dalgaard P. Fresh and lightly preserved seafood. In:Man CMD, Jones AA. (Eds.). Shelf-life Evaluation of Foods. Gaithersburg MD:Aspen Publishing.2000:110-139.
    [118]Ross T, Dalgaard P, Tienungoon S. Predictive modelling of the growth and survival of Listeria in fishery products. International of Journal of Food Microbiology,2000,62(3):231-245.
    [119]Quintavalla S, Parolari G. Effects of temperature, aw and pH on the growth of Bacillus cells and spores:A response surface methodology study. International Journal of Food Microbiology,1993,19(3):207-216.
    [120]Sajbidor J. Effect of some environmental factors on the content and composition of microbial membrane lipids. Critical Reiews in Biotechnology,1997,17(2):87-103.
    [121]Go'mez N, Garci'a D, A'lvarez I. Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH. International Journal of Food Microbiology,2005, 103(2):199-206.
    [122]A'lvarez I, Paga'n R, Raso J, et al. Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields. Letters in Applied Microbiology,2002, 35(6):489-493.
    [123]A'lvarez I, Raso J, Palop A, et al. Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. International Journal of Food Microbiology, 2000,55(1-3):143-146.
    [124]A'lvarez I, Raso J, Sala FJ, et al. Inactivation of Yersinia enterocolitica by pulsed electric fields. Food Microbiology,2003b,20(6):691-700.
    [125]Garcia-Gonzalez L, Geeraerd AH. Elst K, et al. Influence of type of microorganism, food ingredients and food properties onhigh-pressure carbon dioxide inactivation of microorganisms. International Journal of Food Microbiology,2009,129(3):253-263.
    [126]Furukawa S, Watanabe T, Koyama T, et al. Inactivation of food poisoning bacteria and Geobacillus stearothermophilus spores by high pressure carbon dioxide treatment. Food Control,2009,20(1):53-58.
    [127]钟业俊,刘成梅,刘伟,等.食品基质成分对瞬时高压杀灭枯草芽孢杆菌效果的影响.现代食品科技,2006,22(3):17-21.
    [128]Shabala L, Budde B, Ross T, et al. Responses of Listeria monocytogenes to acid stress and glucose availability monitored by measurements. International Journal of Food Microbiology, 2002,75(1-2):89-97.
    [129]Gomez-Lopez VM, Devlieghere F, Bonduelle V, et al. Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology,2005b,103(1):79-89.
    [130]Abee T, Wouters JA. Microbial stress response inminimal processing. International Journal of Food Microbiology,1999,50(1-2):65-91.
    [131]Besse NG. Influence of various environmental parameters and of detection procedures on the recovery of stressed L.monocytogenes:a review. Food Microbiology,2002,19(2-3):221-234.
    [132]Larson EL, Morton HE. Alcohols. In:Seymour SB. (Ed.). Disinfection, sterilization, and preservation. London:Lea & Febiger,1991:191-203.
    [133]Walkling-Ribeiro M, Rodriguez-Gonzalez O, Jayaram SH, et al. Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer. Food Research International,2011,44(8): 2524-2533.
    [134]Xie TD, Tsong TY. Study of mechanisms of electric field induced DNA transfection. Ⅱ. Transfection by low amplitude, low frequency alternation electric fields. Biophysical,1990, 58(10):897-903.
    [135]Weaver JC. Electroporation in cell and tissues:A biophysical phenomenon due to electromagnetic field. Radio Science,1995,30(1):205-221.
    [136]张弘,王宝义,刘长军,等.低强度瞬态电磁脉冲对细胞膜的电穿孔效应及机理研究.生物医学工程学杂志,1999,16(4):467-470.
    [137]Casadei MA, Manas P, Niven G, et al. Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Applied and Environmental Microbiology,2002,68(12): 5965-5972.
    [138]Werner-Washburne M, Braun EL, Crawford ME, et al. Stationary phase in Saccharomyces cerevisiae. Molecular Microbiology,1996,19(6):1159-1166.
    [139]Minh HNT, Dantigny P, Perrier-Cornet JM, et al. Germination and inactivation of Bacillus subtilis spores induced by moderate hydrostaticpressure. Biotechnology and Bioengineering, 2010,107(5):876-883.
    [140]Qi WM, Qian P, Yu JY, et al. Combined effect of high hydrostatic pressure and nisin on loss of viability, membrane damage and release of intracellular contents of Bacillus subtilis and Escherichia coli. International Journal of Food Engineering,2010,6(5):Article 3.
    [141]Cho WI, Cheigh CI, Chung MS, et al. The combined effect of UV irradlation and ethanol extract from Torilis Japonica fruit on inactivation of Bacillus Subtilis spores. Journal of Food Safety,2012,32(4):474-480.
    [142]Drakopoulou S, Terzakis S, Fountoulakis MS, et al. ultrasound-induced inactivation of gramnegative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics Sonochemistry,2009,16(5):629-634.
    [143]Butz P, Tauscher B. Emerging technologies:Chemical aspects. Food Research International, 2002,35(2-3):279-284.
    [144]Chemat F, Zill-e-Huma, Khan MK. Applications of ultrasound in food technology:Processing, preservation and extraction. Ultrasonics Sonochemistry,2011,18(4):813-835.
    [145]Antonio B, Milena S, Maria RC. ultrasound and antimicrobial compounds:A suitable way to control fusarium oxysporum in juices. Food Bioprocess Technology,2013,6(5):1153-1163.
    [146]De Vuyst L. Nisin production variability between natural Lactococcus Lactis subsp. Lactis strains. Biotechnology Letters,1994,16(3):287-292.
    [147]Cao-Hoang L, Gregoire L, Chaine A, et al. Importance and efficiency of indepth antimicrobial activity for the control of listeria development with nisin-incorporated sodium caseinate films. Food Control,2010,21(9):1227-1233.
    [148]Aouadhi C, Simonin H, Mejri S, et al. The combined effect of nisin, moderate heating and high hydrostatic pressure on the inactivation of Bacillus sporothermodurans spores. Journal of Applied Microbiology,2013,115(1):147-155.
    [149]Lee J, Kaletunc G. Inactivation of Salmonella Enteritidis strains by combination of high hydrostatic pressure and nisin. International Journal of Food Microbiology,2010,140(1): 49-56.
    [150]Joyce E, Wu X, Mason TJ. Effect of ultrasonic frequency and power on algae suspensions. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering,2010,45(7):863-866.
    [151]Koda S, Miyamoto M, Toma M, et al. Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. ultrasonics Sonochemistry,2009,16(5):655-659.
    [152]Cameron M, McMaster LD, Britiz TJ. Electron microscopic analysis of dairy microbes inactivated by ultrasound, ultrasonics Sonochemistry,2008,15(6):960-964.
    [153]Mason TJ, Peters D. Practical sonochemistry power ultrasound uses and applications. Chichester:Horwood Publishing.2002.
    [154]De Arauz LJ, Jozala AF, Mazzola PG, et al. Nisin biotechnological production and application: a review. Trends in Food Science & Technology,2009,20(3-4):146-154.
    [155]Trevors JT. Fluorescent probes for bacterial cytoplasmic membrane research. Journal of Biochemistry and Biophysics Methods,2003,57(2):87-103.
    [156]Beranova J, Jemiola-Rzeminska M, Elhottova D, et al. Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Biochimica et Biophysica Acta (BBA)-Biomembranes,2008,1778(2):445-453.
    [157]Crouzier D, Perrin A, Torres G, et al. Pulsed electromagnetic field at 9.71 GHz increase free radical production in yeast (Saccharomyces cerevisiae). Pathologie Biologie,2009,57(3): 245-251.
    [158]Walrant A, Correia I, Jiao CY, et al. Different membrane behaviour and cellular uptake of three basicarginine-rich peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2011,1808(1):382-393.
    [159]Mykytczuk NCS, Trevors JT, Ferronic GD, et al. Cytoplasmic membrane response to copper andnickel in Acidithiobacillus ferrooxidans. Microbiological Research,2011,166(3): 186-206.
    [160]Dowhan W. Molecular basis for membrane phospholipids diversity, why are there so many lipids. Annual Review of Biochemistry,1997,66:199-232.
    [161]Muller S, Ulrich S, Losche A, et al. Flow cytometry techniques to characterise physiological states of Acinetobacter calcoaceticus. Journal of Microbiological Methods,2000,40(1): 67-77.
    [162]Pokorny NJ, Boulter-Bitzer JI, Hart MM, et al. Hypobaric bacteriology, growth, cytoplasmic membrane fluidity and total fatty acids in Escherichia coli and Bacillus subtilis. International Journal of Astrobiology,2005,4(3-4):187-193.
    [163]Vincent M, Englang LS, Trevors JT. Cytoplasmic membrane polarization in Gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline. Biochimica et Biophysica Acta (BBA)-General Subjects,2004,11(3):131-134.
    [164]Chu-Ky S, Tourdot-Marechal R, Marechal P-A, et al. Combined cold, acid, ethanol shocks in Oenococcus oeni, effects on membrane fluidity and cell viability. Biochimica et Biophysica Acta (BBA)-Biomembranes,2005,1717(2):118-124.
    [165]Garcia-Gonzalez L, Geeraerd AH, Mast J, et al. Membrane permeabilization and cellular death of Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae as induced by high pressure carbon dioxide treatment. Food Microbiology,2010,27(4):541-549.
    [166]Loghavi L, Sastry SK, Yousef AE. Effect of Moderate Electric Field Frequency and Growth Stage on the Cell Membrane Permeability of Lactobacillus acidophilus. Biotechnology Progress,2009,25(1):85-94.
    [167]Oyane I, Takeda T, Oda Y, et al. Comparison between the effects of ultrasound and c-rays on the inactivation of Saccharomyces cerevisiae:Analyses of cell membrane permeability and DNA or RNA synthesis by flow cytometry. Ultrasonics Sonochemistry,2009,16(4):532-536.
    [168]Folmer V, Pedroso N, Matias AC, et al. H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA)-Biomembranes,2008,1778(4):1141-1147.
    [169]Shinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochimica et Biophysica Acta (BBA)-Biomembranes,1978,515(4):367-394.
    [170]Borenstain V, Barenholz Y. Characterization of liposomes and other lipid assemblies by multiprobe fluorescence polarization. Chemistry and Physics of Lipids,1993,64(1-3): 117-127.
    [171]Ioffe VM, Gorbenko GP, Deligeorgiev T, et al. Fluorescence study of protein-lipid complexes with a new symmetric squarylium probe. Biophysical Chemistry,2007,128(1):75-86.
    [172]Mykytczuk, NCS, Trevors, JT, Leduc, LG, et al. Fluorescence polarization in studies of bacterial cytoplasmicmembrane fluidity under environmental stress. Progress in Biophysics and Molecular Biology,2007,95(1-3):60-82.
    [173]McElhaney RN, Souza KA. The relationship between environmental temperature, cell growth, and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus. Biochimica et Biophysica Acta (BBA)-Biomembranes.1976,443(3):348-359.
    [174]Denich TJ, Beaudette LA, Lee H, et al. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. Journal of Microbiological Methods,2003,52(2): 149-182.
    [175]Alvarez-Ordonez A, Fernandez A, Lopez M, et al. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. International Journal of Food Microbiology,2008,123(3):212-219.
    [176]Beney L, Mille Y, Gervais P. Death of Escherichia coli during rapid and severe dehydration is related to lipid phase transition. Applied Microbial and Cell Physiology,2004,65(4):457-464.
    [177]张鹰,曾新安,温其标,等.荧光偏振法研究脉冲电场对酿酒酵母细胞膜流动性影响.光谱学与光谱分析,2008,28(1):156-160.
    [178]Kemp DC, Brouwer KLR. Viability assessment in sandwich-cultured rat hepatocytes after xenobiotic exposure. Toxicol Vitro,2004,18(6):869-877.
    [179]Li H, Deng L, Chen Y, et al. Inactivation, morphology, interior structure and enzymatic activity of high pressure CO2-treated Saccharomyces cerevisiae. Innovative Food Science & Emerging Technologies,2012,14:99-106.
    [180]Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, et al. High pressure carbon dioxide inactivation of microorganisms in foods:The past, the present and the future. International Journal of Food Microbiology,2007,117(1):1-28.
    [181]Ingram LO, Buttke TM. Effects of alcohols on micro-organisms. Advances in Microbial Physiology,1984,25:253-300.
    [182]Norris JR, Jensen HL. Calcium requirements of Azotobacter. Nature,1957,180(4600): 1493-1494.
    [183]Tisa LS, Adler J. Calcium ions are involved in Escherichia coli chemotaxis. Proceedings of the National Academy of Sciences,1992,89(24):11804-11808.
    [184]Watkins NJ. Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined by using recombinant aequorin. Biochemical Journal,1995,306(Pt 3): 865-869.
    [185]Yu XC, Margolin W. Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO Journal,1997,16(17): 5455-5463.
    [186]O'Hara MB, Hageman JH. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. Journal of Bacteriology,1990,172(8):4161-4170.
    [187]Rose RK, Dibdin GH, Shellis RP. A quantitative study of calcium binding and aggregation in selected oral bacteria. Journal of Dental Research,1993,72(1):78-84.
    [188]Werthen M, Lundgren T. Intracellular [Ca2+]i mobilization and kinase activity during acylated homoserine lactone-dependent quorum sensing in Serratia liquefaciens. Journal of Biochemistry,2001,276(9):6468-6472.
    [189]Torrecilla I, Leganes F, Bonilla I, et al. A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. PCC7120. Microbiology,2004,150(Pt 11): 3731-3739.
    [190]Benveniste H, Jorgensen MB, Diemer NH, et al. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta NeuroL Scand,1988, 78(6):529-536.
    [191]Dominguez DC. Calcium signalling in bacteria. Molecular Microbiology,2004,54(2): 291-297.
    [192]Grynkiewicz G, Poenit M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. Biological Chemistry,1985,260(6):3440-3450.
    [193]Venkataraman R, Holcomb MR, Harder R, et al. Ratiometric imaging of calcium during ischemia-reperfusion injury in isolated mouse hearts using Fura-2. Biomedical Engineering Online,2012,11:NO.39.
    [194]刘志洪,李文化,沈萍,等.FURA-2荧光探针研究Ca2+对大肠杆菌细胞的跨膜作用.化学学报,2004,62(4):445-448.
    [195]高明奇,张天彪,滕赞,等.用Fura-2双波长荧光法测定小鼠海马细胞内游离钙.中国医科大学学报,2005,34(3):197-200.
    [196]Campbell AK. Intercellular Calcium:Its Universal Regulator. New York,1983.
    [197]Wang CY, Huang HW, Hsu CP, et al. Inactivation and morphological damage of Vibrio parahaemolyticus treated with high hydrostatic pressure. Food Control,2013,32(2):348-353.
    [198]Follonier S, Panke S, Zinn M. Pressure to kill or pressure to boost:a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology. Applied Microbiology and Biotechnology,2012,93(5):1805-1815.
    [199]Pilavtepe-Celik M, Balaban MO, Alpas H, et al. Image Analysis based quantification of bacterial volume change with high hydrostatic pressure. Journal of Food Science,2008,73(9): 423-429.
    [200]Yang B, Shi Y, Xia X, et al. Inactivation of foodborne pathogens in raw milk using high hydrostatic pressure. Food Control,2012,28(2):273-278.
    [201]Machado LF, Pereira RN, Rui C, et al. Moderate electric fields can inactivate Escherichia coli at room temperature. Journal of Food Engineering,2010,96(4):520-527.
    [202]Calderon-Miranda ML, Barbosa-Canovas GV, Swanson BG. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk. International Journal of Food Microbiology,1999,51(1):31-38.
    [203]Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research,1991,19(24): 6823-6831.
    [204]Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent:a case study on E. Coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science,2004,275(1): 177-182.
    [205]Esmekaya MA, Acar SI, Kiran F, et al. Effects of ELF Magnetic Field in Combination with Iron(Ⅲ) Chloride (FeCl3) on Cellular Growth and Surface Morphology of Escherichia coli (E.coli). Applied Biochemistry and Biotechnology,2013,169(8):2341-2349.
    [206]Unal R, Yousef AE, Dunne CP. spectrofluorimetric assessment of bacterial cell membrane damage by pulsed electric field. Innovative Food Science & Emerging Technologies,2002, 3(3):247-254.
    [207]Luciana D, Luigi A. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron,2005,36(3):195-217.
    [208]Weaver JC. Electroporation theory. Concepts and mechanisms. Methods in Molecular Biology, 1995,47:1-26.
    [209]Lee EW, Lou CT, Kee ST. Imaging guided percutaneous irreversible electroporation: ultrasound and immunological correlation. Technology in cancer research & treatment,2007, 6(4):287-293.
    [210]Oshima T, Sato M. Bacterial sterilization and intracellular protein release by a pulsed electric field. Advances in Biochemical Engineering/Biotechnology,2004,90:113-133.
    [211]Rowan NJ, MacGregor SJ, Anderson JG, et al. Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Letters in Applied Microbiology,2000,31(2):110-114.
    [212]Vernhes MC, Benichou A, Pernin P, et al. Elimination of free-living amoebae in fresh water with pulsed electric fields. Water Research,2002,36(14):3429-3438.
    [213]陈迎春,曹又方,赵立平.大肠杆菌MG1655菌株ERIC-PCR图谱主带序列组成分析.微生物学通报,2002,29(6):28-32.
    [214]Lai H, Singh NP. Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics,1997,18(2):156-65.
    [215]张鹰,曾新安,温其标,等.强脉冲电场对细胞膜通透性及其DNA的影响.高电压技术,2007,33(2):90-93.
    [216]Garde-Cerdan T, Arias-Gil M, Marselles-Fontanet AR. Effects of thermal and nonthermal processing treatmens on fatty acids and free amino acids of grape juice. Food Control, 2007,18(5):473-479.
    [217]Anderson NL, Anderson NG. Proteome and proteomics:new technologies, new concepts, and new words. Electrophoresis,1998,19(11):1853-1861.
    [218]Wilkins M. Proteomics data mining. Expert Revivew of Proteomics,2009a,6(6):599-603.
    [219]Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature,2002,6868(415):141-147.
    [220]Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature,2002,6868(415):180-183.
    [221]Jungblut PR, Holzhutter HG, Apweiler R, et al.. The speciation of the proteome. Chemistry Central Journal,2008,2:16.
    [222]Laurence VO, Bart D. A review on recent developments in mass spectrometryinstrumentation and quantitative tools advancing bacterial proteomics. Appled Microbiol and Biotechnology, 2013,97(11):4749-4762.
    [223]Hecker M, Vo lker U. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics,2004,12(4):3727-3750.
    [224]Hecker M, Antelmann H, Buttner K, et al. Gel-based proteomics of Gram-positive bacteria:a powerful tool to address physiological questions. Proteomics,2008,23-34(8):4958-4975.
    [225]Hannes H, Ulrike M, Andreas O, et al. A Comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. Journal of Bacteriology,2010,192(3): 870-882.
    [226]Andreas O, Jorg B, Hanna M, et al. Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nature Communications,2010,1:137.
    [227]Marion M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72:248-254.
    [228]Ye J, Fang L, Zheng H, et al. WEGO:a web tool for plotting GO annotations. Nucleic Acids Research,2006,34:W293-297.
    [229]Kanehisa M, Goto S, Furumichi M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research,2010,38:D355-360.
    [230]Nelson DL, Cox MM. Protein metabolism. In:Macmillan P (ed.). Lehninger principles of biochemistry. Basingstoke, Hampshire,2004a:1034-1080.
    [231]Davidson AL, Dassa E, Orelle C, et al. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiology and Molecular Biology Reviews,2008,72(2): 317-364.
    [232]Yu TT, Xu XT, Peng XP, et al. Cell wall proteome of Clostridium thermocellum and detection of glycoproteins. Microbiological Research,2012,167(6):364-371.
    [233]Anna G, Jan A, Janhavi B, et al. Structure of fructose bisphosphate aldolase from Bartonella henselae bound to fructosel,6-bisphosphate. Acta Crystallographica Section F-Structural Biology and Crystallization Communications,2011, F67:1051-1054.
    [234]Banks RD, Blake CCF., Evans PR., et al. Sequence, structure and activity of phosphoglycerate kinase:a possible hinge-bending enzyme. Nature,1979,279:773-777.
    [235]Beinert H; Kennedy MC. Aconitase, a two-faced protein:Enzyme and iron regulatory factor. The FASEB journal,1993,15(7):1442-1449.
    [236]Huang XY, Barrios LA, Vonkhorporn P, et al. Genomic organization of the glyceraldehyde-3-phosphate dehydrogenase gene family of Caenorhabditis clegans. Journal of Molecular Biology,1989,206(3):411-424.
    [237]Gorke B, Stiilke J. Carbon catabolite repression in the bacteria:many ways to make the most out of nutrients. Nature Reviews Microbiology,2008,8(6):613-624.
    [238]Deutscher J, Francke C, Postma, PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews,2006,70(4):939-1031.
    [239]Deutscher J. The mechanisms of catabolite repression in bacteria. Current Opinion in Microbiology,2008,11(2):87-93.
    [240]Lengeller JW, Jahreis K. Bacterial. PEP-dependent carbohydrate phosphotransferase systems couple sensing and global control mechanisms. Contributions to microbiology,2009,16: 65-87.
    [241]Renzone G, D'Ambrosio C, Arena S, et al. Differential proteomic analysis in the study of prokaryotes stress resistance. Ann 1st Super Sanita,2005,41(4):459-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700