用户名: 密码: 验证码:
姿控火箭发动机脉冲推力测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姿控火箭发动机已经成为现代空间飞行器的重要组成部分,广泛应用于卫星等航天器的姿态调整、精密定位、中段修正、对接、交会、分离和制动中。姿控火箭发动机的力值较小,且为脉冲力。脉冲推力的准确测量对改进发动机性能、提高航天器的控制精度、节省有限的星上能源具有重要意义。现有的推力测试装置和方法已不能满足当前姿控火箭发动机脉冲推力的测量要求。
     本文以姿控火箭发动机的脉冲推力测量为研究对象,以弥补现有测力装置在动态小推力测量方面的不足为出发点,从理论分析、仿真和实验等方面对动态推力测试系统的设计、分析进行了深入研究,研制出了基于压电石英传感器的姿控火箭发动机脉冲推力测试系统。
     首先根据姿控火箭发动机脉冲推力的测量要求,从频率响应和瞬态响应对推力测试系统进行分析,研究了影响测试系统动态响应误差的因素和规律。固有频率和阻尼比是影响频率响应误差的主要参数,而瞬态响应误差则与固有频率和被测推力的上升沿时间的乘积有关。该乘积与超调量的关系曲线在低阻尼下会产生振荡,在曲线振荡范围内,通过调整固有频率与上升沿时间的乘积接近整数,可有效降低低阻尼系统的超调误差。针对上升沿幅值误差反映输出与输入差异方面的不足,采用跟踪误差代替上升沿幅值误差确定测试系统的动态设计参数。根据确定出的测试系统的固有频率和阻尼比的设计要求,选择压电石英力传感器作为力敏元件对姿控火箭发动机的脉冲推力进行测量。
     研究了晶片数量和切型对压电传感器的固有频率、灵敏度以及零漂的影响,确定了传感器的晶片数量和切型。设计了具有一体化结构的壳体,建立了壳体的刚度数学模型,利用数学模型和有限元结合的方法,对壳体进行了刚度固有频率分析,确定出壳体参数。两对剪切型压电传感器对称布置在壳体弹性环中,依靠传感器与弹性环结合面的摩擦力实现推力传递,从而完成了测试系统的核心一测力平台的设计。采用锤击实验确定出测试系统的幅频特性曲线,研究了附加质量和质心变化对测试系统固有频率的影响。建立了测试系统的静态和动态标定系统,进行了静态和动态标定实验。该测试系统的固有频率和静态性能指标均满足设计要求,但动态标定输出波形上有叠加振荡,且输出幅值小于输入。
     为了改进测试系统的动态测量性能、消除输出波形上的叠加振荡,首先建立测试系统传递函数模型。在已知幅频和相频特性曲线的条件下,测试系统的传递函数只与阻尼比有关,采用半功率法确定出阻尼比,得到测试系统的传递函数模型。基于该模型,在不改变固有频率的前提下,建立了测试系统的阻尼补偿传递函数模型,解决了阻尼补偿中出现的发散问题。利用阻尼补偿传递函数模型对测试系统的动态标定数据进行了阻尼补偿,验证了这种补偿方法的有效性。采用跟踪误差和冲量误差对补偿前后的推力波形进行了评定,结果表明,该测试系统经补偿后的动态测量误差能够满足姿控火箭发动机脉冲推力的测量要求。
As an important component of modern spacecraft, attitude-control rocket engines have been widely used in satellites, space shuttle and aircrafts. They play a very importance role in attitude adjustment, precision orientation, midcourse correction, docking, rendezvous, separation, braking. The thrust of attitude-control rocket engines is a small pulsed thrust. Accurately measuring the pulsed thrust has important significance to improving engine performance, promoting spacecraft control precision, saving limited fuel carried by small-satellites. The present thrust measurement devices and methods cannot satisfy the requirements of the pulsed thrust.
     In order to make up for the deficiency of the studies existing, this paper takes the pulsed thrust measurement of attitude-control rocket engines as research object, makes further study on the design and analysis of pulsed thrust measurement system from theoretical simulation to experiment analysis. A pulsed thrust measurement system based on piezoelectric quartz sensors has been developed for attitude-control rocket engine.
     According to the measurement requirements of the pulsed thrust, the factors which effect dynamic reponse error of the measurement system are studied by analysis of frequency response and transient response. The natural frequency and damping ratio are the main parameters affecting frequency response errors. Transient response errors are related to the product of natural frequency and the rising edge time of the measured thrust. Under low damping conditions, the ralationship curve of the product and the overshoot generates oscillation. The overshoot error of the low damping system can be effectively reduced by adjusting the product near integer within oscillation range. Aiming at the deficiency of the amplitude error of the rising edge affecting the difference between the output and input waveforms, tracking error is used to substitute the amplitude error of the rising edge to determine the dynamic design parameters of the thrust measurement system. According to design requirements of determined natural frequency and damping ratio of the system, piezoelectric quartz force sensors are selected as the force-sensitive element to measure the pulsed thrust of attitude-control rocket engines.
     The influences of the quantity and type of wafer on the natual frequency, sensitivity and zero drift of piezoelectric sensors are studied, and the quantity and type of wafer of the sensors are determined. An integrated shell is designed, and its stiffness model is established. The parameters of the shell are determined by analyzing its stiffness and natural frequency using stiffness model and finite element method. Two shear-type piezoelectric quartz sensors are symmetrically distributed inside of the elastic rings of the shell. The thrust is transferred by means of friction of fitting surfaces. As the core of the thrust measurement system, the thrust-measuring platform is established. The amplitude-frequency characteristic curve of the system is obtained by hammer experiment. The influences of the additional mass and centroid position on the natural frequency of the system are studied. The static and dynamic calibration systems are established, and calibration experiments are carried out. The natural frequency and static indexes can meet the design requirements, but the output waveforms of the dynamic calibration generate additonal damped oscillation, the amplitude of the output waveform is also less than of the input waveform.
     The transfer function model of the system is established in order to improving the dynamic measurement performance and eliminating the additional damped oscillation. If the amplitude-frequency and phase-frequency response curves are known, then the transfer function of the system is just related to damping ratios. The transfer function model can be established by determining the damping ratios with half-power method. Based on the model, damping compensation transfer function model of the system is established under the premise of remaining frequency unchanged. The divergence problem of the damping compensation is resolved. The dynamic calibration data is compensated by using damping compensation transfer function model, and the validity of the compensation method is verified. The thrust waveforms before and after damping compensation are evaluated by using tracking error and impulse error. The experimental results indicate that the dynamic measurement error of the system after damping compensation can satisfy the measurement requirements of pulsed thrust of the attitude-control rocket engines.
引文
[1]项军华,张育林.卫星姿态控制稳定度对星座结构稳定性的影响[J].航天控制,2007(3):43-47.
    [2]李哗.通信卫星技术综述[J].中国空间科学技术,1990(1):14-20.
    [3]李卿,董瑶海.中国气象卫星技术成就与展望[J].上海航天,2008,(1):1-10.
    [4]田野.通信卫星姿态控制发展述评[J].中国航天,1984(7):1-9.
    [5]M Holzwarth, E Serbest, H Rogall. Qualification Test for the Ariane 5 Attitude Control System 400N Thruster [C].39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, July 20-23,2003, AIAA 2003-4779.
    [6]毛根旺,何洪庆,杨涓,等.载人航天推进技术的现状与发展[J].火箭推进,2001(1):27-31.
    [7]张钊,胡军.轨道机动时考虑延迟的卫星姿态稳定控制方法[J].宇航学报,2011,32(2):290-296.
    [8]B D Reed, P F Penko, S J Schneider. Experimental and Analytical Comparison of Flowfields in a 110N(25 Lbf) H2/O2 Rocket [C].27th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Sacramento, CA, June 24-27,1991, AIAA-1991-2283.
    [9]N C Wallace, D G Fearn, R E Copleston. The Design and Performance of the T6 Ion Thruster [C].34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, July 13-15,1998, AIAA-1998-3342.
    [10]L A Arrington, B D Reed, Angel Rivera, Jr. A Performance Comparison of Two Small Rocket Nozzles [C].32nd AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Lake Buena Vista, Florida, July 1-3,1996.
    [11]L A Arrington, S J Schneider. Low Thrust Rocket Test Facility [C].26th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Orlando, FL, July 16-18,1990, AIAA-90-2503
    [12]K K Galabova,O L de Weck. Economic Case for the Retirement of Geosynchronous Communication Satellites via Space Tugs [J]. Acta Astronautica,2006(58):485-498.
    [13]W F Krieve. Thrust stand[P]. United States,3599480, Aug.17,1971.
    [14]A J Jamison, A D Ketsdever, E P Muntz. Gas Dynamic Calibration of a Nano-Newton Thrust Stand[J]. Review of Scientific Instruments,2002 (73):3629-3637.
    [15]张国瑞.洲际导弹控制系统性能的改进与完善[J].中国航天,1983(11):1-15.
    [16]E J Junkins. A Pulse Performance Test Stand [C].2nd AIAA flight Test, Simulation and Support conference, Los Angeles, California, March 25-27,1968, AIAA 68-248.
    [17]段毅,刘宇,覃粒子,等.高室压脉冲液体火箭发动机特性试验[J].火箭推进,2009,35(2):12-17.
    [18]E E Frits, W L Sterling. An Impulse Measurement Technique for Ground Testing Attitude Control Pulse Rockets [C].1st AIAA Annual Meeting, Washington D. C., June 29-July 2,1964, AIAA 64-202.
    [19]D Talley, E Coy. The Constant Volume Limit of Pulsed Propulsion for a Constanty Ideal Gas [C].36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, July 17-19,2000, AIAA-2000-3216.
    [20]E B Coy. Pulse Combustion Rockets for Space Propulsion Applications [C].41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 6-9,2003, AIAA 2003-1174.
    [21]朱目成,夏季,黄君富,等.双环测力传感器力敏元件的特性分析[J].传感技术,2000(4):33-36.
    [22]董洪强.小推力液体火箭发动机试车台设计研究[D].长沙:国防科技大学,2006.
    [23]王洪业.传感器工程[M].长沙:国防科技大学出版社,1989.
    [24]J H Gilland, M L R Walker, E J Pencil. Thrust Stand for Applied Field MPD Thruster [C].29th International Electric Propulsion Conference, Princeton University, October 31-November 4,2005, IEPC-2005-215.
    [25]T W Haag. Thrust Stand for Pulsed Plasma Thrusters, Review of Scientific Instruments [J],1997,68(5):2060-2067.
    [26]H Koizumi, K Komurasaki, Y Arakawa. Development of Thrust Stands for Low Impulse Measurement from Mi-crothrusters [J]. Review of Scientific Instruments,2004,75(10): 3185-3190.
    [27]M J Wilson, S S Bushman, R L Burtont. A Compact Thrust Stand for Pulsed Plasma Thrusters [C].25th International Electric Propulsion Conference, Cleveland, OH,1997, IEPC-97-122.
    [28]S Orieux, C Rossi, D Esteve. Thrust Stand for Ground Tests of Solid Propellant Microthrusters [J], Review of Scientific Instruments,2002(73):2694-2698.
    [29]R B Runyan, L R Deken, J T Miller. Structural Dynamics of a Small Rocket Thrust Stand [C].28th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, July 6-8,1992, AIAA-92-3787.
    [30]刘伟亮、姿控发动机高空模拟试车动态推力测试技术研究[D].长沙:国防科技大学,2004.
    [31]刘伟亮,吴建军.机电一体化推力测量系统的研制及应用[J].火箭推进,2004,30(6):49—54.
    [32]岑乐观,毕毓秀,罗胜初,等.小推力姿控发动机的推力测量[J].光学精密工程,1982(6):55—62.
    [33]张洪霞,孙树江,罗伟林,等.双组元姿控发动机试验高精度时序控制系统研制[J].测控技术,2009,28(12):48-51.
    [34]李华.卫星推进步步攀登一记航天五0二所卫星推进系统[J].航天技术与民品,2000(10).
    [35]刘万龙,刁鹏,王翀,等.小型气氢气氧火箭发动机试验系统设计研究[J].航空动力学报,2010,25(7):1646-1652.
    [36]吴羡,吴强,刘洪纪,等.火箭推力测量用双量程力传感器初探[J].哈尔滨理工大学报,1998,3(3):45-48.
    [37]郑凯斌,陈林泉,张胜勇.中心进气式固体火箭冲压发动机试验研究[J].固体火箭技术,2007,30(2):124-127.
    [38]王锟,刘肠,蔡体敏.基于数据库技术的固体火箭发动机结构优化设计方法[J].固体火箭技术,2010,33(2):170-175.
    [39]范存杰,牛嵩高.微型固体火箭发动机推力测量[J].固体火箭技术,1995,18(3):35-38.
    [40]武俊生,周生国.固体火箭发动机脉冲推力补偿技术的研究[J].推进技术,1998,19(4):27-31.
    [41]张俊岳,任敏,周桂兰.固体火箭发动机试验测量系统零位变化研究[J].推进技术,1999,20(3):103-106.
    [42]史佩,王文双.小型固体火箭发动机试车架的动态特性[J].海军航空工程学院学报,2004,19(6):639-640.
    [43]欧阳华兵.固体火箭发动机瞬态推力测量[D].杭州:浙江工业大学机电工程学院,2005.
    [44]吴雄,焦绍球,杜长宝,等.固体火箭发动机燃气二次喷射推力矢量控制试验研究[J].固体火箭技术,2008,31(5):457-460.
    [45]何立明,徐通模,严传俊.脉冲爆震发动机的推力测试与分析[J].西安交通大学学报,1998,32(10):18-21.
    [46]王育虔,范玮,李建玲,等.高频脉冲爆震火箭发动机的试验研究[J].西北工业大学学报,2010,28(1):118-122.
    [47]郑龙席,严传俊,范玮,等.脉冲爆震发动机推力测试方法分析与比较[J].测控技术,2006,25(4):37-41.
    [48]杨乐,李自然,吴建军,周进.脉冲等离子体推力器微推力测试技术的述评[J].宇航计测技术,2006,26(4):52—55.
    [49]H B Zhao, Y J Hong, T J Zhou, et al. Studies on Measurement of Pulse Thrust with Repeated Loading [C]. Proceedings of International Society for Optical Engineering, Beijing, China, November 12-14,2007,6823:68230T.1-68230T.5.
    [50]R J Stephen, K Rajanna, V Dhar,et al. Strain Gauge Based Thrust Measurement System for a Stationary Plasma Thruster [J]. Measurement Science and Technology,2001,12: 1568-1575.
    [51]徐燕申,李立,彭泽民.减小切削测力仪动态测量误差的研究[J].计量学报,1990,11(4):298-303.
    [52]任宗金,孙宝元,张军,等.轨/姿控火箭发动机推力矢量动态测试系统测量原理与动态性能[J].航空学报,2009,30(11):2037-2044.
    [53]孔德仁,何瑛,朱明武.加速度差动测量误差分析及补偿[J].南京理工大学学报,2001,4(2):129-133
    [54]马春苗,王勤,丁煜函,等.二维力传感器动态补偿器设计[J].东南大学学报(自然科学版),2008,38增刊(Ⅱ):190-193.
    [55]才海男,周兆英,李勇,等.加速度传感器的动态特性软件补偿方法研究[J].仪器仪表学报,1998,19(3):263-267.
    [56]徐科军,张颖,张崇巍.腕力传感器动态补偿研究[J].计量学报,1997,18(2):116-121.
    [57]刘清,岳东.基于有输入噪声扰动系统辨识方法的传感器动态补偿[J].上海交通大学学报, 2009,43(11):1767-1771.
    [58]朱中华,丁建宁.传感器动态性能的研究进展[J].机械与电子,2008(6):75-78.
    [59]欧阳华兵,徐温干.基于动态补偿技术的姿控发动机瞬态推力测量[J].兵工学报,2007,28(5):608-612.
    [60]刘清.基于小波消噪的传感器动态补偿方法[J].南京师范大学学报(工程技术版),2004,4(2):33-36.
    [61]周广辉.ACM检测系统的设计与实现[D].成都:电子科技大学,2006.
    [62]张伟.基于LabVIEW的应变式力传感器动态特性及动态测量平台的研究[D].北京:中国计算量科学研究院力学与声学研究所,2010.
    [63]孙宝元,张贻恭.压电石英力传感器及动态切削测力仪[M].北京:中国计量出版社,1985.
    [64]谢锋,许靖中,王从周,等.压电测力仪的动特性分析[J].安徽工学院学报,1992,11(4):61-65.
    [65]黄长艺,严普强.机械工程测试技术基础[M].北京:机械工业出版社,2004.
    [66]T S Lee, A Potapkin. The Performance of a Hybrid Rocket with Swing GOx Injection [C]. Proceedings of International Conference on the Methods of Aerophysical Research, Part 1, Novosibirsk, Russia, July,2002:126-132.
    [67]宋康,赵世平,窦义同,等.液压脉冲试验台建模与仿真研究[J].四川大学学报(工程科学版),2009,41(4):213-219.
    [68]祁剑衢.利用单位阶跃函数求拉氏变换[J].长春工业大学学报(自然科学版),2008,29(1):118-120.
    [69]周学才.一种改善测量系统动态特性的数字补偿方法[J].计量学报,1992,13(2):154-160.
    [70]D S Dean, Current Techniques for thrust measurement at PERME westcott [R].1977, Report Number:ADA059700.
    [71]孙宝元,张贻恭,杨华敏.压电式动态切削测力仪的研究(上)[J].制造技术与机床,1979(5):1-5.
    [72]张福学.压电传感器发展史的研究和开发建议[J].传感器技术,1984(S1):61-67.
    [73]秦自楷.压电石英晶体[M].北京:国防工业出版社,1980.
    [74]陈小林,王祝盈,谢中,等.石英晶体温度传感器的应用[J].传感器技术,2002,21(5):55-57.
    [75]吴涧彤.压电晶体扭转效应的研究[D].大连:大连理工大学机械工程学院,2000.
    [76]习岗,张振瀛.现代精密测量中的压电生物传感器[J].物理,1995(5):304-306.
    [77]张忠华.基于多次压电效应的执行器研究[D].大连:大连理工大学机械工程学院,2009.
    [78]孙宝元,王吉军,钱敏.压电石英晶片灵敏度分布规律及其跟踪检测[J].大连理工大学学报,1990,30(1):59-64
    [79]张贻恭.WL-TJ99压电晶体微小力值传感器的设计与研制[J].组合机床与自动化加工技术,1984(8):12-17.
    [80]李晓鹏.整体式压电磨削测力平台的结构优化设计[D].大连:大连理工大学机械工程学院,2005.
    [81]高长银.压电石英晶片扭转效应研究及新型扭矩传感器的研制[D].大连:大连理工大学机械工程学院,2005.
    [82]张贻恭,刘恩福,钱敏.YDXL—Ⅲ87A压电晶体三向小力值传感器的研究[J].大连理工大学学报,1990,30(3):301-306.
    [83]赵芝眉,谢锡俊.平面磨削测力仪的研制[J].南京工学院学报,1981(2):69-84.
    [84]R S Jankovsky, C McLean, J McVey. Preliminary Evaluation of a 10 kW Hall Thruster [C]. 37th Aerospace Sciences Meeting & Exhibit, Reno, Nevada, January 11-14,1999.
    [85]B W Longmier, B M Reid, A D Gallimore, et al. Validating a Plasma Momentum Flux Sensor against an Inverted Pendulum Thrust Stand [C].44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, July 21-23,2008, AIAA 2008-4739.
    [86]S Y Woo, I M Choi, H W Song, et al, Development of Weight Handling Device for APMP Absolute Pressure Intercomparison [C]. XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, September 6-11,2009:2037-2038.
    [87]张学成,荆凤林,任敏,等.火箭发动机推力测试的原位自动校准[J].宇航计测技术,1998,18(2):60-64
    [88]王继忠.压力传感器的静态标定[J].工程机械,1986(11):16-20.
    [89]王志勇,孙宝元,张军,等.对火箭发动机推力矢量测试系统的标定[J].传感器与微系统,2007,26(1):64-66.
    [90]http://me.seu.edu.cn/jmp/jpkc2006/kczd/kc/chap_13/13_2_2_l.htm[EB].
    [91]翟怡.火箭发动机推力矢量测试平台动态特性的研究[D].大连:大连理工大学机械工程学院,2006.
    [92]王佳民,吴亚明,陈仲恒.惯性平台基座结构的动态特性分析[J].机械与电子,2005(7):6-9.
    [93]支鉴,石章林,朱俊华,等.结构动态特性测试中保证测试精度的探讨[J].四川大学学报(工程科学版),1984(2):133-136.
    [94]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [95]沈建伟,孙宝元,李文辉,等.动态标定用梯形脉冲力发生装置的研制[J].仪表技术与传感器,2005(6):52—54.
    [96]张思.振动测试与分析技术[M].北京:清华大学出版社,1992.
    [97]傅志方.振动模态分析与参数辨析[M].北京:机械上业出版社,1990.
    [98]张光澄,王文娟,韩会磊.非线性最优化计算方法[M].北京:高等教育出版社,2005.
    [99]刘礼华,欧珠光.动力学实验[M].武汉:武汉大学出版社,2006.
    [100]应怀樵,沈松,刘进明.“ZOOMBDFT”法高精度求系统阻尼比的探讨[J].振动、测试与诊断,1997,17(2):42-46.
    [101]陈奎孚,焦群英.半功率点法估计阻尼比的误差分析[J].机械强度,2002,24(4):510-514.
    [102]张友南,杨军,贺才春,等.阻尼材料的研究与应用[J].噪声与振动控制,2006(2):38-41.
    [103]程印.不同阻尼模型对抗震结构能量耗散影响分析[D].重庆:重庆大学土木工程学院,2009.
    [104]吉孔东.结构阻尼对桥梁风振的影响及复合阻尼比的计算[D]西安:长安大学,2010.
    [105]吕冬.阻尼材料的制备及其性能研究[D].北京:北京化工大学,2006.
    [106]高东,唐治安,李朝旭.粘弹阻尼减振技术的工程应用[J].电子机械工程,2001(6):39-42.
    [107]任宗金.脉冲推力矢量测试系统的动态特性研究[D].大连:大连理工大学机械工程学院,2009.
    [108]张志涌.精通MATLAB 6.5[M].北京:北京航空航天大学出版社,2003.
    [109]张太荣.统计动力学及其应用[M].北京:冶金工业出版社,2007.
    [110]刘正士,王勇,陈恩伟,等.传感器建模误差对其动态性能补偿效果影响的定量分析[J].计量学报,2006,27(3):250—253.
    [111]朱照,张志杰.传感器实时动态补偿方法与误差分析[J].传感器与微系统,2010,29(6):68-70.
    [112]孙海波,孔德仁,何瑛.传感器动态误差修正方法探讨[J].南京理工大学学报,2000,24(4):330—333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700