用户名: 密码: 验证码:
水工质脉冲等离子体低功率推进器的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电推进系统以其优越的性能逐步取代传统的化学推进系统,被广泛用来为航天器提供机动和控制推力。作为电推进的一种方式,脉冲等离子体推进器以高比冲、结构简单、重量轻、良好系统继承性和可靠性等特点,成为当前国际电推进研究的热点之一。典型脉冲等离子体推进器使用Teflon作为工质。然而,Teflon脉冲等离子体推进器存在一些问题,如:主放电期间的低速蒸汽和大粒子的发散造成推进性能低、Teflon烧蚀后产生的碳和氟污染飞船上的设备等,限制了脉冲等离子体推进器的实际应用。为此,无污染、性能高、具有广泛适用性的脉冲等离子体推进器技术是值得研究的重要课题。
     本文从器件研制、推进性能的理论分析、机制实验入手,以低功率水工质脉冲等离子体推进器为研究对象,从外部电路和本体结构的设计与制造、工作特性和性能、提高性能的途径等方面对水工质脉冲等离子体推进器的推进机制进行系统研究,取得了以下成果:
     推导出基于磁流体动力学的质量流率方程,进而得以从一维准稳定等离子体流场的角度对Teflon、H2O、Argon这三种工质在作用于系统时的质量流率和磁声速进行了比较分析,得出采用水作为工质对低功率脉冲等离子体推进器性能的提高最有利的结论;以水工质脉冲等离子体推进器物理模型的分析为前提,对推进器本体结构、主放电电路、触发装置的设计方法进行研究,研制出了水工质脉冲等离子体低功率推进器实验系统。
     从脉冲等离子体推进器基本性能关系式(推力、比冲、效率等)入手,把工作过程近似为LCR电路,建立了零维模型。打破了采用不可变电路参量的传统解算零维模型的束缚,提出了采用可变电路参量来解算模型,实现了解算精确性的提高。结合不可变电路参量和可变电路参量的零维模型对电磁加速模式的低功率水工质脉冲等离子体推进器的工作过程分别进行了理论分析,对外部电路结构参数对性能的影响进行了研究;在搭建的放电回路测量系统上,通过放电回路测量实验,结合零维模型研究了水工质脉冲等离子体推进器的放电类型、工作能量阂值等工作特性及放电参数对性能的影响,得出了水工质脉冲等离子体低功率推进器具有良好的工作特性的结论。
     从推力产生机制的角度(即推力由电热和电磁力制造),以零维模型为理论基础,通过对低功率水工质脉冲等离子体推进器的微冲量和等离子体中等效电阻的测量和理论分析,研究了推功比、能量分配和效率对推进机制的影响。在搭建的低功率水工质脉冲等离子体推进器的微冲量测量实验系统上,测量了羽流撞击水平靶的振动速度,并通过建立的冲量平衡模型得出实测冲量和实测推功比;对放电电流与冲量理论公式相结合计算出的理论推功比与由实测冲量值计算出的推功比进行了比较分析,从推功比的角度研究了电磁加速和电热加速在冲量制造过程中的变化趋势。把水工质PPT放电过程近似为一维准稳态MHD流动,将LCR电路的零维模型与一维准稳态MHD模型相结合,在水工质脉冲等离子体低功率推进器放电时的等离子体产生和膨胀扩散方式进行理论分析的基础上,结合不可变电路参量的零维模型推导出水工质脉冲等离子体推进器在运行过程中的能量分配关系和储能转换为电热和电磁加速的能量转换率公式。通过对放电电流的测量和分析,得到等离子体中的等效电阻分布情况,从能量分配的角度研究了电磁加速和电热加速在冲量制造过程中的变化趋势。
     针对水工质脉冲等离子体低功率推进器的推功比低是由等离子体的高电阻造成这一特点,在推进机制理论分析和实验研究的基础上,对易电离元素的基体干扰机理及对等离子体电磁加速影响进行了研究,并提出在水工质中添加低电离势的易电离元素Na和K来提高推进器性能的新方法。通过对采用NaCl水溶液、KC1水溶液的低功率水工质脉冲等离子体推进器的放电电流测量和等离子体发射谱线测量和识别,验证了新方法的有效性。
Pulsed Plasma Thruster (PPT), as one of the electric propulsion systems which, for its excellent properties, is increasingly taking the place of the traditional chemical prolusion system and being widely used in maneuvering and controlling thrust of spacecrafts, has the characteristics of higher specific impulse, lower power dissipation, structure simplicity, light weight, good system inheritance and reliability, etc. and becoming one of the hot spots in international electric propulsion research. However, in the typical Pulsed Plasma Thruster which uses Teflon as the refrigerant, there exist some problems such as low velocity steam, low propulsive performance caused by large particle divergence, the pollution of spacecraft equipment by carbon and fluorine produced by Teflon ablation, which limit the PPT's practical application. As a result, it is worthwhile to develop a PPT with free pollution, high performance and extensive applicability.
     The dissertation studies the propulsive mechanisms of the low-power water propellant PPT from its external circuit, the design and manufacture of noumenon structure, the working characteristics and performance, and the approach of improving the performance, etc. and achieves the following results:
     The mass flowrate under the magneto-acoustic condition and speed function of magneto-acoustic point are established. By discussing the influence of the propellants of gas-liquid-solid morphologies on PPT's performance, the dissertation points out that water is the optimum propellant for improving the performance of low power PPT. Based on analyzing the physical models of water propellant PPT, the noumenon structure, main discharge electric circuits, the design of triggering device, the experimental system of water propellant PPT is set up.
     The numerical analysis of working process of water propellant PPT in the electromagnetic acceleration model is carried out by combining the circuit model of the fixed parameter and that of the variable parameter; the influence of the structure parameter of external circuit on performance is discussed; the measurement system of discharge circuit is built; by the measurement of discharge circuit the working characteristics such as the electric discharge type, work energy threshold etc. and the influencing factors of discharge parameters on performance are analyzed.
     From the angle of thrust generating mechanism--the thrust is manufactured by the Joule heat and the electromagnetic force, based on zero-dimensional model and by the measurement and theoretical analysis of the micro-impulse and plasma equivalent resistance of low-power water propellant PPT, the impact of thrust-to-power ratio, energy distribution and efficiency on the promotion mechanism is studied. The micro-impulse measurement experimental system of water propellant PPT is built; the impulse equilibrium model is set up; the vibration velocity of plume crashing on horizontal is measured and its impulse is calculated; the comparative analysis between the thrust-to-power ratio calculated by applying impulse theoretical formula to discharge current value and that calculated by practical measurement of impulse value is carried out. The theoretical analysis of dispersal behavior of the production and expansion of the plasma in the discharge process of water propellant PPT is carried out. Combining with the circuit model of the fixed parameter, the energy balance relation, the conversion of Joule heat from energy storage and the conversion rate of electromagnetic acceleration in the operating process of water propellant PPT are derived; the conversion rate of energy storage conversing into Joule heat and the electromagnetic acceleration in the operating process of water propellant PPT is obtained by the measurement of discharge current.
     The mechanism of easily ionized elements Matrix interferences and its impact on plasma electromagnetic acceleration is studied, and a new approach is put forward for the improvement of the propellant performance by the addition of easily ionized elements Na and K into the water propellant, and its feasibility is verified by the measurement of discharge current and the analytical experiment of emission spectrum.
引文
[1]Chaalane A, Rossi C, Esteve D. The formulation and testing of new solid propellant mixture (DB+x%BP) for a new MEMS-based microthruster. Sensors and Actuators A,2007, 138:161-166.
    [2]Christopher D R, Mark E C, Mattick A T. Pulsed plasma thruster system for microsatellites. J Spac Rock,2005,42(1):161-170.
    [3]Junji Uezu, Junpei Iio, et al. Study on pulsed plasma thruster configuration to expand impulse bit range.29th International Electric Propulsion Conference, IEPC2005-234.
    [4]Arai N. Transient ablation of Teflon in intense radiative and convective environment. AIAA Journal,1979,17(6):634-640.
    [5]Choueiri E Y. A critical history of electric propulsion—The first fifty year (1906-1956). 40th Joint Propulsion Conference, AIAA2004-3334.
    [6]Saccoccia G. Electric propulsion in ESA.40th Joint Propulsion Conference, AIAA2004-3329.
    [7]John W. Dunning, Jr., John A. Hamley et al. An overview of electric propulsion activities at NASA.40th Joint Propulsion Conference, AIAA2004-3328.
    [8]King L B et al. Review of the EP activities of US academia.40th Joint Propulsion Conference, AIAA 2004-3332.
    [9]Randy Baggett,John Dankanich. Electric propulsion. Aerospace America,2004,12: 58-59.
    [10]吴汉基,蒋远大,张志远.电推进技术的应用与发展趋势.推进技术,2003,24(5):385-392.
    [11]黄良甫.电推进系统的发展概况与趋势.真空与低温,2005,11(1):1-8.
    [12]张郁.电推进技术的研究应用现状及其发展趋势.火箭推进,2005,31(2):27-36.
    [13]Take S., Hiroyuki K. Hitoshi K.. Performance evaluation of powered propellant pulsed plasma thruster.44th AIAA Joint Propulsion Conference, AIAA2008-4735.
    [14]Scharlemann C A, Mikellides I G, Mikellides P G,et al. Pulsed plasma thruster variations for improved mission capabilities. AIAA2000-3260.
    [15]Zimer J K, Cubbin E A, Choueiri E Y. Performance characterization of a high efficiency gas-fed pulsed plasma thruster. AIAA1997-2925.
    [16]Kakami A, Koizumi H, Komurasakiz K et al. Performance study on liquid propellant pulsed plasma thruster.39th AIAA Joint Propulsion Conference, AIAA2003-5021.
    [17]Scharlemann C A, York T M. Investigation of PPT utilizing water as component propellant.28th International Electric Propulsion Conference, IEPC2003-112.
    [18]吴汉基,安世明.俄罗斯等离子体发动机的研究和应用.中国航天,1993,9:42-45.
    [19]Guman W J, Nathanson D M. Pulsed plasma microthruster propulsion system for synchronous orbit satellite. Journal of Spacecraft,1970,7(4):409-415.
    [20]Vondra R J, Thomassen K I. Flight qualified pulsed electric thruster for satellite control. Journal of Spacecraft and Rockets,1974,11(9):613-617.
    [21]Brill Y, Eisner A, Osborn L. The flight application of a pulsed plasma microthruster: The NOVA satellite.21th Joint Propulsion Conference, AIAA1982-1956.
    [22]Ebert W L, Kowal S J, Sloan R F. Operation Nova spacecraft Teflon pulsed plasma thruster system.25th Joint Propulsion Conference, AIAA1989-2497.
    [23]Vondra R J. The MIT lineoln laboratory pulsed plasma thruster.12th International Electric Propulsion Conference, AIAA1976-0998.
    [24]LeDuc J R, Bromaghim D R, Peterson T T, et al. Mission planning, hardware development, and ground testing for the pulsed plasma thruster(PPT) space demonstration on mightysat Ⅱ.1.33rd Joint Propulsion Conference, AIAA 1997-2779.
    [25]Benson S W, Arrington L A, Hoskins W A, et al. Development of a PPT for the EO-1 spacecraft.35th Joint Propulsion Conference, AIAA 1999-2276.
    [26]Cassady R J, M.J.Willey, Meckel N J. Pulsed plasma thruster for the new millennium space interferometer experiment DS-3.34th Joint Propulsion Conference, AIAA1998-3326.
    [27]Rayburn C, Campbell M E. Development of a micro pulsed plasma thruster for the Dawgstar nanosatellite.36th Joint Propulsion Conference, AIAA2000-3256.
    [28]Ziemer J K, Cubbin E A, Choueiri E Y. Pulsed plasma propulsion for a small satellite: mission COMPASS P3OINT.32nd Joint Propulsion Conference, AIAA1996-3292.
    [29]Popov G A, Antropov N N, Kazeev M N, et al. Pulsed plasma thruster propulsion technology for small satellite.28th International Electric Propulsion Conference, IEPC2003-0303.
    [30]Popov G A, Antropov N N. Ablative PPT:new quality, new perspectives. Acta Astronautica,2006,59(5):175-180.
    [31]M.Hirata, H.Murakami. Electromagnetic noise measurement study of pulsed plasma engine.15th International Electric Propulsion Conference. AIAA1981-0722.
    [32]Tamura K, Igarashi M, Kumagai N, et al. Evaluation of low power pulsed plasma thruster for μ-LabSat Ⅱ.38th Joint Propulsion Conference, AIAA2002-4272.
    [33]Henri P. Wagner, Monika Auweter-Kurtz. Plasma impulse based peening and decoating of engine parts and pulsed plasma thrusters for small spacecraft propulsion. Vacuum,2004, 73(4):461-467.
    [34]S. B. Kim, K.-Hee Kim, S.-H. Lee, Y.-J. Im, Y. Fumin, et.al. Korea's first satellite for satellite laser ranging. Acta Astronautica,2005,56(5):547-553.
    [35]Brito H H, Alessandro R O D, Dominguez C A. Preliminary development status of the IUA's P4S-1 ablative pulsed plasma thruster.26th International Electric Propulsion Conference, IEPC1999-238.
    [36]Brito H H, Calcagni E.N, et al. A review of design and development works on the P4S-1 pulsed plasma thruster.52st International Astronautical Congress. IAF-Paper No.01-S.4.03.
    [37]S. M. An, H. J. Wu. MDT-2A Teflon pulsed plasma thruster.15th International Electric Propulsion Conference, AIAA1981-0713.
    [38]An S M, Wu H J, Feng X Z, et al. Space flight test of electric thruster system MDT-2 A. Journal of Spacecraft and Rockets,1984,21(6):593-594.
    [39]Liu W X, An S M. The digital measurement of discharge current peak value in pulsed plasma thruster.18th International Electric Propulsion Conference. AIAA1985-2065.
    [40]尹乐,周进,缪万波等.脉冲等离子体推力器放电波形设计评估仿真研究.推进技术,2010,31(4):490-495.
    [41]Hou DL; Zhao WS; Kang XM; Wang PY. Effect of ceramic nozzle on performance of pulsed plasma thruster. Aerospace Science and Technology,2008,12 (8):573-579.
    [42]Spanjers, G G, McFall, K. A., et al. Investigation of propellant inefficiencies in a pulsed plasma thruster.32nd Joint Propulsion Conference, AIAA1996-2723.
    [43]Guman W J, Peko P E. Solid-Propellant pulsed plasma microthruster studies. Journal of Spacecraft and Rockets,1968,5(6):732-733.
    [44]Vondra R J, Thomassen K I, Solbes A. Analysis of solid Teflon pulsed plasma thruster. Journal of Spacecraft and Rockets,1970,7(12):1402-1406.
    [45]Solbes A, Vondra R J. Performance study of a solid fuel-pulsed electric microthruster. Journal of Spacecraft and Rockets,1973,10(6):406-410.
    [46]Kuang Y. Z. Effects of propellant geometry on PPT performance.17th International Electric Propulsion Conference. IEPC84-94.
    [47]Wu H. J., Feng X. Z.. Experimental research of 20 Joule PPT.18th International Electric Propulsion Conference. AIAA85-2067.
    [48]Arrington L A, Haag T W, Pencil E J et al. A performance comparison of pulsed plasma thruster electrode configurations.25th International Electric Propulsion Conference, IEPC 97-127.
    [49]Palumbo D J, Guman W J. Effects of propellant and electrode geometry on pulsed ablative plasma thruster performance. Journal of Spacecraft and Rockets,1976,13(3): 163-167.
    [50]Alexeev Y A, Kazeev M N. High power ablative pulsed plasma thruster for technology applications.25th International Electric Propulsion Conference, IEPC1997-165.
    [51]Vondra R J, Thomassen K I. Performance improvements in solid fuel microthrusters. Journal of Spacecraft and Rockets,1972,9(10):738-742.
    [52]Spanjers G G, McFall K A, Gulczinski Ⅲ F S, et al. Investigation of propellant inefficiencies in a pulsed plasma thruster.32nd Joint Propulsion Conference, AIAA 1996-2732.
    [53]Spanjers G G, J.S. Lotspeich, K.A.McFall,et al. Propellant losses because of particulate emission in a pulsed plasma thruster. Journal of Propulsion and Power,1998,14(4):554-559.
    [54]Pencil E J, Kamhawi H. Evaluation of alternate propellant for pulsed plasma thruster. 27th International Electric Propulsion Conference, IEPC2001-147.
    [55]A.I.Rudikov, N.N.Antropov, GA.Popov.Pulsed plasma thruster of the erosion type for a geostationary artificial earth satellite. Acta Astronautica,1995,35(9):585-590.
    [56]Ziemer J K, Choueiri E Y, Birx D. Comparing the performance of coaxial and parallel-plate gas fed PPTs.26th International Electric Propulsion Conference, IEPC 1999-209.
    [57]Ziemer J K, Petr R A. Performance of gas fed pulsed plasma thruster using water vapor propellant.38th Joint Propulsion Conference, AIAA2002-4273.
    [58]Koizumi, H Kakami A, et al. Liquid propellant pulsed plasma thruster.28th International Electric Propulsion Conference, IEPC2003-087.
    [59]Scharleman Ln C A, York T M. Pulsed plasma thruster using water propellant part Ⅰ Investigation of thrust behavior and mechanism.39th Joint Propulsion conference, AIAA2003-5022.
    [60]Juergen Muller, Colleen Marrese, James Polk,et al. An overview of MEMS based micropropulsion developments at JPL. Acta Astronautica,2003,52(9):881-895.
    [61]Haag T W. Thrust stand for high-power electric propulsion device. Rev Sci Instrum, 1991,62(5):1186-1191.
    [62]Sasoh A, Arakawa Y. A high-resolution thrust stand for ground tests of low-thrust space propulsion devices. Review of Science Instrument,1993,64(3):719-723.
    [63]Haag T W. Thrust stand for pulsed plasma thruster. Review of Scientific Instruments, 1997,68(5):2060-2067.
    [64]Hoskins WA, Wilson MJ, Willey MJ, Meckel NJ. PPT development efforts at primex Aerospace Company. AIAA1999-2291.
    [65]MaFall K A, Spanjers G G and Schilling J H. Pulse thruster thrust stand measurement evaluations. AIAA98-3805.
    [66]Li Jing, Tang Zhiping. Laser micro-impulse torsion pendulum. China Optics Letters, 2005:3(2):76-79.
    [67]金星,洪延姬,陈景鹏等.激光单脉冲冲量的扭摆测量方法.强激光与离子束,2006,18(11):1809-1812.
    [68]Merkowitz S M, Maghami P G, Sharma A, et al. A μNewton thrust-stand for LISA. Class Quantum Grav.2002,9:1745-1750.
    [69]Pakhomov A V, Lin J, Thompson M S. Specific impulse of ablative laser propulsion. AIAA2004-651.
    [70]Lin J, Thompson M S, Pakhomov A V. Ablative laser propulsion:determination of specific in pulse from plasma imaging. Proc of SPIE2004-5448,1:465-476.
    [71]Stark K W, Dennis T, McHugh D and Williams T. Design and development of a micro-pound extend range thrust stand (MERTS). AIAA 1970-1111.
    [72]Wilson M J, Bushman S S, Burton R L. A compact thrust stand for pulsed plasma thrusters. IEPC 97-122.
    [73]Hoskins W A, Wilson M J, Willey M J and Meckel N J. PPT development efforts at primex aerospace company. AIAA1999-2291.
    [74]Shimizu M, Sato KI. Single crystal Mo solar thermal thruster for microsatellites. Acta Astronautica,1999,44(7):345-352.
    [75]Koizumi H, Komurasaki K and Arakawa Y. Development of thrust stands for low impulse measurement from microthruster. Review of Scientific Instruments,2004,75(10): 3185-3190.
    [76]Cubbin E A, Ziemer J K, Choueiri E Y and Jahn R G. Pulsed thrust measurements using laser interferometry. AIAA 96-2985.
    [77]Cubin E A, Ziemer J, Choueiri EY, et al. Laser interfereometric measurements of impulsive thrust. Review of Scientific Instruments,1997,68(6):2339-2346.
    [78]赵宝瑞,李晶,蒋金伟.微小推力自动测量系统研究.宇航计测技术,2000,20(4):31-35.
    [79]隋新,解中宁.简化光路的激光干涉仪及其应用.仪表技术与传感器,2000,(11):15-17.
    [80]王广宇,金星,叶继飞.激光干涉仪测微冲量原理.推进技术,2007,28(5):21-27.
    [81]Claude M.Brito et.al. Zero-Dimensional model for preliminary design of ablative. pulsed plasma Teflon thrusters. Journal of Propulsion and Power,2004,20(6):970-977.
    [82]Henri P. Wagner, Monika Auweter-Kurtz. Slug model and snowplow model for PPT description. AIAA2004-3466.
    [83]Nikolaos A.Gatsonis, Michael A. Demetriou. Prospects of plasma flow modeling and control for micro pulsed plasma thrusters. AIAA2004-3464.
    [84]David D. Laperriere. Electromechanical modeling and open-loop control of parallel-plate pulsed plasma microthrusters with applied magnetic fields. Master Thesis, Worcester Polytechnic Institute,2005, p81.
    [85]Nikolaos A.Gatsonis, Michael A. Demetriou. Electromechanical modeling of applied field micro pulsed plasma thrusters. AIAA2005-4077.
    [86]P. J. Turchi, P. G. Mikellides. Theoretical investigation of pulsed plasma thrusters. AIAA1998-3807.
    [87]P. G. Mikellides, P. J. Turchi. Modeling of late-time ablation in pulsed plasma thrusters. AIAA1996-2733.
    [88]C. S. Schmahl et al. Development of equation-of-state and transport properties for molecular plasmas in pulsed plasma thrusters part Ⅱ:A two-temperature equation of state for Teflon. AIAA1998-3662.
    [89]Nicholas J. Bisek, Jonathan Poggie. Numerical study of a MHD-heat shield. AIAA2010-4487.
    [90]Tomoyuki Yoshino, Takayasu Fujino. Numerical study of thermal protection utilizing magnetohydrodynamic technology in super orbital reentry flight. AIAA 2010-4486.
    [91]Herbert Daniel Thomas. Numerical simulation of pulsed plasma thrusters. Doctor Thesis, University of Tennessee,2000, p56.
    [92]R. Rhodes, D. Keefer, H. Thomas. A numerical study of a pulsed plasma thruster. AIAA 2001-3895.
    [93]Erik L. Antonsen, Rodney L.Burton. Effects of post-pulse surface temperature on micro-pulsed plasma thruster operation. AIAA2004-3462.
    [94]Iain.D. Boyd, Michael Keidar et al. Modeling of a pulsed plasma thruster from plasma generation to plume far field. AIAA1999-2300.
    [95]Michael Keidar, Iain D. Boyd. Model of particulate interaction with plasma in a Teflon on pulsed plasma thruster. Journal of propulsion and power,2001,17(1):125-131.
    [96]M.Keidar, I.D.Boyd. Ionization non-equilibrium and ablation phenomena in a micro-pulsed plasma thruster. AIAA2002-4275.
    [97]Keidar, Iain D. Boyd. Progress in development of modeling capabilities for a micro-pulsed plasma thruster. AIAA2003-5166.
    [98]Michael Keidar, Iain D. Boyd and Isak I. Beilis. Model of an electric thermal pulsed plasma thruster. Journal of Propulsion and Power,2003,19(3):424-430.
    [99]Michael Keidar, Iain D.Boyd. Optimization issues for a micro-pulsed plasma thruster. AIAA2004-4119.
    [100]Michael Keidar, Iain D.Boyd, Isak I.Beilis. On the model of Teflon ablation in an ablation-controlled discharge. Journal of Physics D:Applied Physics,2001,34(11): 1675-1677.
    [101]Toshiaki Edamitsu, Hirokazu Tahara. Experimental and numerical study of an electrothermal pulsed plasma thruster for small satellites. Vacuum,2006:1223-1228.
    [102]Guang Lin et al.. High order modeling of micro pulsed plasma thrusters. AIAA 2002-2872.
    [103]J. K. Ziemer, E. Y. Choueiri. Dimensionless performance model for gas-fed pulsed plasma thrusters. AIAA 1998-3661.
    [104]Alfven, H.. Collision between a nonionized gas and a magnetized plasma. Review of Modern Physics,1960,32(1):10-15.
    [105]F.F. Chen. Plasma physics and controlled fusion. Plenum Press,1984.
    [106]Periodic Table of the Elements:Argon. Lenntech.2008. Retrieved on September 3, 2007.
    [107]Hirata, M., Murakami, H.. Exhaust gas analysis of a pulsed plasma engine. IEPC84-52.
    [108]Jared P. Squire, Franklin R. Chang-Diaz, Mark D. Carter, et al. High power VASIMR experiments using deuterium, Neon and Argon.30th International Electric Propulsion Conference, IEPC2007-181.
    [109]杨乐.脉冲等离子体推力器工作过程理论和实验研究.国防科技技术大学博士论文,2007,p69.
    [110]M.E. Brady. Pulsed Plasma Thruster Ignitor Plug Ignition Characteristics. J. Spacecraft,1983,20(5):450-451.
    [111]R. L. Boxman. Triggering mechanisms in triggered vacuum gaps. IEEE Trans. Electron Devices,1977, ED-24(2):122-128.
    [112]Miller H C. Flashover of insulators in vacuum:review of the phenomena and techniques to improve hold-off voltage. IEEE Trans Electr. Insul.,1993,28(4):512-527.
    [113]Li C R,Sudarshan T S. Characteristics of preflashover light emission from dielectric surfaces in vacuum. IEEE Trans Dielectr.Electr. Insul.,1995,2(3):483-491.
    [114]Graeme Aston and Lewis C. Pless. Ignitor plug operation in a pulsed plasma thruster. J. Spacecraft,2008,19(3):250-256.
    [115]秦风,常安碧,丁恩燕等.辉光放电触发赝火花开关实验研究.强激光与粒子束,2010,22(1):203-206.
    [116]B. Goddard, R.V. Latham, J. Tan, B. Taylor, N. Xu. Effects of geometry and polarity on the prebreakdown and flashover behaviour of conical high-voltage insulators in vacuum. IEEE Trans Plasma Sci,1997,25(3):447-454.
    [117]Yamamoto O, Hara T, et al.. Effects of spark conditioning, insulator angle and length on surface flashover in vacuum. IEEE Trans Electr Insul,1989,24:991-994.
    [118]Anderson R A. Surface flashover:Three decades of controversy. IEEE Trans on Electrical Insulation,1990,25(5):311-317.
    [119]Yamamoto O, Hara T, Nakae T, et al. Effects of spark conditioning, insulator angle and length on surface flashover in vacuum. IEEE Trans. Electr. Insul,1989,24(6):991-994.
    [120]Pillai A S, Hackam R. Surface flashover of solid insulators in atmosphere air and in vacuum. J.Appl.Phys..1985,58(1):146-153.
    [121]H.Bluhm脉冲功率系统原理与应用.北京:清华大学出版社,2008,p37.
    [122]Martin T H. Martin on pulse power.New York, USA, Plenum Press,1996.
    [123]Vitkovitsky I. High power switches. New York, USA, Van Nostrand Reinhold Company Inc,1987.
    [124]Geoffrey C. Watt, Peter J. Evans. A trigger power supply for vacuum arc ion sources. IEEE Trans on Plas Scie.1993,21(5):547-551.
    [125]Ready J. F. Industrial applications of lasers. New York:Academic Press,1978, p9.
    [126]周志敏.开关电源实用技术-设计与应用.北京:人民邮电出版社,2007,p23.
    [127]王瑞华.脉冲变压器设计.北京:科学出版社,1987,p195.
    [128]D. J. Vargo. Electromagnetic acceleration of a variable-mass plasma. NASA,1964, TND-2164.
    [129]P. M. Mostov, J. L. Neuringer, D. S. Rigney. Electromagnetic acceleration of a plasma slug. The Phys of Flui,1961,4(9):1097-1104.
    [130]黄镜明,姚宗干.高电压试验技术.北京:水利电力出版社,1982,p13.
    [131]渡边智夫,胡奇.使用直流电流互感器的直流大电流测量.国外计量,1991,(4):38-40.
    [132]刘金亮,怀武龙,霍哲.一种测量脉冲高电压的电容分压器.强激光与粒子束,2000,12(1):122-124.
    [133]姚学玲,孙伟,陈景亮.脉冲放电峰值与能量测试仪器.电瓷避雷器,2004,(4): 43-46.
    [134]陈炜峰,蒋全兴.电阻分压器性能与纳秒双指数脉冲的测量.东南大学学报,2006,36(3):374-379.
    [135]肖如泉,蒋永梅等.脉冲电容器微量电感测量的研究.电力电容器,1996,2:16-19.
    [136]http://zhangzc.jahee.com
    [137]王定军,宋会玲,刘伟.冷气推进器流场仿真和分析.火箭推进,2010,36(2):36-39.
    [138]Marcia Ann Cooper. Impulse generation by detonation tubes. Dissertation of California Institute of Technology Pasadena,2004, p29-34.
    [139]E. A. Cubbin, J. Ziemer, E. Y. Choueiri, R. G. Jahn. Pulsed thrust measurements using laser interferometry, Review of Scientific Instruments,1997,68(6):2339-2346.
    [140]M. Gamero Castano. A torsional balance for the characterization of micro-Newton thrusters, Review of Scientific Instruments,2003,74(10):4509-4514.
    [141]B. L. Smith, Swift G W. Synthetic jet at large Reynolds number and comparison to continuous jets. AIAA2001-3030.
    [142]G. P. Sutton. Rocket propulsion elements an introduction to the engineering of rockets. 6th ed. Johan Wiley & Sons Inc., New York, NY,1992.
    [143]Koizumi H, Kawazoe Y, Komurasaki K. Effect of solute mixing in the liquid propellant of a pulsed plasma thruster. Vacuum,2006,80(1):11-12.
    [144]M.Φ.茹科夫等.热等离子体实用动力学一电弧等离子体发生器的物理过程.科学出版社,1981,p223.
    [145]侯大立,赵万生,康小明.脉冲等离子体加速动能器的性能分析.推进技术,2008,29(3):377-380.
    [146]Markusic T E, Kurt A P, Choueiri E Y, et al. Ablative z-pinch pulsed plasma thruster. J Propul P,2005,21(3):392-405.
    [147]Hiroyuki Koizumi, Kakami A., Furuta Y, et al. Liquid propellant pulsed plasma thruster.28th International Electric Propulsion Conference, IEPC2003-087.
    [148]Carsten A. Scharlemann. Investigation of thrust mechanisms in a water fed pulsed plasma thruster. Ph.D, USA:The Ohio State University,2003,68-70.
    [149]Hiroyuki Koizumi, Yohei Furuta, et al. A pulsed plasma thruster using water as the propellant.40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, AIAA2004-3460.
    [150]Alan M. Piwowar, Nick P, et.al. Salt effects on ion formation in desorption mass spectrometry:an investigation into the role of alkali chlorides on peak suppression in time-of-flight-secondary ion mass spectrometry. Analyt Chem,2009,81(3):1040-1048.
    [151]Michael R. Winchester, Therese A. Butler. Improving the high-performance inductively coupled plasma optical emission spectrometry methodology through exact matching. Anal. Chem.2010,82:7675-7683.
    [152]Hyunwoo Kim, Kyoung Eun Kweon, On the nature and behavior of Li atoms in Si: a first principles study. J. Phys. Chem. C,2010,114:17942-17946.
    [153]Wang Chincheng, Subrata Roy. Microscale plasma actuators for improved thrust density. J Appl Phys,2009,17(7):013310-013317.
    [154]Jahn RG. Physics of Electric Propulsion. New York:McGraw-Hill,1968,12-13.
    [155]刘莉莉,邓建新,皇攀凌等SiC(W,Ti)C梯度陶瓷喷嘴的设计与制备.中国科学E辑,2007,37(7):857-865.
    [156]Nob Harada, Le Chi Kien, et al. Closed cycle mhd generator using He/Xe working plasma.33rd Plasma Dynamics and Lasers Conference, AIAA2002-2144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700