用户名: 密码: 验证码:
P2X4受体在慢性吗啡耐受中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吗啡是一种阿片类受体激动剂,在临床实践过程中常用于急慢性疼痛的治疗,特别是对神经病理性疼痛和癌痛的治疗。然而,患者长期反复使用吗啡将会产生对吗啡镇痛作用的耐受和依赖,其具体表现为镇痛作用下降、作用持续时间缩短、疼痛过敏及停药后疼痛加剧等,需要增加吗啡剂量才能达到耐受前的镇痛效果。由于吗啡存在上述弊端,使其临床应用受到了一定的限制。
     近些年来,学者们对吗啡耐受的机制从细胞和分子水平进行了大量研究,为临床上更加有效应用吗啡治疗疼痛提供了重要理论依据。然而,到目前为止吗啡的镇痛和耐受机制尚不完全清楚。有研究发现中枢神经系统的P2X4受体和小胶质细胞在神经病理性疼痛中充当重要作用,p38MAPK信号通道也参与其作用过程,肿瘤坏死因子和白介素1β等细胞因子以及神经递质脑源性神经生长因子对神经病理性疼痛和吗啡耐受的形成也有一定的作用。而且,最近有文献报道,吗啡能够通过P2X4受体途径对小胶质细胞的迁徙产生影响。
     由于神经病理性疼痛和吗啡耐受在发生和发展上有许多共同机制,因此本研究推断P2X4R/p38MAPK可能也参与吗啡耐受的形成,并发挥重要作用。为论证上述假说,本实验拟进行一下两方面的研究:(1)吗啡耐受对脊髓和背根神经节P2X4受体表达和小胶质细胞激活的影响;(2)探讨嘌呤受体拮抗剂TNP-ATP(P1-4受体拮抗剂)和PPADS(P1,2,3,5,7受体拮抗剂)对吗啡耐受的作用及其作用机制。本研究有助于进一步揭示吗啡耐受机制,特别是P2X4受体在吗啡耐受机制中的作用,并为研制开发新型的镇痛药提供理论依据。
     目的
     观察慢性吗啡耐受对大鼠痛阈的影响
     方法
     12只成年雄性SD大鼠,质量250-300g,鞘内置管成功后,随机分为2组(n=6),NS组:大鼠经鞘内置管并注入生理盐水;MOR组:大鼠并经鞘内置管注入吗啡10μg,每天两次。鞘内置管3d后,开始鞘内输注生理盐水或吗啡,鞘内注射5d后建立大鼠慢性吗啡耐受模型。
     结果
     与NS组比较,MOR组鞘内注射吗啡后大鼠第1天痛敏阈值明显上升,而第3,5,7天痛敏阈值逐渐下降,并在鞘内注射吗啡第7日降至最低点。
     结论
     连续7天鞘内注射吗啡能够导致大鼠发生慢性吗啡耐受。
     目的
     1.观察慢性吗啡耐受对大鼠脊髓背角小胶质细胞激活的影响
     2.观察慢性吗啡耐受大鼠脊髓背角和背根神经节P2X4R表达的影响。
     方法
     36只成年雄性SD大鼠,质量250-300g,鞘内置管成功后,随机分为2组(n=18),NS组:大鼠经鞘内置管并注入生理盐水;MOR组:大鼠并经鞘内置管注入吗啡10μg,每天两次。鞘内置管3d后,开始鞘内输注生理盐水或吗啡,鞘内注射5d后建立大鼠吗啡耐受模型,鞘内注射吗啡1、3、7d后取脊髓腰膨大部和背根神经节,免疫组化测定检测P2X4R、OX-42的表达。
     结果
     免疫组化结果显示吗啡耐受大鼠脊髓小胶质细胞呈激活状态,P2X4R主要在小胶质细胞上表达,与盐水组相比较,吗啡组大鼠脊髓背角P2X4R阳性细胞数明显增多,而背根神经节P2X4R阳性细胞数变化不明显。
     结论
     吗啡耐受大鼠脊髓的P2X4R表达明显增加,提示脊髓小胶质细胞P2X4R可能参与吗啡耐受的发生。
     目的
     1.观察鞘内注射嘌呤受体拮抗剂TNP-ATP(P1-4受体拮抗剂)和PPADS(P1,2,3,5,7受体拮抗剂)对慢性吗啡耐受大鼠痛敏的影响。
     2.观察鞘内注射嘌呤受体拮抗剂TNP-ATP和PPADS对慢性吗啡耐受大鼠脊髓P2X4R、OX-42、p-p38MAPK、BDNF表达的调节。
     方法
     114只成年雄性SD大鼠,质量250-300g,鞘内置管成功后,随机分为6组(n=18)。NS组:大鼠经鞘内置管注入生理盐水;MOR组:大鼠经鞘内置管并注入吗啡10μg;TNP-ATP组:大鼠经鞘内置管并注入TNP-ATP30nmol后注入吗啡10μg;TNP-ATP+NS组:大鼠经鞘内置管并注入TNP-ATP和生理盐水;PPADS组:大鼠经鞘内置管并注入PPADS30nmol后注入吗啡10μg;PPADS+NS组:大鼠经鞘内置管并注入PPADS和生理盐水。按各组处理,鞘内置管3d后开始分别鞘内输注生理盐水、吗啡、TNP-ATP和PPADS,鞘内注射5d后建立大鼠吗啡耐受模型,于1、3、5、7d测定大鼠的痛敏值,并在鞘内注射7d后取脊髓腰膨大部,Western Blot检测P2X4R、BDNF、p-p38MAPK蛋白表达,RT-PCR检测P2X4R、BDNF mRNA的表达,以及免疫组化测定P2X4R、OX42、p-p38MAPK、BDNF的表达。
     结果
     与MOR组比较, TNP-ATP组给药后第3-7天大鼠痛敏阈值增高,脊髓P2X4R、BDNF、OX42的表达明显下降。而PPADS组与MOR组比较大鼠痛敏阈值无明显差异,脊髓P2X4R、OX42、p-p38MAPK、BDNF的表达无明显差异。
     结论
     鞘内给予P1-4受体拮抗剂TNP-ATP能够明显延缓吗啡耐受的形成,同时下调脊髓P2X4R、BDNF、p-p38MAPK的表达和小胶质细胞活化,而鞘内给予P1,2,3,5,7受体拮抗剂PPADS对吗啡耐受没有明显作用,从而说明脊髓胶质P2X4R/p38MAPK/BDNF途径可能是参与吗啡耐受发生机制。
Opioids receptor agonist, such as morphine, are widely used as, effective analgesic drugs for acute and chronic pain in clinical practice, especially for neuropathic pain and cancer pain. However, repeated use of morphine could lead to the development of tolerance to analgesia including the attenuated analgesic efficacy, the shorted analgesic duration, hyperalgesia and withdrawal-induced pain enhancement. Therefore, its long-trem therapy is limited by the development of tolerance. In recent years, researchers have approached for the mechanisms of morphine tolerance on corpuscular and molecular level and gained much outcome. However, the mechanism is not fully understood in the present.
     Recently, researches had confirmed that role of P2X4 receptor and glia in the CNS played the role of neuropathic pain and P38MAPK signal channel might be involved in it. Cytokines such as tumor necrosis factor-alpha, interleukinlβand neurotransmitters such as brain-derived neurotrophic factors participated in the development of neuropathic pain and morphine tolerance. Moreover, the latest literature reported that morphine enhances microglial migration through modulation of P2X4 receptor signaling.
     Because morphine tolerance and neuropatic pain share similar mechanisms, we may assume that P2X4R/P38MAPK pathway might be involved in chronic morphine tolerance. To confirm the above hypothesis, we design to investigate:1) the effect of morphine tolerance on P2X4 receptor and microglial activation in the spinal cord; 2) the effect of P2X4 receptor antagonists TNP-ATP and PPADS on the morphine tolerance and the mechanisms. The data from our studies will provide new evidence for the mechanisms of morphine tolerance, moreover, it will provide theory for novel analgesic drugs exploitation.
     Objectives
     To examine the effects of morphine tolerance on pain threshold of the rats
     Methods
     12 male Sprague-Dawley (SD) rats (250-300g) fitted with intrathecal (i.t.)
     Catheters, Randomly, rats were divided into 2 groups(n=6), NS group:rats were intrathecally administrated saline; MOR group:rats were intrathecally administrated morphine 10μg.3 days after intrathecal catheters implantation, rats were administrated NS or morphine. And 5 day after administration, the model of morphine tolerance was established. The rat hind paw withdrawal threshold (WT) to mechanical stimuli and withdrawal latency (WL) to radiant heat were determined from day 1 to 7 after administration.
     Results
     Compared with NS group, a significant increase on day 1 in WT and WL was observed in MOR group. From 3d to 7d WT decreased, and day 7 reached the lowest point.
     Conclusion
     Consecutive administration of morphine induced morphine tolerance.
     Objectives
     1. To examine spinal microglial activation induced by morphine tolerance in rats.
     2. To examine spinal microglial activation induced by morphine tolerance in rats.
     Methods
     36 male Sprague-Dawley (SD) rats (250-300g) fitted with intrathecal (i.t.)
     catheters. Randomly, rats were divided into 2 groups(n=18):normal control group, NS group:rats were intrathecally administrated saline; MOR group:rats were intrathecally administrated morphine 10μg.3 days after intrathecal catheters implantation, rats were administrated NS or morphine. And 5 day after administration, the model of morphine tolerance was established. The spinal cord around lumbar enlargement and dorsal root ganglion was removed. Spinal microglial activation was evaluated with OX-42 immunoreactivity and spinal P2X4R expression were determined by immunohistochemisty.
     Results
     Compared with NS group, spinal P2X4R、OX-42 expression were significantly increased, While P2X4R in DRG didn't changed.
     Conclusion
     Consecutive administration of morphine induced spinal P2X4R、OX-42 expression increase, which suggested that spinal glial P2X4R receptor may be involved in the development of morphine tolerance.
     Objective
     1. To examine the effects of morphine tolerance on pain threshold of the rats.
     2. To examine spinal microglial activation and spinal P2X4R expression induced by morphine tolerance in rats.
     Methods
     114 male Sprague-Dawley(SD) rats(250-300g) fitted with intrathecal (i.t) catheters. Randomly, rats were divided into 7 groups(n=18):NS group:rats underwent were intrathecally administrated saline(NS); MOR group:rats were intrathecally morphine; TNP-ATP group:rats were intrathecally 30nmol TNP-ATP and morphine; TNP-ATP+NS group:rats were intrathecally TNP-ATP and NS; PPADS group:rats were intrathecally 30nmol PPADS and morphine; PPADS group+NS group: rats were intrathecally PPADS and NS.3 days after intrathecal catheters implantation, rats were administrated various intrathecal medicine. And 5 day after administration, the model of morphine tolerance was established. The rat hind paw withdrawal threshold(WT) to mechanical stimuli and withdrawal latency(WL) to radiant heat were determined from day 1 to 7.7 days after administration, the spinal cord around lumbar enlargement was removed. Spinal microglial activation was evaluated with OX-42 immunoreactivity and spinal P2X4R、p-p38MAPK、BDNF expression were determined by immunohistochemisty, P2X4R、BDNF、p-p38MAPK spinal expression were assessed by western blotting, spinal P2X4R、BDNF mRNA expression was assessed by reverse transcriptase polymerase chain reation (RT-PCR).
     Results
     Compared with MOR group, a significant increase in WT and WL was observed and spinal P2X4R、BDNF、OX42、p-p38MAPK expression were significantly decreased in TNP-ATP group On day 3 and day 7, while group PPADS did not.
     Conclusion
     Intrathecal TNP-ATP attenuated the morphine tolerance in rats, and suppressed spinal P2X4R、p-p38MAPK、BDNF expression and microglial activation, while PPADS could not. Therefore, the activation of spinal P2X4R/p38MAPK/BDNF pathway may be involved in the development of morphine tolerance.
引文
[1]Laul in JP, Celerier E, Larcher A, et al. Opiate tolerance to daily heroin administration:an apparent phenomenon associated with enhanced pain sensitivity. Neuroscience,1999,89:631-636.
    [2]Millan MJ. The induction of pain:an integrative review. Prog Neurobiol,1999, 57:1-164.
    [3]Mao J, Price DD, Mayer DJ. Mechanisms of hyperalgesia and morphine tolerance:a current view of their possible interactions. Pain,1995,62:259-274.
    [4]Keith A, Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science,1991,251:85-87.
    [5]Dunbar S, Yaksh TL. Effect of spinal infusion of L-NAME, a nitric oxide synthase inhibitior, on spinal tolerance and dependence induce by chronic intrathecal morphine in rat.Neurosci. Lett.1996,207:33-36.
    [6]Moalem G, Xu K, Yu L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats:Neuroscience,2004,129 (3):767-777.
    [7]Satyanarayana S.V. Padi, Shrinivas K. Kulkarni. Minocycline prevents development of neuropathic pain, but not acute pain. Possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol,2008,601(1-3):79-87.
    [8]Inoue K. The function of microglia through purinergic receptors:Neuropathic pain and cytokine release. Pharmacol Ther,2006,109 (1-2):210-226.
    [9]Chizh BA, Illes P. P2X receptors and nociception. Pharmacol Rev,2001,53 (4):553-568.
    [10]Holton P, The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol,1959,145:494-504.
    [11]Makoto Tsuda, Yukari Shigemoto-Mogami, Schuichi Koizumi. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 2003,424(6950):778-783.
    [12]Wool CJ, Bennet GJ, Dohety M. Towards a mechanism-based classification of pain? Pain,1998,77:227-229.
    [13]Guitart X, Nestler EJ.2nd messenger and protein phosphorylation mechanisms underlying opiate addiction:studies in the rat locus coeruleus. NeurochemRes,
    1993,18(1):5-9.
    [14]Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav,1976,17(6):1031-1036.
    [15]Poon YY, Chang AY, Ko SF, et al. An improved procedure for catheterization of the thoracic spinal subarachnoid space in the rat. Anesth Analg,2005,101(1): 155-160.
    [16]Matthes HW, Maldonado R, Simonin F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene.Nature,1996,383:819-823.
    [17]G proteins and cyclic nucleotides in the nervous system. Nestler EJ,1994.429-448.
    [18]Connor M, Osborne PB, Christie MJ. μ-opioid receptor desensitization:is morphine different? Br J Pharmacol.2004,143(6):685-96.
    [19]Von Zastrow M, Svingos A, Haberstock-Debic H, Evans C.Regulated endocytosis of opioid receptors:cellular mechanisms and proposed roles in physiological adaptation to opiate drugs. Curr Opin Neurobiol,2003, 13:348-353.
    [20]Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis:the role in receptor desensitization and signaling. Pharmacol Rev,2001,53:1-24.
    [21]Adams WJ, Yeh SY, Woods LA, et al. Drug-test interaction as a factor in the development of tolerance to the analgesic effect of morphine. J Pharmacol Exp Ther,1969,168:251-257.
    [22]Kayan S, Woods LA, Mitchell CL. Experience as a factor in the development of tolerance to the analgesic effect of morphine. Eur J Pharmacol,1969; 6: 333-339.
    [23]Way EL, Loh HH, Shen FH. Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharmacol Exp Ther,1969,167(1):1-8.
    [24]Baker TB, Tiffany ST. Morphine tolerance as habituation. PsycholRcv,1985, 92(1):78-108.
    [25]Ronnekleiv OK, Bosch MA, CunninghamMJ, et al. Downregulation of μ-opioid receptor mRNA in the mediobasal hypothalamus of the female guinea pig following morphine treatment. Neurosci Lett,1996; 216(2):129-132.
    [26]Meuser T, Giesecke T, GabrielA et al. Mu-opioid receptor mRNA regulation during morphine tolerance in the rat peripheral nervous system. Anesth Analg,
    2003; 97(5):1458-1463.
    [27]Zuo Z. The role of opioid receptor internalization and beta-arrestins in the development of opioid tolerance. Anesth Analg,2005; 101(3):728-734.
    [28]Borgland SL. Acute opioid receptor desensitization and tolerance:is there a link? Clin Exp Pharmacol Physiol,2001; 28(3):147-154.
    [29]Eisinger DA Anlmer H, Schulz R. Chronic morphine treatment inhibits opioid receptor desensitization and internalization. J Neurosci, 2002; 22(23):101 92-10200.
    [30]Narita M, Suzuki M, Narita M, et al.Mu-Opioid receptor internalization-dependent and-independent mechanisms of the development of tolerance to mu·opioid receptor agonists:Comparison between etorphine and morphine. Neuroscience,2006; 138(2):609-619.
    [31]Granados-Soto v, Kalcheva I, Hua X et al. Spinal PKC activity and expression: role in tolerance produced by continuous spinal morphine infusion. Pain,2000, 85:395-404.
    [32]Smith FL, Lohmann AB, Dewey WL,Involvement of phospholipid signal transduction pathways in morphine tolerance in mice. Br. J. Pharmacol,1999, 128:220-226.
    [33]Zeitz KP. Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKC gamma mutant mice. Pain,2001,94 (3):245-253.
    [34]Lake JR, Hammond MV, Shaddox RC et al. IgG from neuropeptide FF antiserum reverses morphine tolerance in the rat. Neurosci. Lett.1991,132:29-32.
    [35]Mogil JS, Geisel JE, Reinscheid RK et al. Orphanin FQ is a functional anti-opioid peptide. Neuroscience,1996,75:333-337.
    [36]Kellstein DE, Mayer DJ. Spinal co-administration of cholecystokinin antagonists with morphine prevents the development of opioid tolerance. Pain.1991,47: 221-229.
    [37]Vilhardt F. Microglia:phagocyte and glia cell. Int J Biochem Cell Biol,2005; 37(1):17-21.
    [38]Perry VH, Hume DA, Gordon S. Immunohistochemical localisation of macrophages and microglia in the adult and developing mouse brain. Neurosci,1985,15:313-326.
    [39]Ladeby R, Wirenfeldt M, Garcia-Ovejero D, et al. Microglial cell population dynamics in the injuried adult central nervous system. Brain Res Brain Res Rev,
    2005,48:196-206.
    [40]Kajander KC, Benett GJ. Onset of a painful peripheral neuropathy in rat:a partial and differential deafferentation and spontaneous discharge in A beta and A delta primary afferent neurons.J Neurophysiol,1992,68:734-744.
    [41]Gehrmann J, Banati RB. Microglial turnover in the injured CNS:activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J Neuropathol Exp Neurol,1995,54:680-688.
    [42]Song P, Zhao ZQ. The involvement of glial cells in the development of morphine tolerance. Neuroscience Research,2001,39:281-286.
    [43]Raghavendra V, Tanga FY, Deleo JA. Attenuation of morphine tolerance, withdrawl-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neurop sychopharmacology,2004,29:327-334.
    [44]Raghavendra V, RutkowskiMD, Deleo JA. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neuroscience,2002,22(22):9980-9989.
    [45]简道林,田玉科.吗啡耐受对大鼠脊髓后角星型胶质细胞的影响.中国临床康复,2005,9(32),135-138.
    [46]Takayama N, Ueda H. Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J Neuroscience,2005,25 (2):430-435
    [47]Chao CC, Hu SX, Shark KB, et al. Activation of Mu opioid receptors inhibits microglial cell chemotaxis. J Pharmacology and Experimental,1997,281 (2): 998-1004.
    [48]Cui Y, Chen Y, Zhi JL, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res, 2006,1069(1):235-43.
    [49]Yu Cui, Xin-Xue Liao, Wei Liu, et al. A novel role of minocycline:Attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain, Behavior, and Immunity,2008,22:114-123.
    [50]Kishi Y, Ohta S, Kasuya N, et al. Ibudilast:a non-selective PDE inhibitor with multiple actions on blood cells and the vascular wall. Cardiovasc Drug Rev, 2001,19,215-225.
    [51]Ledeboer A, Hutchinson MR, Watkins LR, et al. Ibudilast (AV-411):A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin Investig Drugs,2007,16,935-950.
    [52]Ledeboer A, Liu T, Shumilla JA, Mahoney JH, et al. The glial modulatory drug AV411 attenuates mechanical allodynia in rat models of neuropathic pain. Neuron Glia Biol,2007,2,279-291.
    [53]Mizuno T, Kurotani T, Komatsu Y, et al. Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacology,2004,46,404-411.
    [54]Suzumura A, Ito A, Yoshikawa M^ et al. Ibudilast suppresses TNF-(?) production by glial cells functioning mainly as type Ⅲ phosphodiesterase inhibitor in the CNS. Brain Res,1999,837,203-212.
    [55]Mark R. Hutchinson, Susannah S. Lewis, Benjamen D. Coatsl, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun,2009,23(2):240-250.
    [56]Tsuda M, Shigemoto-Mogami Y, Koizumi S et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature,2003,424: 778-783.
    [57]TsudaM, InoueK, SalterMW. Neuropathic pain and spinal microglia:a big problem from molecules in'small'glia. Trends in Neurosciences,2005,28: 101-107.
    [58]lnoue K, Tsuda M, Koizumi S. ATP and adenosine-mediated signaling in the central nervous system:chronic pain and microglia:involvement of the ATP receptor P2X4. J Pharmacol Sci,2004,94:112-114
    [59]Kolesnikov YA, Jain S, Wilson R, et al. Peripheral morphine analgesia:synergy with central sites and a target of morphine tolerance. Pharmacol Exp Ther,1996, 279 (2):502-506
    [60]Belanger S, MaW, Chabot JG, et al. Expression of calcitonin gene-related pep tide, substance P and protein kinase C in cultured dorsal root ganglion neurons following chronic exposure to mu, delta and kappa opiates. Neuroscience,2002, 115 (2):441-453.
    [61]Ryan J. Horvath, Joyce A. DeLeo. Morphine Enhances Microglial Migration through Modulation of P2X4 Receptor Signaling. The Journal of Neuroscience, 2009,29(4):998-1005.
    [62]Wells J. E, Hurlbert R. J, Fehlings M, et al. Neuroprotection by minocycline
    facilitates significant recovery from spinal cord injury in mice. Brain,2003,126: 1628-1637.
    [63]Tikka T. M, Koistinaho J. E. Minoeycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol,2001, 166:7527-7533.
    [64]Amin AR, Attur MG, Thakker GD, et al. A novel mechanism of action of tetracyclines:effects on nitric oxide synthases. Proc. Natl. Acad. Sci. U. S. A, 1996,93:14014-14019.
    [65]Tikka T, Fiebich B,L Goldsteins G, Keinanen R. and Koistinaho J. Minocycline, a tetracycline derivative, is neuroproteetive against excitotoxicityby inhibiting activation and proliferation of microglia. J Neurosci,2001,21:2580-2588.
    [66]Raghavendra V, Tanga E, and DeLeo J. A. Inhibition of microglial activationattenuates the development but not existing hypersensitivity in a rat model ofneuropathy. J. PhannacOl. Exp. Ther,2003,306:624-630.
    [67]Zhuang ZY, Yasuhiko Kawasaki, Tan PH, et al. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine Brain Behav Immun,2007,21(5): 642-651.
    [68]Jin SX, Woolf CJ, Ji RR. Activation of p38MAP kinase in the dorsal root ganglion and spinal cord after spinal nerve ligation. Soc. Neurosci. Abstr,2002, 28:13.-17.
    [69]Jin SX, Zhuang ZY, Woolf CJ, et al. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci,2003,23:4017-4022.
    [70]Kim SY, Bae JC, Lee HL, et al. Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport,2002,13:2483-2486.
    [71]Schafers M, Svensson CI, Sommer C, et al. Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci.,2003,23:2517-2521.
    [72]Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, et al. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia,2004,45:89-95.
    [73]Hua XY, Svensson CI, Matsui T, et al. Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur.J. Neurosci.2005; 22:2431-2440.
    [74]Sung CS, Wen ZH, Chang WK, et al. Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1 beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord. J Neurochem,2005,94: 742-752.
    [75]Svensson CI, Marsala M, Westerlund A, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem,2003,86: 1534-1544.
    [76]Svensson CI, Schafers M, Jones TL, et al. Spinal blockade of TNF blocks spinal nerveligation-induced increases in spinal P-p38. Neurosci Lett,2005,379: 209-213.
    [77]Hua X. Y, Svensson C, I Matsui T. et al. Intrathecal minocycline attenuatesperipheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci,2005,22:2431-2440.
    [78]Yu Cui, Yu Chen, Jun-Li Zhi et al. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain research,2006,1069:235-243.
    [79]Yu Cui, Xin-Xue Liao, Wei Liu et al. A novel role of minocycline:Attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain, Behavior, and Immunity,2008,22:114-123.
    [80]Wei Liu, Chu-Huai Wang, Yu Cui et al. Inhibition of neuronal nitric oxide synthase antagonizes morphine antinociceptive tolerance by decreasing activation of p38 MAPK in the spinal microglia. Neuroscience Letters,2006, 410:174-177.
    [81]Sakaue G, Shimaoka M, Fukuoka T, et al. NF-kappa B decoy suppresses cytokine expression and thermal hyperalgesia in a rat neuropathic pain model.Neuroreport,2001,24:2079-2084.
    [82]Pollock G, Pennypacker KR, Memet S, et al.Activation of NF-kappaB in the mouse spinal cord following sciatic nerve transection.Exp Brain Res,2005,165: 470-477
    [83]Bethea JR, Castro M, Keane RW, et al. Traumatic spinal cord injury induces nuclear factor-kappaB activation.J Neurosci,1998,18:3251-3260
    [84]Ma W, Bisby MA. Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries.Brain Res 1998,797:243-254
    [85]Lee HL, Lee KM, Son SJ, et al. Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model.Neuroreport 2004,15: 2807-2811
    [86]Tegeder I, Niederberger E, Schmidt R, et al.Specific inhibition of IkappaB kinase reduces hyperalgesia in inflammatory and neuropathic pain models in rats.J Neurosci,2004,24:1637-1645
    [87]Yosuke Matsushita, Hiroshi Ueda. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. NeuroReport, 2009,20 (1):63-68.
    [88]Zhou XF, Chie ET. Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience,1992,92(3):841-853.
    [89]Tuan Trang, Simon Beggs, Xiang Wan, et al. P2X4-Receptor-Mediated Synthesis and Release of Brain-Derived Neurotrophic Factor in Microglia Is Dependent on Calcium and p38-Mitogen-Activated Protein Kinase Activation. The Journal of Neuroscience,2009,29(11):3518-3528.
    [90]Takayama N, Ueda H. Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J Neurosci,2005,25:430-435.
    [91]Morphine Enhances Microglial Migration through Modulation of P2X4 Receptor Signaling. Ryan J. Horvath, Joyce A. DeLeo. The Journal of Neuroscience,2009, 29(4):998-1005.
    [92]Fibronectin/Integrin System is Involved in P2X4 Receptor Upregulation in the Spinal Cord and Neuropathic Pain After Nerve Injury. Tsuda M, Toyomitsu E, Komatsu T et al. Glia,2008,56:579-585.
    [93]Tsuda M, Tozaki H, MASUDA A. Lyn Tyrosine Kinase Is Required for P2X4 Receptor Upregulation and Neuropathic Pain After Peripheral Nerve Injury.Glia, 2008,56(11):50-58.
    [94]Tuan Trang, Simon Beggs, Xiang Wan et al. P2X4-Receptor-Mediated Synthesis and Release of Brain-Derived Neurotrophic Factor in Microglia Is Dependent on Calcium and p38-Mitogen-Activated Protein Kinase Activation. The Journal of Neuroscience,2009,29(11):3518-3528.
    [95]Fisher K, Coderre TJ, Hagen NA. Targeting the N-methyl-D-aspartate receptor for chronic pain management:Preclinical animal studies, recent clinical experience and future research directions. J Pain Symp tom Manag,2000,20: 358-373.
    [1]Tsuda M, Inoue K, salter MW. Neuropathic pain and spinal microglia:a big problem from molecules in "small" glia. Trends Neurosci,2005; 28(2): 101-107.
    [2]Galli, S.J., Nakae, S., Tsai, M. Mast cells in the development of adaptive immune responses. Nat Immunol,2005,6(2):135-142.
    [3]Freemont AJ, Jeziorska M, Hoyland JA,et al. Mast cells in the pathogenesis of chronic back pain:a hypothesis. J Pathol,2002,197(3):281-285.
    [4]Baron, R., Schwarz, K., Kleinert, A., Schattschneider, J., Wasner, G.. Histamine-induced itch converts into pain in neuropathi hyperalgesia. Neuroreport,2001,12(16):3475-3478.
    [5]Fiona M. Smith Hila Haskelberg David J. Tracey Gila Moalem-Taylor. Role of Histamine H 3 and H 4 Receptors in Mechanical Hyperalgesia following Peripheral Nerve Inj ury. Neuroimmunomodulation,2007,14(6):317-325.
    [6]Zuo Y, PerkinsNM, TraceyDJ et al. Inflammation and hyperalgesia induced by nerve injury in the rat:a key role of mast cells. Pain,2003,105(3):467-479.
    [7]Yamaki K, Thorlacius H, Xie X, et al. Characteristics of histamine-induced leukocyte rolling in the undisturbed microcirculation of the ratmesentery. Br J Pharmacol,1998,123(3):390-399.
    [8]Averbeck B, Reeh PW. Interactions of inflammatory mediators stimulating release of calcitonin gene-related peptide, substance P and prostaglandin E(2) from isolated rat skin. Neuropharmacology,2001,40(3):416-423.
    [9]Scapini P, Lap inetVera JA, Gasperini S, et al. The neutrophil as cellular source of chemokines. Immunol Rev,2000,177(1):195-203.
    [10]Perrin FE, Lacroix S, Aviles-Trigueros M, et al. Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein 1 alpha and interleukin-lbeta in Wallerian degeneration. Brain,2005,128 (4):854-866.
    [11]Hu P, McLachlan EM. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience,2002,112(1): 23-38.
    [12]Norikazu Kiguchi, Takehiko Maeda, Yuka Kobayashi, Toshikazu Kondo, Masanobu Ozaki, Shiroh Kishioka. The critical role of invading peripheral macrophage-derived interleukin-6 in vincristine-induced mechanical allodynia in mice. Eur J Pharmacol,2008,592 (1-3):87-92.
    [13]Abbadie, C., Lindia, J.A., Cumiskey, A.M., et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. PNAS,2003. 100 (13):7947-7952.
    [14]Cui JG, Holmin S, Mathiesen T, et al. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain,2000,88 (3): 239-248.
    [15]Sweitzer, S.M., Hickey, W.F., et al. Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system:potential relationship to neuropathic pain. Pain,2002,100(1-2):163-170.
    [16]Moalem G, Xu K, Yu L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience,2004,129 (3): 767-777.
    [17]Cao L, Deleo JA. CNS-infiltrating CD4+T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur J Immunol,2008, 38(2):448-458.
    [18]Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration:tumor necrosis factoralpha, interleukin-1 alpha, and interleukin-lbeta.J Neurosci,2002,22(8):3052-3060.
    [19]Keswani SC, Polley M, Pardo CA, et al. Schwann cell chemokine receptors mediate HTV-1gp120 toxicity to sensory neurons. Current Opinion in Neurology,2000,13 (3):327-364.
    [20]Vilhardt F. Microglia:phagocyte and glia cell. Int J Biochem Cell Biol,2005, 37(1):17-21.
    [21]Perry VH, Hume DA, Gordon S. Immunohistochemical localisation of macrophages and microglia in the adult and developing mouse brain. Neurosci. 1985,15:313-326.
    [22]Satyanarayana S.V. Padi, Shrinivas K. Kulkarni. Minocycline prevents the development of neuropathic pain, but not acute pain. Possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol,2008,601(1-3): 79-87.
    [23]Inoue K. The function of microglia through purinergic receptors:Neuropathic pain and cytokine release. Pharmacol Ther,2006,109 (1-2):210-226.
    [24]DeLeo JA, Sorkin LS, Watkins LR. Immune and Glial Regulation of Pain. IASP Press 2007, Seattle.
    [25]illigan ED, O'connor KA, Nguyen KT, et al. Intrathecal HIV-1 envelope glycoprotein gp120 enhanced pain states mediated by spinal cord proinflammatory cytokines. J. Neurosci.2001,21:2808-2819.
    [26]Holguin A, O'connor KA, Biedenkapp J, et al. HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS). Pain 2004,110:517-530.
    [27]Ledeboer A, Jekich BM, Sloane EM,et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav. Immun.2007,21:686-698.
    [28]Abraham KE, Mcmillen D, Brewer KL. The effects of endogenous interleukin-10 on gray matter damage and pain behaviors following excitotoxic spinal cord injury in the mouse. Neuroscience 2004; 124:922-945.
    [29]Johnston IN, Milligan ED, Wieseler-Frank J, et al. A role for pro-inflammatory cytokines and fractalkine in analgesia, tolerance and subsequent pain facilitation induced by chronic intrathecal morphine. J. Neurosci.2004,24: 7353-7365.
    [30]Milligan ED, Sloane EM, Langer SJ, et al. Controlling neuropathic pain by adeno-associated virus driven production of the antiinflammatory cytokine, interleukin-10. Mol. Pain 2005,1:9-22.
    [31]Moore KW, De Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.2001,19:683-765.
    [32]Chaban VV, Mayer EA. Estradiol inhibits ATP-induced intracellular calcium concentration increase in dorsal root ganglia neurons. Neuroscience,2003, 118(4):941-948.
    [33]Chizh BA, Illes P. P2X receptors and nociception. Pharmacol Rev,2001,53 (4):553-568.
    [34]Holton P, The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol (Lond),1959,145:494-504.
    [35]Bumstock G. Purinergic nerves. Pharmacol Rev,1972,24:509.581.
    [36]Bumsmck G. A basis for distinguishing two types of purinergic receptor. New York:Raven Press,1978,107-118.
    [37]Makoto Tsuda, Yukari Shigemoto-Mogami, Schuichi Koizumi, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature,2003,424(6950):778-783.
    [38]Aravalli RN, Peterson PK, Lokensgard JR. Toll-like receptors in defense and damage of the central nervous system. J. Neuroimmune Pharmacol.2007,2: 297-312.
    [39]ehnardt S, Lachance C, Patrizi S, et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J. Neurosci. 2002,22:2478-2486.
    [40]Tanga FY, Raghavendra V, DeLeo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem. Int.2004,45:397-407.
    [41]Flobert Y. Tanga, Nancy Nutile-McMenemy, Joyce A. DeLeo. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. PNAS, 2005,102(16):5856-5861.
    [42]Jack CS, Arbour N, Manusow J, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol.2005,175: 4320-4330.
    [43]Kigerl KA, Lai W, Rivest S, et al. Toll-like receptor (TLR)-2 TLR-4 regulate inflammation, gliosis, myelin sparing after spinal cord injury. J. Neurochem. 2007,102:37-50.
    [44]White FA, Bhangoo SK, Miller RD. Chemokines:integrators of pain and inflammation. Nature Rev.2005,4:834-844.
    [45]Milligan E, Zapata V, Schoeniger D, Chacur M, Green P, Poole S, Martin D, Maier SF, Watkins LR. An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur J Neurosci,2005,22(11):2775-2782.
    [46]Zhuang ZY, Kawasaki Y, Tan PH, et al. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun,2007,21 (5): 642-651
    [47]Perry VH, Hume DA, Gordon S. Immunohistochemical localisation of macrophages and microglia in the adult and developing mouse brain. Neurosci. 1985,15:313-326.
    [48]Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev.2006,86:1009-1031.
    [49]Pasti L, Zonata M, Pozzan T, et al. Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J. Neurosci.2001,21:477-484.
    [50]Aldskogius H, Kozlova EN. Central neuron-glial and glial-glial interations following axon injury. Prog Neurobiol.1998,55:1-26.
    [51]Tsacopoulos M. Metabolic signaling between neurons and glial cells:a short review. J. Physiol.2002,96:283-288.
    [52]Lee JC, Mayer-Proschel M, Rao MS. Gliogenesis in the central nervous system. Glia,2000,30:105-121.
    [53]Lau L T, Yu ACH. Astrocyte produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J Neurotrauma,2001,18,351-359.
    [54]Ciccarelli R, Ballerini P, Sabatino G, et al. Involvement of astrocytes in purine-mediated reparative processes in the brain. J Devl Neurosci,2001,19, 395-414.
    [55]Meller ST, Dyskstra C, Grzybycki D, et al. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neurophannacology,1994,33(11):1471-1478.
    [56]Wu YP, McRae A, Rudolphi K, et al. Propentolyline attenuates microglial reaction in the rat spinal cord induced by middle cerebral artery occlusion. Neurosci Lett,1999,260(1):17-20.
    [57]孙涛,姚尚龙,宋文阁,傅志检.鞘内注射氟代柠檬酸对神经病理性疼痛大鼠的镇痛作用.中华麻醉学杂志,January,2007(27):17-21.
    [58]Zhang, J., De Koninck, Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem,2006,97(3):772-783.
    [59]Echeverry, S., Shi, X.Q.& Zhang, J. Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain,2008,135(1-2):37-47.
    [60]Miyoshi K, Obata K, Kondo T, Okamura H, Noquchi K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J Neurosci,2008, 28(48):12775-12787.
    [1]Vanecek J. Cellular mechanisms of melatonin action. Physiol Rev,1998,78 (3): 687-721.
    [2]Sugden D. Melatonin biosynthesis in the mammalian pineal gland. Cell Mol Life Sci,1989,45(10):922-923.
    [3]Illnerova H, Vanecek J. Response of rat pineal serotonin-N-acetyltransferase to one min light pulse at different night times. Brain Res,1979,167(2):431-434.
    [4]赵瑛.松果腺褪黑素受体研究现状及展望.第二军医大学学报,2001,22(11):1055-1058.
    [5]崔浩,聂爱华.美乐托宁受体新的药物靶标.Foreign Medical Sciences Section on Pharmacy,2001,28 (5):282-285.
    [6]Reppert SM, Weaver D R, Cassone VM, et al. Melatonin receptor for birds: molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron,1995,15(5):1003-1015.
    [7]季从亮,储明星,陈国宏.褪黑激素受体基因的研究进展.遗传,2003,25(2):221-224.
    [8]Weaver D R Reppert SM. The Mel 1a melatonin receptor gene is expressed in human suprachiasmatic nuclei. Neuroreport,1996,20,8(1):9-12.
    [9]Slominski A, Pisarchik A,Wortsman J. Expression of genes coding melatonin and serotonin receptors in rodent skin. Biochim Biophys Acta,2004,1680(2): 67-70.
    [10]宋萍,赵志奇.褪黑激素的研究进展.生命科学,2000,12(4):157-161.
    [11]Morris RW, Lutsch EF. Daily susceptibility rhythm to morphine analgesia. J Pharm Sci,1969,58(3):374-376.
    [12]Laurido C, Pelissie T, Soto-Moyano R, Valladares L, et al. Effect of melatonin on rat spinal cord nociceptive transmission. Neuroreport,2002,13(1):89-91.
    [13]Noseda R, Hernandez A, Valladares L, et al. Melatonin-induced inhibition of spinal cord synaptic potentiation in rats is MT2 receptor-dependent. Neurosci Lett,2004,360(1):41-44.
    [14]Li SR, Wang T, Wang R, et al. Melatonin enhances antinociceptive effects of 8-, but not μ-opioid agonist in mice. Brain Res,2005,1043(1-2):132-138.
    [15]Wang T, Li SR, Dai X, et al. Effects of melatonin on orphanin FQ/nociceptin-induced hyperalgesia in mice. Brain Res,2006,1085(1):43-48.
    [16]El Shenawy S, Baiuomy AR, Arbid M, et al. Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Pharmacol Res,2002,46(3): 235-243.
    [17]Bilici D, Akpinar E, Kiziltunc A. Protective effect of melatonin in carrageenan-induced acute local inflammation. Pharmacol Res,2002,46(2): 133-139.
    [18]Tu Y, Sun R, Willis WD. Effects of intrathecal injections of melatonin analogs on capsaicin-induced secondary mechanical allodynia and hyperalgesia in rats. Pain,2004,109(3):340-350.
    [19]Ray M, Mediratta PK, Mahajan P, et al. Evaluation of the role of melatonin in formalin induced pain response in mice. Indian J Med Res,2004,58 (3): 122-130.
    [20]Pang CS, Tsang SF, Yang JC. Effects of melatonin, morphine and diazepam on formalin-induced nociception in mice. Life Sci,2001,68 (8):943-951.
    [21]Elmegeed GA, Baiuomy AR, Abdel-Salam OM, et al. Evaluation of the anti-inflammatory and anti-nociceptive activities of novel synthesized melatonin analogues. Eur J Med Chem,2007,42(10):1285-1292.
    [22]Ulugol A, Dokmeci D, Guray G, et al. Antihyperalgesic, but not antiallodynic, effect of melatonin in nerve-injured neuropathic mice:possible involvements of the L-arginine-NO pathway and opioid system. Life Sci,2006,78(14): 1592-1597.
    [23]Ambriz-Tututi M, Granados-Soto V. Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and opioid receptors. Pain,2007,132 (3): 273-280.
    [24]Arreola-Espino R, Urquiza-Marin H, Ambriz-Tututi M, et al. Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats. Eur J Pharmacol,2007,577 (1-3):203-210.
    [25]Brun J, Claustrat B, Saddier P, et al. Nocturnal melatonin excretion is decreased in patients with migraine without aura attacks associated with menses. Cephalalgia,1995,15(2):136-139.
    [26]Reiter RJ, Acuna-Castroviejo D, Tan DX. Melatonin therapy in fibromyalgia.
    Curr Pain Headache Rep,2007,119(5):339-342.
    [27]Song GH, Leng PH, Gwee KA, et al. Melatonin improves abdominal pain in irritable bowel syndrome patients who have sleep disturbances:a randomised, double blind, placebo controlled study. Gut,2005,54(10):1402-1407.
    [28]Raghavendra V, Kulkarni SK. Reversal of morphine tolerance and dependence by melatonin:possible role of central and peripheral benzodiazepine receptors. Brain Res,1999,834(1-2):178-181.
    [29]Raghavendra V, Kulkarni SK. Possible mechanisms of action in melatonin reversal of morphine tolerance and dependence in mice. Eur J Pharmacol,2000, 409(3):279-289.
    [30]Dhanaraj E, Nemmani KV, Ramarao P. Melatonin inhibits the development of tolerance to U-50,488H analgesia via benzodiazepine-GABAAergic mechanisms. Pharmacol Biochem Be,2004,79(4):733-737.
    [31]Dai X, Cui SG, Li SR, et al. Melatonin attenuates the development of antinociceptive tolerance to delta-, but not to mu-opioid receptor agonist in mice. Behav Brain Res,2007,182(1):21-27.
    [32]Golombek DA, Martini M, Cardinali DP. Melatonin as an anxiolytic in rats: Time-dependency and interaction with the central GABAergic system. Eur J Pharmacol,1993,237(2-3):231-236.
    [33]Loiseau F, Le Bihan C, Hamon M, et al. Effects of melatonin and agomelatine in anxiety-related procedures in rats:Interaction with diazepam. Eur Neuropsychopharm,2006,16(6):417-428.
    [34]Papp M, Litwa E, Gruca P, et al. Anxiolytic-like activity of agomelatine and melatonin in three animal models of anxiety. Behav pharmacol,2006,17(1): 9-18.
    [35]Naguib M, Samarkandi AH. Premedication with melatonin:a double-blind, placebo-controlled comparison with midazolam. Br J Anaest,1999,82(6): 875-880.
    [36]Naguib M, Samarkandi AH. The comparative dose-response effects of melatonin and midazolam for premedication of adult patients:A double-blinded, placebo-controlled Study. Anesth Analg,2000,91(2):473-479.
    [37]Caumo W, Levandovski R, Hidalgo MP. Preoperative anxiolytic effect of melatonin and clonidine on postoperative pain and morphine consumption in patients undergoing abdominal hysterectomy:A double-blind, randomized, placebo-controlled study. J Pain,2009,10(1):100-108.
    [38]Ismail SA, Mowafi HA. Melatonin provides anxiolysis, enhances analgesia, decreases intraocular pressure, and promotes better operating conditions during cataractsurgery under topical anesthesia. Anesth Analg,2009,108(4): 1146-1151.
    [39]Capuzzo M, Zanardi B, Schiffino E, et al. Melatonin does not reduce Anxiety more than placebo in the elderly undergoing surgery. Anesth Analg,2006, 103(1):121-123.
    [40]Zeng Q, Wang S, Lim G, et al. Exacerbated mechanical allodynia in rats with depression-like behavior. Brain Res,2008,1200(1):27-38.
    [41]Bay E, Donders J. Risk factors for depressive symptoms after mild-to-moderate traumatic brain injury. Can J Psychiatry,2008; 53 (1):3-5.
    [42]Kopp C,Vogel E, Rettori M C, et al. The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice. Behav Pharmacol, 1999,10 (1):73-83.
    [43]Brotto L A, Gorzalka B, LaMarre A K. Melatonin protects against the effects of chronic stress on sexual behaviour inmale rats. Neuroreport,2001,12 (16): 3465-3469.
    [44]Seidman SN, Araujo A B, Roose S P, et al. Low testosterone levels in elderly men with dysthymic disorder. Am J Psychiatry,2002,159(3):456-459
    [45]杨志红.褪黑素对免疫功能影响的研究发展.同济大学学报(医学版),2003,24(4):364-366.
    [46]BaltaciAK, Mogulkoc R, Bediz CS, et al. Effects of zinc deficiency and pinealectomy on cellular immunity in rats infected with Toxop lasma gondii. Biol Trace Elem Res,2005,104 (1):47-56.
    [47]Guerrero JM, Reiter RJ. Melatonin immune system relationships. Curr Top Med Chem,2002,2(2):167-179.
    [48]Mazzoccoli G, Carughi S, De Cata A, et al. Melatonin and cortisol serum levels in lung cancer patients at different stages of disease. Med SciM onit,2005, 11(6):284-288.
    [49]Dolphin AC. G protein modulation of voltage-gated calcium channels. Pharmacol Rev,2003,55 (4):607-627.
    [50]Ayar A, Martin DJ, Ozcan M, et al. Melatonin inhibits high voltage activated calcium currents in cultured rat dorsal root ganglion neurons. Neurosci Lett, 2001,313 (1-2):73-77.
    [51]Hernandez-Pacheco A, Araiza-Saldana CI, Granados-Soto V, et al. Possible participation of the nitric oxide-cyclic GMP-protein kinase G-K+channels pathway in the peripheral antinociception of melatonin. Eur J Pharmacol,2008, 596 (1-3):70-76.
    [52]陈新霞,石根勇,吕中明等.MT对睡眠作用影响及毒性研究.中国公共卫生学报,1999,18(2):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700