用户名: 密码: 验证码:
复杂系统的非线性时间序列分析及谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂性科学属于跨各个学科的新兴领域,主要研究复杂系统及其复杂性.复杂系统一般由多个简单的单元构成,且单元之间有非线性相互作用,如经济系统、交通系统、生物系统等.由于复杂系统自身的特点,传统的线性方法已不适用于研究复杂系统,因此其推动了非线性科学的发展.分形理论是非线性科学的一个重要研究分支,自相似是分形的一个重要特征.目前在经济序列、交通序列及生物序列中均已发现自相关性,且在系统内某些单元之间存在交叉相关行为.如何得到能够反映系统内在波动性的标度指数以及反映系统单元之间相互作用的交叉相关指数具有极其重要的意义.
     本文首先采用多种方法研究如何去除时间序列中的附加趋势,进而得到时间序列的真实内在标度特征;其次,基于股票序列自身存在长相关性的特征,利用分形方法研究不同股票序列的自相关性及股票序列间的交叉相关性,结合K-近邻(KNN)和经验模式分解方法(EMD)进一步分析股票序列,并给出其发展趋势的预测结论;再次,生物系统较经济系统和交通系统更为复杂,特别地,人类脑部活动研究仍是极具挑战性的工作,本文对脑部电波信号的各频带间同步性问题进行了初步探索性研究,并得到某些不同于传统观点的创新性结论.
     本文共分为六章内容,具体内容如下所述:
     第一章为绪论,主要介绍研究背景、研究对象及主要研究方法,概述本文主要工作.
     第二章为几种改进的去除趋势方法研究,主要提出时间序列波动分析方法的三种改进形式.第一、结合B-样条与MF-DFA方法,去除序列的附加指数趋势和周期趋势;第二、分别将DFA、R/S分析、DMA、CC、DCCA方法与Laplace变换相结合,去除序列的周期趋势,得到序列自身固有的相关性及序列间固有的交叉相关性;第三、提出基于V-系统的DFA方法,验证其去除序列中附加的幂指数趋势、周期趋势、组合趋势及分段函数趋势的有效性和正确性,提出一种新颖的基于完备正交函数系的时间序列趋势去除方法.
     第三章为基于DCCA方法的交叉相关性研究,主要研究除趋势波动分析(DCCA)方法.第一、在理论上论证DFA及DCCA方法叠加公式的正确性,且进行试验验证;第二、针对国内外主要股票交易机构的股票序列,采用DCCA方法分析其自相关性,以及股票交易间的交叉相关性;第三、基于时间延迟的DCCA万法,分析由时间延迟而产生的股票序列间交叉相关性.
     第四章为基于EMD与KNN的时间序列预测方法研究,主要研究时间序列的非参数预测方法,提出一种基于改进KNN和EMD的预测方法,称之为EMD-KNN方法.该方法无需特定的模型与参数,只需序列提供足够多的历史数据即可预测其发展趋势及未来数值,根据对比EMD-KNN方法、KNN方法和ARIMA万法的实验结果,验证其预测效果的有效性.
     第五章为脑电波信号同步性研究,主要研究脑部电波信号各频带间的同步性问题,研究对象是安装于大脑皮层的电极所记录的脑电波(EEG)信号,利用傅立叶变换(FFT)和谱分析方法将EEG信号分解为五个频带:δ波、θ波、α波、σ波和β波.针对各频带的探索性研究分为两部分:第一、脑部处于不同睡眠状态时的EEG各频带间同步性研究;第二、脑部处于睡眠状态转换时的EEG各频带间同步性研究.
     第六章为总结与展望,归纳本文的主要工作成果,展望后续工作的研究内容与方向.
Complexity science is a new rising cross-discipline which mainly discusses the complex system and complexity including many fields. Complex system typically has a large number of simple components, and there are nonlinear interactions between the components, such as economic system, traffic system and biological system. Due to certain characteristics of complex system, it's hard to study by linear methods which promotes the development of nonlinear science. The investigation of fractal theory is very important for nonlinear science. One of the main feature of fractal is its scale-invariant. Nowadays, it has been clarified that the existence of auto-correlations in economic system, traffic system, biological system and cross-correlations between sys-tem components. It is of great importance to develop suitable techniques to capture the scaling exponents and cross-correlation exponents. In order to find the correct scaling behavior of time series, we propose diverse techniques for minimizing the effects of different superimposed trends. In this paper, auto-correlations of several stock markets and cross-correlations between different stock markets are investigated by fractal meth-ods. Furthermore, existence and determination of long-range correlations of stock time series make it possible for forecasting. A new forecasting technique based on K nearest neighbor and empirical mode decomposition method is introduced to predict stock time series. Brain activity of biological system is a dynamical system more complex than economic and traffic system. We pointed out the study of electroencephalogram(EEG) is a crucial and challenging research subject. The synchronization of different frequency bands of EEG signal is analyzed in this paper, and some radical ideas which different from traditional views are being pointed out.
     Chapter1introduces the research background, object of study and main research techniques, furthermore, the important works of this paper.
     In Chapter2, three modifications of fluctuation analysis are proposed. Firstly, B-spline method is combined with MF-DFA for minimizing the effect of exponential trends and periodical trends superimposed in series; secondly, Laplace transform is used in DFA, R/S analysis, DMA, CC and DCCA method for minimizing external periodi-cal trends, and resembled the correlation and cross-correlation behavior of original time series; lastly, A new detrending method based on orthogonal V-system is devoted for eliminating power-law trends, periodical trends, combined trends and piecewise func-tion trends.
     Chapter3is dedicated to detrended cross-correlation analysis(DCCA). Firstly, the superposition rules are studied both in theoretical and experimental aspect. Secondly, the correlations of stock markets and cross-correlations between different stock markets are analyzed by applying DCCA technique. Finally, cross-correlations of stock markets based on time delay are discussed using time delay DCCA.
     Chapter4focuses on a new non-parameter forecasting tool. The new predict-ing method base on modified K nearest neighbor and empirical mode decomposition method, called EMD-KNN method, is given in this chapter. This method does not re-quire certain models or parameters, and only sufficiently large quantities of data which represent the underlying system. For testing forecasting accuracy, the results of EMD-KNN, KNN and ARIMA method are compared.
     Chapter5analyzes the synchronization of frequency bands in EEG signal. The researching object of this chapter is the EEG signal which is recorded by setting elec-trodes on human's scalp. The EEG signal can be decomposed into five frequency bands by applying fourier transform and spectral analysis:δ,θ,α,σ andβ. We mainly follow two different parts to investigate the frequency bands, first part is synchronization of fre-quency bands during different sleep stages, second part is synchronization of frequency bands in transitions of sleep stages.
     Chapter6devotes to the summary and some further works.
引文
[1]L.A.N. Amaral, J.M. Ottino, Complex systems and networks:challenges and opportunities for chemical and biological engineers, Chem Eng Sci 59 (2004) 1653-1666.
    [2]B.B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156 (1967) 636-638.
    [3]B.B. Mandelbrot, Fractals:Form, Chance, and Dimension, W.H. Freeman and Company, San Francisco,1977.
    [4]B.B. Mandelbrot, J.W. Van Ness, Fractional Brownian motions, fractional noises and appli-cations, SIAM Rev 10 (1968) 422-437.
    [5]B.B. Mandelbrot, J.R. Wallis, Some long-run properties of geophysical records, Water Re-sour Res 5 (1969) 321-340.
    [6]B.B. Mandelbrot, Multifractals and 1/f Noise:Wild Self-affinity in Physics, Springer, Berlin, 1999.
    [7]B.B. Mandelbrot, The Fractal Geometry of Natures, W.H. Freeman and Company, San Fran-cisco,1982.
    [8]E.N. Lorenz, Deterministic nonperiodic flow, J Atmos Sci 20 (1963) 130-141.
    [9]B.B. Mandelbrot, Intermittent turbulence in self-similar cascades; divergence of high mo-ments and dimension of carrier, J Fluid Mech 62 (1974) 331-358.
    [10]J.D. Farmer, E. Ott, J.A. Yorke, The dimension of chaotic attractors, Physica D 7 (1983) 153-180.
    [11]H.E. Hurst, Long-term storage capacity of reservoirs, Trans Amer Soc Civil Eng 116(1951) 770-808.
    [12]H.E. Hurst, R.P. Black, Y.M. Simaika, Long-term Storage:An Experimental Study, Consta-ble, London,1965.
    [13]A. Bunde, S. Havlin, Fractals in Science, Springer, Berlin,1994.
    [14]C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, On the mosaic organization of DNA sequences, Phys Rev E 49 (1994) 1685-1689.
    [15]J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Havlin, A. Bunde, Detecting long-range correlations with detrended fluctuation analysis, Physica A 295 (2001) 441-454.
    [16]K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, H.E. Stanley, Effect of trends on detrended fluctu-ation analysis, Phys Rev E 64 (2001) 011114.
    [17]Z. Chen, P.C. Ivanov, K. Hu, H.E. Stanley, Effect of nonstationarities on detrended fluctua-tion analysis, Phys Rev E 65 (2002) 041107.
    [18]Z. Chen, K. Hu, P. Carpena, P. Bernaola-Galvan, H.E. Stanley, P.C. Ivanov, Effect of nonlin-ear filters on detrended fluctuation analysis, Phys Rev E 71 (2005) 011104.
    [19]P. Grau-Carles, Bootstrap testing for detrended fluctuation analysis, Physica A 360 (2006) 89-98.
    [20]R. Nagarajan, Effect of coarse-graining on detrended fluctuation analysis, Physica A 363 (2006) 226-236.
    [21]M.S. Taqqu, Estimators for long-range dependence:An empirical study, Fractals 3 (1995) 785-798.
    [22]C. Heneghan, Establishing the relation between detrended fluctuation analysis and power spectrum density analysis for stochastic processes, Phys Rev E 62 (2000) 6103-6110.
    [23]S.M. Ossadnik, S.B. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, C.K. Peng, M. Simons, H.E. Stanley, Biophys J 67 (1994) 64-70.
    [24]P. Bernaola-Galvan, R. Roman-Roldan, J.L. Oliver, Compositional segmentation and long-range fractal correlations in DNA sequences, Phys Rev E 53 (1996) 5181-5189.
    [25]R.N. Mantegna, S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.K. Peng, M. Simons, H.E. Stanley, Linguistic features of noncoding DNA sequences, Phys Rev Lett 73 (1994) 3169-3172.
    [26]S. Havlin, S.V. Buldyrev, A.L. Goldberger, R.N. Mantegna, S.M. Ossadnik, C.K. Peng, M. Simon, H.E. Stanley, Fractals in biology and medicine, Chaos Soliton Fract 6 (1995) 171-201.
    [27]C.K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M. Simons, H.E. Stanley, Statistical properties of DNA sequences, Physica A 221 (1995) 180-192.
    [28]S.V. Buldyrev, N.V. Dokholyan, A.L. Goldberger, S. Havlin, C.K. Peng, H.E. Stanley, G.M. Viswanathan, Analysis of DNA sequences using methods of statistical physics, Physica A 249(1998)430-438.
    [29]H.E. Stanley, S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.K. Peng, M. Simons, Scaling features of noncoding DNA, Physica A 273 (1999) 1-18.
    [30]M. Barbi, S. Chillemi, A.D. Garbo, R. Balocchi, C. Carpeggiani, M. Emdin, C. Michelassi, E. Santarcangelo, Predictability and nonlinearity of the heart rhythm, Chaos Soliton Fract 9 (1998)507-515.
    [31]P.C. Ivanov, A. Bunde, L.A.N. Amaral, S. Havlin, J. Fritsch-Yelle, R.M. Baevsky, H.E. Stan-ley, A.L. Goldberger, Sleep-wake differences in scaling behavior of the human heartbeat: Analysis of terrestrial and long-term space flight data, Europhys Lett 48 (1999) 594-600.
    [32]P.A. Absil, R. Sepulchre, A. Bilge, P. Gerard, Nonlinear analysis of cardiac rhythm fluctua-tions using DFA method, Physica A 272 (1999) 235-244.
    [33]D. Toweill, K. Sonnenthal, B. Kimberly, S. Lai, B. Goldstein, Linear and nonlinear analysis of hemodynamic signals during sepsis and septic shock, Crit Care Med 28 (2000) 2051-2057.
    [34]A. Bunde, S. Havlin, J.W. Kantelhardt, T. Penzel, J.H. Peter, K. Voigt, Correlated and uncor-related regions in heart-rate fluctuations during sleep, Phys Rev Lett 85 (2000) 3736-3739.
    [35]T. Laitio, H. Huikuri, E. Kentala, T. Makikallio, J. Jalonen, H. Helenius, K. Sariola-Heinonen, S. Yli-Mayry, H. Scheinin, Correlation properties and complexity of perioper-ative RR-interval dynamics in coronary artery bypass surgery patients, Anesthesiology 93 (2000) 69-80.
    [36]Y. Ashkenazy, P.C. Ivanov, S. Havlin, C.K. Peng, Y. Yamamoto, A.L. Goldberger, H.E. Stan-ley, Decomposition of heartbeat time series:scaling analysis of the sign sequence, Comput Cardiol 27 (2000) 139-142.
    [37]Y. Ashkenazy, P.C. Ivanov, S. Havlin, C.K. Peng, A.L. Goldberger, H.E. Stanley, Magnitude and sign correlations in heartbeat fluctuations, Phys Rev Lett 86 (2001) 1900-1903.
    [38]P.C. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, H.E. Stanley, Z. Struzik, From 1/f noise to multifractal cascades in heartbeat dynamics, Chaos 11 (2001) 641-652.
    [39]J.W. Kantelhardt, Y. Ashkenazy, P.C. Ivanov, A. Bunde, S. Havlin, T. Penzel, J.H. Peter, H.E. Stanley, Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments, Phys Rev E 65 (2002) 051908.
    [40]R. Karasik, N. Sapir, Y. Ashkenazy, P.C. Ivanov, I. Dvir, P. Lavie, S. Havlin, Correlation differences in heartbeat fluctuations during rest and exercise, Phys Rev E 66 (2002) 062902.
    [41]P.C. Ivanov, Z. Chen, K. Hu, H.E. Stanley, Multiscale aspects of cardiac control, Physica A 344 (2004) 685-704.
    [42]R. Bartsch, T. Hennig, A. Heinen, S. Heinrichs, P. Maass, Statistical analysis of fluctuations in the ecg morphology, Physica A 354 (2005) 415.
    [43]D.T. Schmitt, P.K. Stein, P.C. Ivanov, Stratification pattern of static and scale-invariant dy-namic measures of heartbeat fluctuations across sleep stages in young and elderly, IEEE Trans Biomed Eng 56 (2009) 1564-1573.
    [44]J.M. Hausdorff, C.K. Peng, Z. Ladin, J.Y. Wei, A.L. Goldberger, Is walking a random walk? Evidence for long-range correlations in stride interval of human gait, J Appl Physiol 78 (1995)349-358.
    [45]R. Bartsch, M. Plotnik, J.W. Kantelhardt, S. Havlin, N. Giladi, J.M. Hausdorff, Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson's disease, Physica A 383 (2007) 455-465.
    [46]P.C. Ivanov, Q.D.Y. Ma, R.P. Bartsch, J.M. Hausdorff, L.A.N. Amaral, V. Schulte-Frohlinde, H.E. Stanley, M. Yoneyama, Levels of complexity in scale-invariant neural signals, Phys Rev E79 (2009) 041920.
    [47]K. Hu, P.C. Ivanov, Z. Chen, M.F. Hilton, H.E. Stanley, S.A. Shea, Non-Random fluctuations and multiscale dynamics regulation of human activity, Physica A 337 (2004) 307-318.
    [48]P.C. Ivanov, K. Hu, M.F. Hilton, S.A. Shea, H.E. Stanley, Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics, Proc Natl Acad Sci USA 104 (2007) 20702-20707.
    [49]K. Hu, F.A.J.L. Scheer, P.C. Ivanov, R.M. Buijs, S.A. Shea, The suprachiasmatic nucleus functions beyond circadian rhythm generation, Neuroscience 149 (2007) 508-517.
    [50]S. Bahar, J. Kantelhardt, A. Neiman, H. Rego, D. Russell, L. Wilkens, A. Bunde, F. Moss, Long-range temporal anti-correlations in paddlefish electroreceptors, Europhys Lett 56(2001)454-460.
    [51]P.A. Varotsos, N.V. Sarlis, E.S. Skordas, Long-range correlations in the electric signals that precede rupture:further investigations, Phys Rev E 67 (2003) 021109.
    [52]P.A. Varotsos, N.V. Sarlis, E.S. Skordas, Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture, Chaos 19 (2009) 023114.
    [53]K. Ivanova, M. Ausloos, Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking, Physica A 274 (1999) 349-354.
    [54]E. Koscielny-Bunde, A. Bunde, S. Havlin, H.E. Roman, Y. Goldreich, H.J. Schellnhuber, Indication of a universal persistence law governing atmospheric variability, Phys Rev Lett 81 (1998)729-732.
    [55]E. Koscielny-Bunde, H. Roman, A. Bunde, S. Havlin, H. Schellnhuber, Long-range power-law correlations in local daily temperature fluctuations, Philos Mag B 77 (1998) 1331-1340.
    [56]P. Talkner, R. Weber, Power spectrum and detrended fluctuation analysis:application to daily temperatures, Phys Rev E 62 (2000) 150-160.
    [57]A. Bunde, S. Havlin, E. Koscielny-Bunde, H.J. Schellnhuber, Long term persistence in the atmosphere:Global laws and tests of climate models, Physica A 302 (2001) 255-267.
    [58]R.A. Monetti, S. Havlin, A. Bunde, Long term persistence in the surface temperature fluctu-ations, Physica A 320 (2003) 581-590.
    [59]A. Bunde, J.F. Eichner, J.W. Kantelhardt, S. Havlin, Long-term memory:a natural mecha-nism for the clustering of extreme events and anomalous residual times in climate records, Phys Rev Lett 94 (2005) 048701.
    [60]A. Montanari, R. Rosso, M.S. Taqqu, A seasonal fractional ARIMA model applied to the Nile River monthly flows at Aswan, Water Resour Res 36 (2000) 1249-1259.
    [61]C. Matsoukas, S. Islam, I. Rodriguez-Iturbe, Detrended fluctuation analysis of rainfall and streamflow time series, J Geophys Res 105 (2000) 29165-29172.
    [62]Y.H. Liu, P. Cizeau, M. Meyer, C.K. Peng, H.E. Stanley, Correlations in economic time series, Physica A 245 (1997) 437-440.
    [63]N. Vandewalle, M. Ausloos, Coherent and random sequences in financial fluctuations, Phys-ica A 246 (1997) 454-459.
    [64]N. Vandewalle, M. Ausloos, Crossing of two mobile averages:a method for measuring the roughness exponent, Phys Rev E 58 (1998) 6832-6834.
    [65]Y.H. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.K. Peng, H.E. Stanley, Statistical proper-ties of the volatility of price fluctuations, Phys Rev E 60 (1999) 1390-1400.
    [66]I.M. Janosi, B. Janecsko, I. Kondor, Statistical analysis of 5 s index data of the Budapest Stock Exchange, Physica A 269 (1999) 111-124.
    [67]M. Ausloos, N. Vandewalle, P. Boveroux, A. Minguet, K. Ivanova, Applications of statistical physics to economic and financial topics, Physica A 274 (1999) 229-240.
    [68]M. Roberto, E. Scalas, G. Cuniberti, M. Riani, Volatility in the Italian stock market:an empirical study, Physica A 269 (1999) 148-155.
    [69]N. Vandewalle, M. Ausloos, P. Boveroux, The moving averages demystified, Physica A 269 (1999) 170-176.
    [70]P. Grau-Carles, Empirical evidence of long-range correlations in stock returns, Physica A 287 (2000) 396-404.
    [71]M. Ausloos, Statistical physics in foreign exchange currency and stock markets, Physica A 285 (2000) 48-65.
    [72]M. Ausloos, K. Ivanova, Power-law correlations in the southern-oscillation-index fluctua-tions characterizing El Nino, Phys Rev E 63 (2001) 047201.
    [73]P.C. Ivanov, A. Yuen, B. Podobnik, Y. Lee, Common scaling patterns in intertrade times of U. S. stocks, Phys Rev E 69 (2004) 056107.
    [74]R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, On the multifractal nature of fully-developed turbulence and chaotic systems, Physica A 17 (1984) 3521-3531.
    [75]J.F. Muzy, E. Bacry, A. Arneodo, Wavelets and multifractal formalism for singular signals-application to turbulence data, Phys Rev Lett 67 (1991) 3515-3518.
    [76]P. Kestener, A. Arneodo, Generalizing the wavelet-based multifractal formalism to random vector fields:application to three-dimensional turbulence velocity and vorticity data, Phys Rev Lett 93 (2004) 044501
    [77]S. Havlin, Y. Ben Avraham, Diffusion and Reactions in Fractals and Disordered Systems, Cambridge University Press, Cambridge,2000.
    [78]S. Jaffard, The multifractal nature of Levy processes, Probab Theory Rel 114 (1999) 207-227.
    [79]H. Nakao, Multi-scaling properties of truncated Levy flights, Phys Lett A 266 (2000) 282-289.
    [80]J.F. Muzy, E. Bacry, A. Arneodo, The multifractal formalism revisited with wavelets, Int J Bifur Chaos 4 (1994) 245-302.
    [81]A. Arneodo, E. Bacry, P.V. Graves, J.F. Muzy, Characterizing long-range correlations in DNA sequences from wavelet analysis, Phys Rev Lett 74 (1995) 3293-3296.
    [82]J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stan-ley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A 316 (2002)87-114.
    [83]G.F. Gu, W.X. Zhou, Detrended fluctuation analysis for fractals and multifractals in higher dimensions, Phys Rev E 74 (2006) 061104.
    [84]J. Feder, Fractals, Plenum Press, New York,1988.
    [85]M.F. Barnsley, Fractals Everywhere, Academic Press,1993.
    [86]P.E.T. Jorgenssen, Analysis and Probability:Wavelets, Signals, Fractals, Springer, Berlin, 2000.
    [87]H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press,2003.
    [88]H.O. Peitgen, H. Jiirgens, D. Saupe, Chaos and fractals, Springer, Berlin,2004.
    [89]P.C. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, H.E. Stanley, Multifractality in human heartbeat dynamics, Nature 399 (1999) 461-465.
    [90]P.J. Shang, Y.B. Lu, S. Kamae, Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis, Chaos Soliton Fract 36 (2008) 82-90.
    [91]E. Alessio, A. Carbone, G. Castelli, V. Frappietro, Second-order moving average and scaling of stochastic time series, Eur Phys J B 27 (2002) 107-200.
    [92]A. Carbone, G. Castelli, H.E. Stanley, Analysis of clusters formed by the moving average of a long-range correlated time series, Phys Rev E 69 (2004) 026105.
    [93]J. Alvarez-Ramirez, E. Rodriguez, J.C. Echeverria, Detrending fluctuation analysis based on moving average filtering, Physica A 354 (2005) 199-219.
    [94]L.M. Xu, P.C. Ivanov, K. Hu, Z. Chen, A. Carbone, H.E. Stanley, Quantifying signals with power-law correlations:a comparative study of detrended fluctuation analysis and detrended moving average techniques, Phys Rev E 71 (2005) 051101.
    [95]A. Bashan, R.P. Bartsch, J.W. Kantelhardt, S. Havlin, Comparison of detrending methods for fluctuation analysis, Physica A 387 (2008) 5080-5090.
    [96]A. Carbone, Algorithm to estimate the Hurst exponent of high-dimensional fractals, Phys Rev E 76 (2007)056703.
    [97]A. Carbone, G. Castelli, Scaling properties of long-range correlated noisy signals:appplica-tion to financial markets, Proc SPIE 5114 (2003) 406-414.
    [98]A. Carbone, G. Castelli, H.E. Stanley, Time-dependent Hurst exponent in financial time series, Physica A 344 (2004) 267-271.
    [99]P.A. Varotsos, N.V. Sarlis, H.K. Tanaka, E.S. Skordas, Some properties of the entropy in the natural time, Phys Rev E 71 (2005) 032102.
    [100]A. Serletis, A.A. Rosenberg, The Hurst exponent in energy futures prices, Physica A 380 (2007) 325-332.
    [101]S. Arianos, A. Carbone, Detrending moving average algorithm:A closed-form approxima-tion of the scaling law, Physica A 382 (2007) 9-15.
    [102]G.F. Gu, W.X. Zhou, Detrending moving average algorithm for multifractals, Phys Rev E 82 (2010)011136.
    [103]A.Y. Schumanna, J.W. Kantelhardt, Multifractal moving average analysis and test of multi-fractal model with tuned correlations, Physica A 390 (2011) 2637-2654.
    [104]K. Kiyono, Z.R. Struzik, N. Aoyagi, F. Togo, Y. Yamamoto, Phase transition in a healthy human heart rate, Phys Rev Lett 95 (2005) 058101.
    [105]C.V. Chianca, A. Ticona, T.J.P. Penna, Fourier-detrended fluctuation analysis, Physica A 357 (2005) 447-454.
    [106]R. Nagarajan, R.G. Kavasseri, Minimizing the effect of sinusoidal trends in detrended fluc-tuation analysis, Int J Bifur Chaos 15 (2005) 1767-1773.
    [107]R. Nagarajan, R.G. Kavasseri, Minimizing the effect of trends on detrended fluctuation anal-ysis of long-range correlated noise, Physica A 354 (2005) 182-198.
    [108]P.J. Shang, A.J. Lin, L. Liu, Chaotic SVD method for minimizing the effect of exponential trends in detrended fluctuation analysis, Physica A 388 (2009) 720-726.
    [109]I.M. Janosi, R. Muller, Empirical mode decomposition and correlation properties of long daily ozone records, Phys Rev E 71 (2005) 056126.
    [110]P.J. Shang, K.Q. Dong, L.L. Zhao, S. Kamae, Empirical mode decomposition and correlation properties of traffic fluctuation, Fluct Noise Lett 9 (2010) 167-178.
    [111]Y. Zhou, Y. Leung, Empirical mode decomposition and long-range correlation analysis of sunspot time series, J Stat Mech (2010) P12006.
    [112]X.Y. Qian, G.F. Gu, W.X. Zhou, Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes, Physica A 390 (2011)4388-4395.
    [113]V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, H.E. Stanley, Universal and nonuniversal properties of cross-correlations in financial time series, Phys Rev Lett 83 (1999) 1471-1474.
    [114]S. Drozdz, F. Grummer, F. Ruf, J. Speth, Towards identifying the world stock market cross-correlations:DAX versus Dow Jones, Physica A 294 (2001) 226-234.
    [115]L. Kullmann, J. Kertesz, K. Kaski, Time-dependent cross-correlations between different stock returns:a directed network of influence, Phys Rev E 66 (2002) 026125.
    [116]B. Rosenow, P. Gopikrishnan, V. Plerou, H.E. Stanley, Dynamics of cross-correlations in the stock market, Physica A 324 (2003) 241-246.
    [117]D. Wilcox, T. Gebbie, On the analysis of cross-correlations in South African market data, Physica A 344 (2004) 294-298.
    [118]B. Toth, J. Kertesz, Increasing market efficiency:Evolution of cross-correlations of stock returns, Physica A 360 (2006) 505-515.
    [119]C. Eom, G. Oh, S. Kim, Deterministic factors of stock networks based on cross-correlation in financial market, Physica A 383 (2007) 139-146.
    [120]D. Wilcox, T. Gebbie, An analysis of cross-correlations in an emerging market, Physica A 375 (2007) 584-598.
    [121]S. Cukur, M. Eryigit, R. Eryigit, Cross correlations in an emerging market financial data, Physica A 376 (2007) 555-564.
    [122]T. Conlon, H.J. Ruskin, M. Crane, Cross-correlation dynamics in financial time series, Phys-ica A 388 (2009) 705-714.
    [123]M. Eryigit, R. Eryigit, Network structure of cross-correlations among the world market in-dices, Physica A 388 (2009) 3551-3562.
    [124]G. Lim, S.Y. Kim, J. Kim, P. Kim, Y. Kang, S. Park, I. Park, S.B. Park, K. Kim, Structure of a financial cross-correlation matrix under attack, Physica A 388 (2009) 3851-3858.
    [125]K. Saito, I. Wada, M. Tamura, M. Kinjo, Direct detection of caspase-3 activation in single live cells by cross-correlation analysis, Biochem Biophys Res Commun 324 (2004) 849-854.
    [126]A. Capurro, C.P. Malta, L. Diambra, P. Contreras, E.R. Migliaro, Cross-correlation of heart-beat and respiration rhythms, Physica A 356 (2005) 37-42.
    [127]E. Oczeretko, J. Swiatecka, A. Kitlas, T. Laudanski, P. Pierzynski, Visualization of synchro-nization of the uterine contraction signals:Running cross-correlation and wavelet running cross-correlation methods, Med Eng Phys 28 (2006) 75-81.
    [128]S. Chandaka, A. Chatterjee, S. Munshi, Cross-correlation aided support vector machine clas-sifier for classification of EEG signals, Expert Syst Appl 36 (2009) 1329-1336.
    [129]S. Takashima, H. Asanuma, H. Niitsuma, A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique, Sens Actuators A 116 (2004) 66-74.
    [130]L. Guan, J. Yang, J.M. Bell, Cross-correlations between weather variables in Australia, Build Environ 42 (2007) 1054-1070.
    [131]G. Turbelin, P. Ngae, M. Grignon, Wavelet cross-correlation analysis of wind speed series generated by ANN based models, Renewable Energy 34 (2009) 1024-1032.
    [132]G.F. Zebende, A.M. Filho, Cross-correlation between time series of vehicles and passengers, Physica A 388 (2009) 4863-4866.
    [133]L. Telesca, M. Balasco, G. Colangelo, V. Lapenna, M. Macchiato, Analyzing cross-correlations between earthquakes and geoelectrical extreme events, measured in a seismic area of Southern Italy, Phys Chem Earth 29 (2004) 289-293.
    [134]S. Pincus, R.E. Kalman, Irregularity, volatility, risk, and financial market time series, Proc Natl Acad Sci USA 101 (2004) 13709-13714.
    [135]J.S. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am J Physiol Heart Circ Physiol 278 (2000) H2039-H2049.
    [136]S. Arianos, A. Carbone, Cross-correlation of long-range correlated series, J Stat Mech (2009) P03037.
    [137]B. Podobnik, H.E. Stanley, Detrended cross-correlation analysis:a new method for analyz-ing two nonstationary time series, Phys Rev Lett 100 (2008) 084102.
    [138]W.X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Phys Rev E 77 (2008) 066211.
    [139]S. Shadkhoo, G.R. Jafari, Multifractal detrended cross-correlation analysis of temporal and spatial seismic data, Eur Phys J B 72 (2009) 679-683.
    [140]B. Podobnik, D. Horvatic, A. Lam Ng, H.E. Stanley, P.C. Ivanov, Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes, Physica A 387 (2008) 3954-959.
    [141]X.J. Zhao, P.J. Shang, A.J. Lin, G. Chen, Multifractal Fourier detrended cross-correlation analysis of traffic signals, Physica A 390 (2011) 3670-3678.
    [142]L.Y. He, S.P. Chen, Multifractal detrended cross-Correlation analysis of agricultural futures markets, Chaos Soliton Fract 44 (2011) 355-361.
    [143]L.Y. He, S.P. Chen, Nonlinear bivariate dependency of price-volume relationships in agri-cultural commodity futures markets:A perspective from multifractal detrended cross-correlation analysis, Physica A 390 (2011) 297-308.
    [144]G.F. Zebende, DCCA cross-correlation coefficient:Quantifying level of cross-correlation, Physica A 390(2011) 614-618.
    [145]S. Hajiana, M.S. Movahed, Multifractal detrended cross-correlation analysis of sunspot numbers and river flow fluctuations, Physica A 389(2010) 4942-4957.
    [146]J.A. Skjeltorp, Scaling in the norwegian stock market, Physica A 283 (2000) 486-528.
    [147]B.H. Wang, P.M. Hui, The distribution and scaling of fluctuations for hang seng index in hong kong stock market, Eur Phys J B 20 (2001) 573-579.
    [148]T.H. Olan, Long memory in stock returns:some international evidence, Appl Finan Econ 12 (2002) 725-729.
    [149]E. Peters, Fractal Market Analysis:Applying Chaos Theory to Investment and Economics, John Wiley and Sons, New York,1994.
    [150]B. Podobnik, I. Grosse, D. Horvati, S. Ilic, P.C. Ivanov, H.E. Stanley, Quantifying cross-correlations using local and global detrending approaches, Eur Phy J B 71 (2009) 243-250.
    [151]B. Podobnik, D. Horvatic, A.M. Petersen, H.E. Stanley, Cross-correlations between volume change and price change, Proc Natl Acad Sci USA 106 (2009) 22079-22084.
    [152]T. Qiu, G. Chen, L.X. Zhong, X.W. Lei, Memory effect and multifractality of cross-correlations in financial markets, Physica A 390 (2011) 828-836.
    [153]Y.D. Wang, C.F Wu, Z.Y. Pan, Multifractal detrending moving average analysis on the US Dollar exchange rates, Physica A 390 (2011) 3512-3523.
    [154]H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press,2004.
    [155]A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization:A Universal Concept in Nonlinear Sciences, Cambridge University Press,2001.
    [156]M. Martin-Loeches, P. Gil, F.J. Rubia, Two-Hz wide EEG bands in Alzheimer's disease, Biolog Psych 33 (1993) 153-159.
    [157]T. Morikawa, M. Hayashi, T. Hori, Auto power and coherence analysis of delta-theta band EEG during the waking-sleeping transition period, Electroencephalogr Clin Neurophysiol 103(1997)633-641.
    [158]H. Merica, R.D. Fortune, A neuronal transition probability model for the evolution of power in the sigma and delta frequency bands of sleep EEG, Physiol Behav 62 (1997) 585-589.
    [159]B.P. Zietsch, J.L. Hansen, N.K. Hansell, G.M. Geffen, N.G. Martin, M.J. Wright, Common and specific genetic influences on EEG power bands delta, theta, alpha, and beta, Biolog Psych 75 (2007) 154-164.
    [160]R. Ferri, F.I.I. Cosentino, M. Elia, S.A. Musumeci, R. Marinig, P. Bergonzi, Relationship between Delta, Sigma, Beta, and Gamma EEG bands at REM sleep onset and REM sleep end, Clin Neurophysiol 112 (2001) 2046-2052.
    [161]C. Spironelli, A. Angrilli, EEG delta band as a marker of brain damage in aphasic patients after recovery of language, Neuropsychologia 47 (2009) 988-994.
    [162]R.Q. Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchroniza-tion measures in real data:A case study on electroencephalographic signals, Phys Rev E 65 (2002)041903.
    [163]R. Ferri, C.J. Stam, B. Lanuzza, F.I.I. Cosentino, M. Elia, S.A. Musumeci, G. Pennisi, Differ-ent EEG frequency band synchronization during nocturnal frontal lobe seizures, Clin Neu-rophysiol 115 (2004) 1202-1211.
    [164]F. Gans, A.Y. Schumann, J.W. Kantelhardt, Cross-modulated amplitudes and frequencies characterize interacting components in complex systems, Phys Rev Lett 102 (2009) 098701.
    [165]K. Stumpf, A.Y. Schumann, M. Plotnik, F. Gans, T. Penzel, I. Fietze, J.M. Hausdorff, J.W. Kantelhardt, Effects of Parkinson's disease on brain-wave phase synchronisation and cross-modulation, Europhys Lett 89 (2010) 48001.
    [166]M.T. Greene, B.D. Fielitz, Long-term dependence in common stock returns, J Financ Econ 4(1977)339-349.
    [167]Y.W. Cheung, K.S. Lai, A search for long memory in international stock market returns, J In Money Finance 14(1995)597-615.
    [168]J.T. Barkoulas, C.F. Baum, N. Travlos, Long memory in the Greek Stock Market, Appl Financ Econ 10(2000) 177-184.
    [169]A. Leonidov, Long memory in stock trading, Int J Theor Appl Finance 7 (2004) 879-885.
    [170]D.S. Ho, C.K Lee, C.C. Wang, Scaling characteristics in the Taiwan stock market, Physica A 332 (2004) 448-460.
    [171]D. Vougas, Analysing long memory and volatility of returns in the Athens stock exchange, Appl Financ Econ 14 (2004) 457-460.
    [172]R. Kili, On the long memory properties of emerging capital markets:evidence from Istanbul stock exchange, Appl Financ Econ 14 (2004) 915-922.
    [173]J. Nikkinen, M.M. Omran, P. Sahlstrom, J. Aijo, Stock returns and volatility following the September 11 attacks:Evidence from 53 equity markets, Int Rev Financ Analysis 17 (2008) 27-46.
    [174]D.O. Cajueiro, B.M. Tabak, Testing for long-range dependence in world stock markets, Chaos Soliton Fract 37 (2008) 918-927.
    [175]E. Anoruo, L. Gil-Alana, Mean reversion and long memory in African stock market prices, Econ Finance 35 (2011) 296-308.
    [176]I.J. Schoenberg, The perfect B-splines and a time-optimal control problem, Israel J Math 10 (1971)261-274.
    [177]I.J. Schoenberg, A. Sharma, Cardinal Interpolation and spline functions V. The B-splines for cardinal Hermite interpolation, Linear Algebra Appl 7 (1973) 1-42.
    [178]N. Caglar, H. Caglar, B-spline method for solving linear system of second-order boundary value problems, Comput Math Appl 57 (2009) 757-762.
    [179]A.R. Bahadir, Application of cubic B-spline finite element technique to the thermistor prob-lem, Appl Math Comput 149 (2004) 379-387.
    [180]H. Kano, M. Egerstedt, H. Nakata, C.F. Martin, B-splines and control theory, Appl Math Comput 145 (2003) 263-288.
    [181]B. Buchwald, G. Muhlbach, Construction of B-splines for generalized spline spaces gener-ated from local ECT-systems, J Comput Appl Math 159 (2003) 249-267.
    [182]R. Panda, B.N. Chatterji, Least squares generalized B-spline signal and image processing, Signal Process 81 (2001) 2005-2017.
    [183]R.X. Song, H. Ma, T.J. Wang, D.X. Qi, Complete orthogonal V-system and its applications, Commun Pure Appl Anal 6 (2007) 853-871.
    [184]C.W.J. Granger, R. Joyeux, An introduction to long memory time series models and frac-tional differencing, J Time Ser Anal 1 (1980) 15-29.
    [185]R. Costa, G.L. Vasconcelos, Long-range correlations and nonstationarity in the Brazilian stock market, Physica A 329 (2003) 231-248.
    [186]N. Xu, P.J. Shang, S. Kamae, Modeling traffic flow correlation using DFA and DCCA, Non-linear Dyn 61 (2010)207-216.
    [187]J. Yuan, K. Mills, A cross-correlation-based method for spatial-temporal traffic analysis, Perform Eval 61 (2005) 163-180.
    [188]G.F. Zebendea, A. Machado Filho, Cross-correlation between time series of vehicles and passengers, Physica A 388 (2009) 4863-4866.
    [189]V. Lapenna, G. Martinelli, L. Telesca, Long-range correlation analysis of earthquake-related geochemical variations recorded in Central Italy, Chaos Soliton Fract 21 (2007) 491-500.
    [190]S. Sharifi, M. Crane, A. Shamaie, H. Ruskin, Random matrix theory for portfolio optimiza-tion:A Stability Approach, Physica A 335 (2004) 629-643.
    [191]L. Guana, J. Yanga, J.M. Bellb, Cross-correlations between weather variables in Australia, Build Environ 42 (2007) 1054-1070.
    [192]P.H. Franses, D.V. Dijk, Forecasting stock marketvolatility using (non-linear) GARCH mod-els, Int J Forecast 15 (1996) 229-235.
    [193]R.G. Donaldson, M. Kamstra, An artificial neural network-GARCH model for international stock return volatility, J Empir Finance 4 (1997) 17-46.
    [194]F. Lisi, R.A. Schiavo, A comparison between neural networks and chaotic models for ex-change rate prediction, Comput Stat Data Anal 30 (1999) 87-102.
    [195]P.J. Shang, X.W. Li, S. Kamae, Chaotic analysis of traffic time series, Chaos Soliton Fract 25 (2005) 121-128.
    [196]M.J. Kim, S.H. Min, I. Han, An evolutionary approach to the combination of multiple clas-sifiers to predict a stock price index, Expert Syst Appl 31 (2006) 241-247.
    [197]M. Ture, I. Kurt, Comparison of four different time series methods to forecast hepatitis A virus infection, Expert Syst Appl 31 (2006) 41-46.
    [198]V.M. Khokhlov, A.V. Glushkov, N.S. Loboda, Y.Y. Bunyakova, Short-range forecast of at-mospheric pollutants using non-linear prediction method, Atmos Environ 42 (2008) 7284-7292.
    [199]J. Arroyo, C. Mate, Forecasting histogram time series with k-nearest neighbours methods, Int J Forecast 25 (2009) 192-207.
    [200]M.K. Das, N. Kishor, Adaptive fuzzy model identification to predict the heat transfer coeffi-cient in pool boiling of distilled water, Expert Syst Appl 36 (2009) 1142-1154.
    [201]E.O. Tomppo, O. Gagliano, F.D. Natale, M. Katila, R.E. McRoberts, Predicting categorical forest variables using an improved k-Nearest Neighbour estimator and Landsat imagery, Remote Sens Environ 113 (2009) 500-517.
    [202]L.C. Wu, J.X. Lee, H.D. Huang, B.J. Liu, J.T. Horng, An expert system to predict protein thermostability using decision tree, Expert Syst Appl 36 (2009) 9007-9014.
    [203]D.O. Cajueiro, B.M. Tabak, F.K. Werneck, Can we predict crashes? The case of the Brazilian stock market, Physica A 388 (2009) 1603-1609.
    [204]G.A. Davis, N.L. Nihan, Nonparametric regression and short-term freeway traffic forecast-ing, ASCE J Transp Eng 117 (1991) 178-188.
    [205]I. Turkoglu, E.D. Kaymaz, A hybrid method based on artificial immune system and K-NN algorithm for better prediction of protein cellular localization sites, Appl Soft Comput 9 (2009) 497-502.
    [206]H. Li, J. Sun, B.L. Sun, Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors, Expert Syst Appl 36 (2009) 643-659.
    [207]M. Bannayan, G. Hoogenboom, Weather analogue:A tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach, Environ Model Soft 23 (2008) 703-713.
    [208]N.E. Huang, Z. Shen, S.R. Long, The empirical mode decomposition and the Hilbert spec-trum for nonlinear and nonstationary time series analysis, Proc R Soc London 454 (1998) 903-995.
    [209]X. Zhang, K.K. Lai, S.Y. Wang, A new approach for crude oil price analysis based on em-pirical mode decomposition, Energy Econ 30 (2008) 905-918.
    [210]S.J. Loutridis, Damage detection in gear systems using empirical mode decomposition, Eng Struct 26 (2004) 1833-1841.
    [211]K. Guhathakurta, I. Mukherjee, A.R. Chowdhury, Empirical mode decomposition anal-ysis of two different financial time series and their comparison, Chaos Soliton Fract 37 (2008)1214-1227.
    [212]J.R. Yeh, S.Z. Fan, J.S. Shieh, Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition, Med Eng Phys 31 (2009)92-100.
    [213]N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys Rev E 51 (1995) 980-994.
    [214]E. Toledo, S. Akselrod, I. Pinhas, D. Aravot, Does synchronization reflect a true interaction in the cardiorespiratory system? Med Eng Phys 24 (2002) 45-52.
    [215]D.G. Luchinsky, M.M. Millonas, V.N. Smelyanskiy, A. Pershakova, A. Stefanovska, P.V.E. McClintock, Nonlinear statistical modeling and model discovery for cardiorespiratory data, Phys Rev E 72 (2005) 021905.
    [216]R. Bartsch, J.W. Kantelhardt, T. Penzel, S. Havlin, Experimental evidence for phase syn-chronization transitions in the human cardiorespiratory system, Phys Rev Lett 98 (2007) 054102-054104.
    [217]Z. Chen, K. Hu, H.E. Stanley, V. Novak, P.C. Ivanov, Cross-correlation of instantaneous phase increments in pressure-flow fluctuations:applications to cerebral autoregulation, Phys Rev E 73 (2006) 031915.
    [218]C.J. Stam, Nonlinear dynamical analysis of EEG and MEG:review of an emerging field, Clin Neurophysiol 116 (2005) 2266-2301.
    [219]C.J. Stam, A.M. van Cappellen van Walsum, Y.A. Pijnenburg, H.W. Berendse, J.C. de Munck, P. Scheltens, B.W. van Dijk, Generalized synchronization of MEG recordings in Alzheimer's Disease:evidence for involvement of the gamma band, Clin Neurophysiol 19 (2002) 562-574.
    [220]P. Bob, M. Palus, M. Susta, K. Glaslova, EEG phase synchronization in patients with para-noid schizophrenia, Neurosci Lett 447 (2008) 73-77.
    [221]P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.J. Freund, Detection of n:m phase locking from noisy data:application to magnetoencephalog-raphy, Phys Rev Lett 81 (1998) 3291-3294.
    [222]A. Gozolchiani, S. Moshel, J.M. Hausdorff, E. Simon, J. Kurths, S. Havlin, Decaying of phase synchronization in parkinsonian tremor, Physica A 366 (2006) 552-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700