用户名: 密码: 验证码:
缺氧诱导Neuroglobin上调的调控机制和以Neuroglobin为靶分子筛选神经保护药物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分缺氧诱导Neuroglobin上调的调控机制
     Neuroglobin (Ngb)是新近发现的神经特异性表达的携氧蛋白,主要在脊椎动物神经组织中高表达。以前的研究表明,缺氧可以诱导大脑中Ngb基因的表达的上调,而增加Ngb的表达可以进一步保护大脑免受缺血缺氧引发的损伤。然而,Ngb在缺氧条件下的调控机制尚不是很清楚。在这个研究中,我们发现小鼠Ngb基因的近端启动子约554bp的序列高度保守,并且这段区域包含几个保守的NFκB和Egr1结合位点。过表达或者干扰转录因子p65,p50,Egr1或者Sp1能够增加或者降低Ngb基因的表达。Ngb基因启动子区域转录因子结合位点突变研究以及凝胶迁移或电泳迁移率实验(EMSA)和染色体免疫沉淀实验证明了NFκB家族成员(包括p65,p50和cRel)以及Egr1和Sp1能够与Ngb基因的启动子区域结合。而且,我们研究发现一个κB3位点作为一个关键的顺式作用原件介导了缺氧条件下诱导Ngb基因启动子活性的上调。转录因子NFκB(p65),Sp1参与了调控缺氧条件下Ngb基因的表达上调。尽管我们在小鼠Ngb基因的近端启动子区域并没有发现HIF1α的保守结合位点,但是我们的结果表明HIF1α也参与了缺氧条件下Ngb基因的表达上调。因此,从这些结果中我们得出结论:转录因子NFκB,Egr1,Sp1通过与小鼠Ngb基因启动子特异性的结合参与了对Ngb基因的调控,而NFκB,Sp1以及HIF1α参与了缺氧条件下小鼠Ngb基因的调控。第二部分以Neuroglobin为靶分子筛选神经保护药物研究
     中风是引起人类死亡的主要疾病之一。以前的研究表明Ngb是一个能保护神经免受缺血缺氧,氧压以及神经退行性病变的新的内源性神经保护蛋白。因此,上调Ngb的表达可能能作为一种干预和治疗中风以及相关性疾病的潜在的治疗方法。为了筛选能够上调Ngb表达的自然化合物,我们分别克隆了人以及小鼠约2kb的Ngb启动子并构建进入报告基因载体,然后进一步分别建立了人以及小鼠具有Ngb启动子报告基因的稳定表达系。为了鉴定我们的人以及小鼠的稳定表达系,我们初步筛选了一个包含约40个化合物的文库。我们发现:Polydatin, Icariin, Genipin, Genistein, Daidzein, Biochanin A, Formononetin能够在小鼠的稳定表达系中上调小鼠的Ngb基因启动子活性。而Polydatin, Genistein, Daidzein, Biochanin A, Formononetin能够在人的稳定表达细胞系中上调人的Ngb基因启动子活性。通过RT-PCR和Western blotting我们进一步确认了Polydatin, Genistein, Formononetin能够显著的上调Ngb mRNA水平和蛋白水平。而且我们的结果表明Polydatin和Formononetin能够减少OGD诱导的神经元的死亡。因此,我们的结果说明Polydatin和Formononetin可能可以作为潜在的神经保护药物,并且我们构建的人和小鼠Ngb基因报告基因表达系可以用于进一步的高通量药物筛选。
Part Ⅰ Transcriptional Regulation Mechanisms of Hypoxia-Induced Neuroglobin Gene Expression
     Neuroglobin (Ngb) has been identified as a novel endogenous neuroprotectant. However, little is known about the regulation mechanisms of Ngb expression, especially under hypoxia conditions. In this study, we located the core proximal promoter of mouse Ngb gene to a554bp segment, which harbors putative conserved NFκB, Egr1binding sites. Over-expression and knock-down of transcription factors p65, p50, Egr1or Sp1increased and decreased Ngb expression, respectively. Experimental assessments with transfections of mutational Ngb gene promoter constructs, as well as EMS A and ChIP assays demonstrated that NFκB family members (p65, p50, cRel), Egr1, and Sp1bound in vitro and in vivo to the proximal promoter region of Ngb gene. Moreover, a κB3site was found as a pivotal cis-element responsible for hypoxia-induced Ngb promoter activity. NFκB (p65) and Sp1were also responsible for hypoxia-induced upregulation of Ngb expression. Although there are no conserved HREs (hypoxia-response elements) in the promoter of mouse Ngb gene, our results suggested that HIF1α is also involved in hypoxia-induced Ngb upregulation. In conclusion, we identified that NFκB, Egr1, and Sp1played important roles in regulation of basal Ngb expression via specific interactions with the mouse Ngb promoter. NFκB, Sp1and HIF1α contributed to the upregulation of mouse Ngb gene expression under hypoxic conditions. Part Ⅱ
     Identifying Compounds That Upregulate Neuroglobin for Endogenous Neuroprotection
     Stroke is one of the leading causes of death worldwide. Previous studies indicate that Neuroglobin is a novel neuroprotective protein that protected against hypoxic/ischemic neuron injury, oxidative injury, neurodegenerated disease. Thus, up-regulating Ngb may be a novel therapeutic approach for the intervention and treatment of stroke and related disorders. To identify natural compounds that increase Ngb expression, we developed both mouse and human reporter system that stably expressed a luciferase reporter gene directed by around2000bp of the mouse and human Ngb promoter, respectively. Preliminary validation of both reporter system using a small pool of natural compounds identified several Ngb activators:Polydatin, Icariin, Genipin, Genistein, Daidzein, Biochanin A, Formononetin for increasing mouse Ngb promoter activity; Polydatin, Genistein, Daidzein, Biochanin A, Formononetin for increasing human Ngb promoter activity. Those potential activators of the Ngb promoter were further evaluated by secondary analyses. RT-PCR and Western blotting further confirmed that Polydatin, Genistein, Formononetin were able to significantly increase Ngb mRNA levels and protein levels. Moreover, they also significantly decreased OGD-induced the rate of death of mouse primary cortical neuron. Our results suggested that Polydatin, Fonnononetin are potential neuroprotective drugs and our mouse and human reporter system could be used for high-throughput screening.
引文
[1]Burmester, T., Weich, B., Reinhardt, S. and Hankeln, T. A vertebrate globin expressed in the brain. Nature,2000,407 (6803):520-523.
    [2]Reuss, S., Saaler-Reinhardt, S., Weich, B., Wystub, S., Reuss, M. H., Burmester, T. and Hankeln, T. Expression analysis of neuroglobin mRNA in rodent tissues. Neuroscience,2002,115 (3):645-656.
    [3]Wakasugi, K. and Morishima, I. Preparation and characterization of a chimeric zebrafish-human neuroglobin engineered by module substitution. Biochem Biophys Res Commun,2005,330 (2):591-597.
    [4]Wystub, S., Laufs, T., Schmidt, M., Burmester, T., Maas, U., Saaler-Reinhardt, S., Hankeln, T. and Reuss, S. Localization of neuroglobin protein in the mouse brain. Neurosci Lett,2003,346 (1-2): 114-116.
    [5]Dewilde, S., Kiger, L., Burmester, T., Hankeln, T., Baudin-Creuza, V., Aerts, T., Marden, M. C., Caubergs, R. and Moens, L. Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem,2001,276 (42):38949-38955.
    [6]Chen, X. Q., Qin, L. Y., Zhang, C. G., Yang, L. T., Gao, Z., Liu, S. Lau, L. T., Fung, Y. W., Greenberg, D. A. and Yu, A. C. Presence of neuroglobin in cultured astrocytes. Glia,2005,50 (2):182-186.
    [7]DellaValle, B., Hempel, C., Kurtzhals, J. A. and Penkowa, M. In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis. Glia,2010,58 (10):1220-1227.
    [8]Qin, H., Guo, Y, Zhang, C., Zhang, L., Li, M. and Guan, P. The expression of neuroglobin in astrocytoma. Brain Tumor Pathol,2011,
    [9]邓美玉,张成岗,王航雁,等.脑红蛋白mRNA在大鼠脑内的定位.解剖学报,2003,34(1):85-89.
    [10]Zhu, Y., Sun, Y, Jin, K. and Greenberg, D. A. Hemin induces neuroglobin expression in neural cells. Blood,2002,100 (7):2494-2498.
    [11]Laufs, T. L., Wystub, S., Reuss, S., Burmester, T., Saaler-Reinhardt, S. and Hankeln, T. Neuron-specific expression of neuroglobin in mammals. Neurosci Lett,2004,362 (2):83-86.
    [12]Zhang, W., Tian, Z., Sha, S., Cheng, L. Y, Philipsen, S. and Tan-Un, K. C. Functional and sequence analysis of human neuroglobin gene promoter region. Biochim Biophys Acta,2011,1809 (4-6):236-244.
    [13]Fordel, E., Geuens, E., Dewilde, S., De Coen, W. and Moens, L. Hypoxia/ischemia and the regulation of neuroglobin and cytoglobin expression. IUBMB Life,2004,56 (11-12):681-687.
    [14]Sun, Y, Jin, K., Mao, X. O., Zhu, Y and Greenberg, D. A. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci U S A,2001,98 (26): 15306-15311.
    [15]Fordel, E., Thijs, L., Martinet, W., Schrijvers, D., Moens, L. and Dewilde, S. Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene,2007,398 (1-2):114-122.
    [16]Sun, Y, Jin, K., Peel, A., Mao, X. O., Xie, L. and Greenberg, D. A. Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci U S A,2003,100 (6):3497-3500.
    [17]Khan, A. A., Wang, Y., Sun, Y, Mao, X. O., Xie, L., Miles, E., Graboski, J., Chen, S., Ellerby, L. M., Jin, K. and Greenberg, D. A. Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia. Proc Natl Acad Sci U S A,2006,103 (47): 17944-17948.
    [18]Wang, X., Liu, J., Zhu, H., Tejima, E., Tsuji, K., Murata, Y, Atochin, D. N., Huang, P. L., Zhang, C. and Lo, E. H. Effects of neuroglobin overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia. Stroke,2008,39 (6):1869-1874.
    [19]Li, R. C., Pouranfar, F., Lee, S. K., Morris, M. W., Wang, Y. and Gozal, D. Neuroglobin protects PC 12 cells against beta-amyloid-induced cell injury. Neurobiol Aging,2008,29 (12):1815-1822.
    [20]Khan, A. A., Mao, X. O., Banwait, S., Jin, K. and Greenberg, D. A. Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc Natl Acad Sci U S A,2007,104 (48): 19114-19119.
    [21]Trent, J. T.,3rd, Watts, R. A. and Hargrove, M. S. Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem,2001,276 (32):30106-30110.
    [22]Schmidt, M., Giessl, A., Laufs, T., Hankeln, T., Wolfrum, U. and Burmester, T. How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina. J Biol Chem,2003,278 (3):1932-1935.
    [23]Kriegl, J. M., Bhattacharyya, A. J., Nienhaus, K., Deng, P., Minkow, O. and Nienhaus, G. U. Ligand binding and protein dynamics in neuroglobin. Proc Natl Acad Sci U S A,2002,99 (12):7992-7997.
    [24]Fago, A., Hundahl, C., Malte, H. and Weber, R. E. Functional properties of neuroglobin and cytoglobin. Insights into the ancestral physiological roles of globins. IUBMB Life,2004,56 (11-12):689-696.
    [25]Hundahl, C. A., Kelsen, J., Dewilde, S. and Hay-Schmidt, A. Neuroglobin in the rat brain (Ⅱ):co-localisation with neurotransmitters. Neuroendocrinology,2008,88 (3):183-198.
    [26]Brunori, M., Giuffre, A., Nienhaus, K., Nienhaus, G. U., Scandurra, F. M. and Vallone, B. Neuroglobin, nitric oxide, and oxygen:functional pathways and conformational changes. Proc Natl Acad Sci U S A,2005, 102(24):8483-8488.
    [27]Moncada, S. and Erusalimsky, J. D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol, 2002,3 (3):214-220.
    [28]Brunori, M., Giuffre, A., Forte, E., Mastronicola, D., Barone, M. C. and Sarti, P. Control of cytochrome c oxidase activity by nitric oxide. Biochim Biophys Acta,2004,1655 (1-3):365-371.
    [29]Tiso, M., Tejero, J., Basu, S., Azarov, I., Wang, X., Simplaceanu, V., Frizzell, S., Jayaraman, T., Geary, L., Shapiro, C., Ho, C., Shiva, S., Kim-Shapiro, D. B. and Gladwin, M. T. Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem,2011,286 (20): 18277-18289.
    [30]Wakasugi, K., Nakano, T. and Morishima, I. Oxidized human neuroglobin acts as a heterotrimeric Galpha protein guanine nucleotide dissociation inhibitor. J Biol Chem,2003,278 (38):36505-36512.
    [31]Kitatsuji, C., Kurogochi, M., Nishimura, S., Ishimori, K. and Wakasugi, K. Molecular basis of guanine nucleotide dissociation inhibitor activity of human neuroglobin by chemical cross-linking and mass spectrometry. J Mol Biol,2007,368 (1):150-160.
    [32]Watanabe, S. and Wakasugi, K. Neuroprotective function of human neuroglobin is correlated with its guanine nucleotide dissociation inhibitor activity. Biochem Biophys Res Commun,2008,369 (2): 695-700.
    [33]Khan, A. A., Mao, X. O., Banwait, S., DerMardirossian, C. M., Bokoch, G. M., Jin, K. and Greenberg, D. A. Regulation of hypoxic neuronal death signaling by neuroglobin. FASEB J,2008,22 (6): 1737-1747.
    [34]Wakasugi, K., Nakano, T., Kitatsuji, C. and Morishima, I. Human neuroglobin interacts with flotillin-1, a lipid raft microdomain-associated protein. Biochem Biophys Res Commun,2004,318 (2):453-460.
    [35]Wakasugi, K., Nakano, T. and Morishima, I. Association of human neuroglobin with cystatin C, a cysteine proteinase inhibitor. Biochemistry, 2004,43 (18):5119-5125.
    [36]Chen, L. M., Xiong, Y. S., Kong, F. L., Qu, M., Wang, Q., Chen, X. Q., Wang, J. Z. and Zhu, L. Q. Neuroglobin attenuates Alzheimer-like tau hyperphosphorylation by activating Akt signaling. J Neurochem,2012, 120(1):157-164.
    [37]Burmester, T. and Hankeln, T. Neuroglobin:a respiratory protein of the nervous system. News Physiol Sci,2004,19 110-113.
    [38]Burmester, T., Gerlach, F. and Hankeln, T. Regulation and role of neuroglobin and cytoglobin under hypoxia. Adv Exp Med Biol,2007,618 169-180.
    [39]Nicholls, D. G. and Budd, S. L. Mitochondria and neuronal survival. Physiol Rev,2000,80 (1):315-360.
    [40]Sims, N. R. and Anderson, M. F. Mitochondrial contributions to tissue damage in stroke. Neurochem Int,2002,40 (6):511-526.
    [41]Liu, J., Yu, Z., Guo, S., Lee, S. R., Xing, C., Zhang, C., Gao, Y., Nicholls, D. G., Lo, E. H. and Wang, X. Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. J Neurosci Res,2009,87 (1): 164-170.
    [42]Larsen, G. A., Skjellegrind, H. K., Berg-Johnsen, J., Moe, M. C. and Vinje, M. L. Depolarization of mitochondria in isolated CA1 neurons during hypoxia, glucose deprivation and glutamate excitotoxicity. Brain Res,2006,1077(1):153-160.
    [43]Zhang, W. H., Wang, H., Wang, X., Narayanan, M. V., Stavrovskaya, I. G., Kristal, B. S. and Friedlander, R. M. Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke,2008, 39 (2):455-462.
    [44]Zhu, S., Stavrovskaya, I. G., Drozda, M., Kim, B. Y., Ona, V., Li, M. Sarang, S., Liu, A. S., Hartley, D. M., Wu, D. C., Gullans, S., Ferrante, R. J., Przedborski, S., Kristal, B. S. and Friedlander, R. M. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature,2002,417 (6884):74-78.
    [45]Susin, S. A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M. and Kroemer, G.Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med,1996,184 (4):1331-1341.
    [46]Petit, P. X., Goubern, M., Diolez, P., Susin, S. A., Zamzami, N. and Kroemer, G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling:the impact of irreversible permeability transition. FEBS Lett,1998,426 (1):111-116.
    [47]Yu, Z., Liu, N., Wang, Y., Li, X. and Wang, X. Identification of neuroglobin-interacting proteins using yeast two-hybrid screening. Neuroscience,2012,20099-105.
    [48]Sun, J. and Trumpower, B. L. Superoxide anion generation by the cytochrome bc1 complex. Arch Biochem Biophys,2003,419 (2): 198-206.
    [49]Berry, E. A., Guergova-Kuras, M., Huang, L. S. and Crofts, A. R. Structure and function of cytochrome be complexes. Annu Rev Biochem, 2000,69 1005-1075.
    [50]Hunte, C., Palsdottir, H. and Trumpower, B. L. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett, 2003,545 (1):39-46.
    [51]Klimova, T. and Chandel, N. S. Mitochondrial complex Ⅲ regulates hypoxic activation of HIF. Cell Death Differ,2008,15 (4):660-666.
    [52]Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., Simon, M. C., Hammerling, U. and Schumacker, P. T. Mitochondrial complex Ⅲ is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab,2005,1 (6):401-408.
    [53]Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R. C. and Chandel, N. S. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab,2005,1 (6):409-414.
    [54]Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S. and Jap, B. K. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science,1998, 281 (5373):64-71.
    [55]Billen, L. P., Kokoski, C. L., Lovell, J. F., Leber, B. and Andrews, D. W. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol,2008,6 (6):e147.
    [56]Schmidt-Kastner, R., Haberkamp, M., Schmitz, C., Hankeln, T. and Burmester, T. Neuroglobin mRNA expression after transient global brain ischemia and prolonged hypoxia in cell culture. Brain Res,2006,1103 (1): 173-180.
    [57]Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A,1995,92 (12): 5510-5514.
    [58]Wang, G. L. and Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem,1995,270 (3):1230-1237.
    [59]Damert, A., Ikeda, E. and Risau, W. Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. Biochem J,1997,327 (Pt 2) 419-423.
    [60]Kaltschmidt, C., Kaltschmidt, B., Neumann, H., Wekerle, H. and Baeuerle, P. A. Constitutive NF-kappa B activity in neurons. Mol Cell Biol,1994,14 (6):3981-3992.
    [61]Kaltschmidt, C., Kaltschmidt, B. and Baeuerle, P. A. Stimulation of ionotropic glutamate receptors activates transcription factor NF-kappa B in primary neurons. Proc Natl Acad Sci U S A,1995,92 (21):9618-9622.
    [62]Pizzi, M., Goffi, F., Boroni, F., Benarese, M., Perkins, S. E., Liou, H. C. and Spano, P. Opposing roles for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-lbeta. J Biol Chem,2002,277 (23):20717-20723.
    [63]Valerio, A., Dossena, M., Bertolotti, P., Boroni, F., Sarnico, I., Faraco, G, Chiarugi, A., Frontini, A., Giordano, A., Liou, H. C., De Simoni, M. G, Spano, P., Carruba, M. O., Pizzi, M. and Nisoli, E. Leptin is induced in the ischemic cerebral cortex and exerts neuroprotection through NF-kappaB/c-Rel-dependent transcription. Stroke,2009,40 (2):610-617.
    [64]Yu, Z., Zhou, D., Bruce-Keller, A. J., Kindy, M. S. and Mattson, M. P. Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci, 1999,19 (20):8856-8865.
    [65]Levenson, J. M., Choi, S., Lee, S. Y, Cao, Y. A., Ahn, H. J., Worley, K. C., Pizzi, M., Liou, H. C. and Sweatt, J. D. A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J Neurosci,2004,24 (16):3933-3943.
    [66]Ahn, H. J., Hernandez, C. M., Levenson, J. M., Lubin, F. D., Liou, H. C. and Sweatt, J. D. c-Rel, an NF-kappaB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. Learn Mem,2008,15 (7):539-549.
    [67]Pizzi, M., Sarnico, I., Boroni, F., Benarese, M., Steimberg, N., Mazzoleni, G, Dietz, G. P., Bahr, M., Liou, H. C. and Spano, P. F. NF-kappaB factor c-Rel mediates neuroprotection elicited by mGlu5 receptor agonists against amyloid beta-peptide toxicity. Cell Death Differ, 2005,12 (7):761-772.
    [68]Kogel, D., Peters, M., Konig, H. G, Hashemi, S. M., Bui, N. T. Arolt, V., Rothermundt, M. and Prehn, J. H. S100B potently activates p65/c-Rel transcriptional complexes in hippocampal neurons:Clinical implications for the role of S100B in excitotoxic brain injury. Neuroscience,2004,127 (4):913-920.
    [69]Koong, A. C., Chen, E. Y, Mivechi, N. F., Denko, N. C., Stambrook, P. and Giaccia, A. J. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res,1994,54 (20):5273-5279.
    [70]Kenneth, N. S. and Rocha, S. Regulation of gene expression by hypoxia. Biochem J,2008,414(1):19-29.
    [71]Melvin, A., Mudie, S. and Rocha, S. Further insights into the mechanism of hypoxia-induced NFkappaB. [corrected]. Cell Cycle,2011, 10 (6):879-882.
    [72]van Uden, P., Kenneth, N. S. and Rocha, S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J,2008,412 (3): 477-484.
    [73]Lukiw, W. J., Ottlecz, A., Lambrou, G., Grueninger, M., Finley, J., Thompson, H. W. and Bazan, N. G. Coordinate activation of HIF-1 and NF-kappaB DNA binding and COX-2 and VEGF expression in retinal cells by hypoxia. Invest Ophthalmol Vis Sci,2003,44 (10):4163-4170.
    [74]Nijboer, C. H., Heijnen, C. J., Groenendaal, F., May, M. J., van Bel, F. and Kavelaars, A. A dual role of the NF-kappaB pathway in neonatal hypoxic-ischemic brain damage. Stroke,2008,39 (9):2578-2586.
    [75]Sarnico, I., Lanzillotta, A., Boroni, F., Benarese, M., Alghisi, M., Schwaninger, M., Inta, I., Battistin, L., Spano, P. and Pizzi, M. NF-kappaB p50/RelA and c-Rel-containing dimers:opposite regulators of neuron vulnerability to ischaemia. J Neurochem,2009,108 (2):475-485.
    [76]Qiu, J., Grafe, M. R., Schmura, S. M., Glasgow, J. N., Kent, T. A. Rassin, D. K. and Perez-Polo, J. R. Differential NF-kappa B regulation of bcl-x gene expression in hippocampus and basal forebrain in response to hypoxia. J Neurosci Res,2001,64 (3):223-234.
    [77]Shingu, T. and Bornstein, P. Overlapping Egr-1 and Spl sites function in the regulation of transcription of the mouse thrombospondin 1 gene. J Biol Chem,1994,269 (51):32551-32557.
    [78]Ebert, S. N. and Wong, D. L. Differential activation of the rat phenylethanolamine N-methyltransferase gene by Spl and Egr-1. J Biol Chem,1995,270(29):17299-17305.
    [79]Cui, M. Z., Parry, G. C., Oeth, P., Larson, H., Smith, M., Huang, R. P., Adamson, E. D. and Mackman, N. Transcriptional regulation of the tissue factor gene in human epithelial cells is mediated by Spl and EGR-1. J Biol Chem,1996,271 (5):2731-2739.
    [80]Skerka, C., Decker, E. L. and Zipfel, P. F. A regulatory element in the human interleukin 2 gene promoter is a binding site for the zinc finger proteins Sp1 and EGR-1. J Biol Chem,1995,270 (38):22500-22506.
    [81]Pore, N., Liu, S., Shu, H. K., Li, B., Haas-Kogan, D., Stokoe, D., Milanini-Mongiat, J., Pages, G, O'Rourke, D. M., Bernhard, E. and Maity, A. Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell,2004,15 (11): 4841-4853.
    [82]Tai, T. C., Wong-Faull, D. C., Claycomb, R. and Wong, D. L. Hypoxia and adrenergic function:molecular mechanisms related to Egr-1 and Sp1 activation. Brain Res,2010,1353 14-27.
    [83]Semenza, G. L. and Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992,12 (12):5447-5454.
    [84]Wang, G. L. and Semenza, G. L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem,1993,268 (29):21513-21518.
    [85]Beck, I., Weinmann, R. and Caro, J. Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood,1993,82 (3): 704-711.
    [86]Koshiji, M., To, K. K., Hammer, S., Kumamoto, K., Harris, A. L., Modrich, P. and Huang, L. E. HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell,2005, 17 (6):793-803.
    [1]Ma, T. C., Campana, A., Lange, P. S., Lee, H. H., Banerjee, K. Bryson, J. B., Mahishi, L., Alam, S., Giger, R. J., Barnes, S., Morris, S. M., Jr., Willis, D. E., Twiss, J. L., Filbin, M. T. and Ratan, R. R. A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. J Neurosci,2010,30 (2):739-748.
    [2]Smirnova, N. A., Rakhman, I., Moroz, N., Basso, M., Payappilly, J., Kazakov, S., Hernandez-Guzman, F., Gaisina, I. N., Kozikowski, A. P., Ratan, R. R. and Gazaryan, I. G. Utilization of an in vivo reporter for high throughput identification of branched small molecule regulators of hypoxic adaptation. Chem Biol,2010,17 (4):380-391.
    [3]Smirnova, N. A., Haskew-Layton, R. E., Basso, M., Hushpulian, D. M., Payappilly, J. B., Speer, R. E., Ahn, Y. H., Rakhman, I., Cole, P. A., Pinto, J. T., Ratan, R. R. and Gazaryan, I. G. Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators. Chem Biol,2011,18 (6): 752-765.
    [4]Manuvakhova, M. S., Johnson, G. G, White, M. C., Ananthan, S., Sosa, M., Maddox, C., McKellip, S., Rasmussen, L., Wennerberg, K., Hobrath, J. V., White, E. L., Maddry, J. A. and Grimaldi, M. Identification of novel small molecule activators of nuclear factor-kappaB with neuroprotective action via high-throughput screening. J Neurosci Res, 2011,89(1):58-72.
    [5]Signore, A. P., Zhang, F., Weng, Z., Gao, Y. and Chen, J. Leptin neuroprotection in the CNS:mechanisms and therapeutic potentials. J Neurochem,2008,106 (5):1977-1990.
    [6]Ehrenreich, H., Aust, C., Krampe, H., Jahn, H., Jacob, S., Herrmann, M. and Siren, A. L. Erythropoietin:novel approaches to neuroprotection in human brain disease. Metab Brain Dis,2004,19 (3-4):195-206.
    [7]Sun, Y, Jin, K., Mao, X. O., Zhu, Y. and Greenberg, D. A. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci U S A,2001,98 (26): 15306-15311.
    [8]Wang, X., Liu, J., Zhu, H., Tejima, E., Tsuji, K., Murata, Y, Atochin, D. N., Huang, P.L., Zhang, C. and Lo, E. H. Effects of neuroglobin overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia. Stroke,2008,39 (6):1869-1874.
    [9]Garry, D. J. and Mammen, P. P. Neuroprotection and the role of neuroglobin. Lancet,2003,362 (9381):342-343.
    [10]Jin, K., Mao, X. O., Xie, L., John, V. and Greenberg, D. A. Pharmacological induction of neuroglobin expression. Pharmacology, 2011,87 (1-2):81-84.
    [11]Gao, Y., Mengana, Y., Cruz, Y. R., Munoz, A., Teste, I. S., Garcia, J. D., Wu, Y, Rodriguez, J. C. and Zhang, C. Different expression patterns of Ngb and EPOR in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of Neuro-EPO for ischemic insults to the gerbil brain. J Histochem Cytochem,2011,59 (2): 214-227.
    [12]De Marinis, E., Ascenzi, P., Pellegrini, M., Galluzzo, P., Bulzomi, P., Arevalo, M. A., Garcia-Segura, L. M. and Marino, M.17beta-estradiol--a new modulator of neuroglobin levels in neurons:role in neuroprotection against HO-induced toxicity. Neurosignals,2010,18 (4):223-235.
    [13]Sittampalam, G. S., Kahl, S. D. and Janzen, W. P. High-throughput screening:advances in assay technologies. Curr Opin Chem Biol,1997,1 (3):384-391.
    [14]Landro JA, T. I., Stirtan WG, Osterman DG, Kristie J, Hunnicutt EJ, Rae PM, Sweetnam and PM. HTS in the new millennium:the role of pharmacology and flexibility. J Pharmacol Toxicol Methods.,2000,44 273-289.
    [15]Jarecki, J., Chen, X., Bernardino, A., Coovert, D. D., Whitney, M., Burghes, A., Stack, J. and Pollok, B. A. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening:early leads towards a therapeutic for spinal muscular atrophy. Hum Mol Genet,2005,14 (14):2003-2018.
    [16]Croston, G. E. Functional cell-based uHTS in chemical genomic drug discovery. Trends Biotechnol,2002,20 (3):110-115.
    [17]Zhang, W., Tian, Z., Sha, S., Cheng, L. Y., Philipsen, S. and Tan-Un, K. C. Functional and sequence analysis of human neuroglobin gene promoter region. Biochim Biophys Acta,2011,1809 (4-6):236-244.
    [18]Bialkowska, A. B., Du, Y., Fu, H. and Yang, V. W. Identification of novel small-molecule compounds that inhibit the proproliferative Kruppel-like factor 5 in colorectal cancer cells by high-throughput screening. Mol Cancer Ther,2009,8 (3):563-570.
    [19]Sarang, S. S., Yoshida, T., Cadet, R., Valeras, A. S., Jensen, R. V. and Gullans, S. R. Discovery of molecular mechanisms of neuroprotection using cell-based bioassays and oligonucleotide arrays. Physiol Genomics, 2002,11 (2):45-52.
    [20]Bertsch, U., Winklhofer, K. F., Hirschberger, T., Bieschke, J., Weber, P., Hartl, F. U., Tavan, P., Tatzelt, J., Kretzschmar, H. A. and Giese, A. Systematic identification of antiprion drugs by high-throughput screening based on scanning for intensely fluorescent targets. J Virol,2005,79 (12): 7785-7791.
    [21]Iljin, K., Ketola, K., Vainio, P., Halonen, P., Kohonen, P., Fey, V., Grafstrom, R. C., Perala, M. and Kallioniemi, O. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin Cancer Res,2009,15 (19):6070-6078.
    [22]Khan, A. A., Mao, X. O., Banwait, S., Jin, K. and Greenberg, D. A. Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc Natl Acad Sci U S A,2007,104 (48): 19114-19119.
    [23]Yu, Z., Liu, J., Guo, S., Xing, C., Fan, X., Ning, M., Yuan, J. C., Lo, E. H. and Wang, X. Neuroglobin-overexpression alters hypoxic response gene expression in primary neuron culture following oxygen glucose deprivation. Neuroscience,2009,162 (2):396-403.
    [24]Li, R. C., Pouranfar, F., Lee, S. K., Morris, M. W., Wang, Y. and Gozal, D. Neuroglobin protects PC 12 cells against beta-amyloid-induced cell injury. Neurobiol Aging,2008,29 (12):1815-1822.
    [25]Greenberg, D. A., Jin, K. and Khan, A. A. Neuroglobin:an endogenous neuroprotectant. Curr Opin Pharmacol,2008,8(1):20-24.
    [26]Kelsen, J., Hundahl, C. A. and Hay-Schmidt, A. Neuroglobin: endogenous neuroprotectant or maintenance of homeostasis? Stroke, 2008,39 (11):e177-178; author reply e179.
    [27]Wei, X., Yu, Z., Cho, K. S., Chen, H., Malik, M. T., Chen, X., Lo, E. H., Wang, X. and Chen, D. F. Neuroglobin is an endogenous neuroprotectant for retinal ganglion cells against glaucomatous damage. Am J Pathol,2011,179 (6):2788-2797.
    [28]Fernandez, S. V. and Russo, J. Estrogen and xenoestrogens in breast cancer. Toxicol Pathol,2010,38 (1):110-122.
    [29]Sitruk-Ware, R. Estrogens, progestins and breast cancer risk in post-menopausal women:state of the ongoing controversy in 1992. Maturitas,1992,15 (2):129-139.
    [30]Pike, M. C., Wu, A. H., Spicer, D. V., Lee, S. and Pearce, C. L. Estrogens, progestins, and risk of breast cancer. Ernst Schering Found Symp Proc,2007, (1):127-150.
    [31]Bota, R. G, Ligasan, A. P., Najdowski, T. G. and Novac, A. Acute hypersensitivity syndrome caused by valproic Acid:a review of the literature and a case report. Perm J,2011,15 (2):80-84.
    [32]Chateauvieux, S., Morceau, F., Dicato, M. and Diederich, M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol,2010,2010
    [33]Harvey, A. L. and Cree, I. A. High-throughput screening of natural products for cancer therapy. Planta Med,2010,76 (11):1080-1086.
    [34]Michelini, E., Cevenini, L., Mezzanotte, L., Coppa, A. and Roda, A. Cell-based assays:fuelling drug discovery. Anal Bioanal Chem,2010, 398 (1):227-238.
    [35]Liu, B., Li, S. and Hu, J. Technological advances in high-throughput screening. Am J Pharmacogenomics,2004,4 (4):263-276.
    [36]Fernandes, P. B. Technological advances in high-throughput screening. Curr Opin Chem Biol,1998,2 (5):597-603.
    [37]Liu, N., Yu, Z., Xiang, S., Zhao, S., Wolf, A. T., Xing, C., Zhang, J. and Wang, X. Transcriptional regulation mechanisms of Hypoxia-induced neuroglobin gene expression. Biochem J,2012,
    [38]Lu, X., Zhang, N., Dong, S. and Hu, Y. Involvement of GPR12 in the induction of neurite outgrowth in PC 12 cells. Brain Res Bull,2012,87 (1):30-36.
    [39]Pizzi, M., Boroni, F., Bianchetti, A., Moraitis, C., Sarnico, I. Benarese, M., Goffi, F., Valerio, A. and Spano, P. Expression of functional NR1/NR2B-type NMDA receptors in neuronally differentiated SK-N-SH human cell line. Eur J Neurosci,2002,16 (12):2342-2350.
    [40]Huh, J. E., Nam, D. W., Baek, Y. H., Kang, J. W., Park, D. S., Choi, D. Y. and Lee, J. D. Formononetin accelerates wound repair by the regulation of early growth response factor-1 transcription factor through the phosphorylation of the ERK and p38 MAPK pathways. Int Immunopharmacol,2011,11 (1):46-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700