用户名: 密码: 验证码:
白藜芦醇苷分子包合物的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白藜芦醇苷是中药虎杖中的主要有效成分之一,具有抑制心肌细胞收缩、控制血小板聚集、降血脂、抗脂质过氧化、抗休克等作用,可广泛应用于医药、保健品、食品添加剂和化妆品等领域,具有广泛的应用开发价值。但由于白藜芦醇苷在水中溶解度较小,在紫外照射下发生异构化,不稳定,导致体内生物利用度低,其应用受到严重限制。因此,开发白藜芦醇苷相关产品,提高其水溶性及稳定性,有利于拓宽其应用范围,促进其应用推广,对充分利用我国中草药资源、提高中草药附加值、实现中草药现代化具有现实意义。
     本研究通过制备白藜芦醇苷的环糊精(β-CD和HP-β-CD)分子包合物,显著提高了白藜芦醇苷在水溶液中的溶解度,并在一定程度上提高了其稳定性。
     (1)采用冷冻干燥法制备了白藜芦醇苷的环糊精(β-CD和HP-β-CD)分子包合物。利用紫外-可见光谱法、红外光谱法、X射线衍射法和核磁共振法对分子包合物的物相进行了鉴定,试验结果证明了分子包合物的形成。
     (2)通过相溶解度法研究了环糊精(β-CD和HP-β-CD)在水溶液中对白藜芦醇苷的包合和增溶作用,以及包合过程中热力学参数的变化结果。试验结果表明,在水溶液中,白藜芦醇苷与环糊精(β-CD和HP-β-CD)均可自发形成摩尔比1:1可溶性包合物,相溶解图均呈AL型;同时,白藜芦醇苷与环糊精(β-CD和HP-β-CD)在包合过程的吉布斯自由能变化(ΔG)、焓变(ΔH)和熵变(ΔS)均为负值。
     (3)对白藜芦醇苷的环糊精分子包合物的包合比进行了分析。通过等摩尔系列法测定了包合物的包合比,试验结果表明,白藜芦醇苷与环糊精(β-CD和HP-β-CD)均以摩尔比1:1包合,这与相溶解度法的测定结果一致。
     (4)采用DPPH和FRAP两种方法测定了白藜芦醇苷及其分子包合物的抗氧化性。试验结果表明,白藜芦醇苷-β-环糊精分子包合物、白藜芦醇苷-羟丙基-β-环糊精分子包合物及白藜芦醇苷均具有一定清除DPPH·和还原TPTZ的能力。在DPPH方法中,三者的抗氧化活性相差不大(IC50分别为:346.09mg/L、337.40mg/L、363.46mg/L);在FRAP方法中,白藜芦醇苷-β-环糊精分子包合物、白藜芦醇苷-羟丙基-β-环糊精分子包合物及白藜芦醇苷的EC1分别为431.15mg/L、405.07mg/L和463.88 mg/L,三者的还原能力也相差不大,这与DPPH法测定的结果一致。
     (5)研究了在紫外光照射条件下,分子包合物中白藜芦醇苷的稳定性。实验结果表明,β-环糊精包合物与羟丙基-β-环糊精包合物中的白藜芦醇苷表现出了近似的变化情况,说明这两种环糊精包合物对紫外光具有近似的稳定性;而没有包合的白藜芦醇苷与环糊精包合物相比,其稳定性较差,在紫外光照条件下损失率要高20%左右,说明环糊精包合物中白藜芦醇苷的稳定性得到了一定程度的提高。
Polydatin is a main effective component in Polygonum cuspidatum, and its functions contain restraining cardiac muscle cell, moderating platelet aggregation, diminishing blood fat, resisting lipid oxidation and preventing shock. Thus, polydatin, with high development potential, is widely applied in clinical, medical and healthy areas, as well as fortified in food additives and cosmetics. However, due to its low solubility in water and isomerization tendency under ultraviolet radiation, polydatin is comparatively unstable, which declines its bioavailability and restricts its utilization. As a consequence, exploring polydatin and its products-enhancing its solubility and stability is very beneficial for its application and marketing, and also shows great significance for improving exploitation of Chinese herbal resources, increasing their added value and modernizing Chinese herbal medicine industry.
     The present study remarkably raised water-solubility of polydatin by manufacturing its cyclodextrin (β-CD and HP-β-CD) inclusion complexes, and advanced its stability to some extent.
     (1) The polydatin cyclodextrin (β-CD and HP-β-CD) inclusion complexes were prepared by freeze-drying method. Meanwhile, the inclusion complexes were identified by UV-visible spectra (UV-vis), infrared spectrometry (IR), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR), respectively. It was identified that the polydatin cyclodextrin (β-CD and HP-β-CD) inclusion complexes were formed.
     (2) The intermolecular reaction between the host and the guest agents, soluble effects of cyclodextrins (β-CD and HP-β-CD) on polydatin in aqueous solution and changes of thermodynamic parameters in the complexation were determined by phase solubility method. The results indicated: the significant reactions between the host and the guest molecules in aqueous solution were confirmed, and polydatin could form inclusion compounds (1:1) with the two cyclodextrins derivates (β-CD and HP-β-CD). The solubility of polydatin in aqueous solution was linearly escalated with the increased concentration ofβ-CD and HP-β-CD, showing a plot of the typical AL type phase solubility. All three thermodynamic parametersΔG,ΔH andΔS in the complexation gave negative values.
     (3) Inclusion ratios of polydatin cyclodextrin inclusion complexes were analyzed by equimolar series method. The results revealed that polydatin included by both of the two cyclodextrins (β-CD and HP-β-CD) at the ratio of 1:1(molar/molar), which was in consistent with the results of phase solubility method tests.
     (4) DPPH and FRAP were employed to evaluate the antioxidant activities of polydatin and its inclusion complexes. Through the data, we discovered that polydatin-β-cyclodextrin, polydatin-hydroxypropyl-β-cyclodextrin and polydatin all showed some ability of eliminating DPPH·free radical and reducing TPTZ. Observed by DPPH, the above 3 compounds did not display much difference in antioxidation capability, as their IC50 were 346.09mg/L, 337.40mg/L and 363.46mg/L, separately. And FRAP determined EC1 values of polydatin-β-cyclodextrin, polydatin-hydroxypropyl-β-cyclodextrin and polydatin as 431.15 mg/L, 405.07 mg/L and 463.88 mg/L; hence, reducing capacity of the 3 compounds did not present much distinction either, which accorded with results from DPPH method.
     (5) Stability of polydatin in inclusion complexes under ultraviolet radiation was investigated. Among the results, polydatin-β-cyclodextrin and polydatin-hydroxypropyl-β-cyclodextrin altered similarly, which indicated the 2 compounds had similar stability under UV condition; however, polydatin which had not been included by cyclodextrin was unsteady, the loss ratio was 20% higher under ultraviolet radiation, illustrating stability of polydatin was elevated in cyclodextrin inclusion complexes.
引文
[1]刘兆平,霍军生.白藜芦醇的生物学作用[J].国外医药学卫生学册,2002,29(3):146-148.
    [2]王立金,金丽娟.白藜芦醇苷对大鼠挤压伤后多器官衰竭的实验性防治[J].中国病理生理杂志,1995,11(1):70.
    [3]高守红,杨少麟,范国荣.虎杖苷的研究进展[J].药学实践杂志,2005,23(3):145-147.
    [4] Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using chromolith columns[J]. Chromatogr A,2005,1085(2):224-229.
    [5] Jerkovic V,Callemien D,Collin S. Determination of stilbenes in hop pellets from different cultivars [J]. Agric Food Chem,2005,53(10):4202-4206.
    [6] Kimura Y. Pharmacological studies on resveratrol[J]. Methods Find Exp Clirr Pharmacol. 2003,25(4):297-310.
    [7]包新民,舒思云.大鼠脑立体定位图谱[M].北京:人民卫生出版社,1991,47-53.
    [8]舒仕瑜,卢仲毅,王兴勇.白藜芦醇苷生物活性及药理作用[J].儿科药学杂志,2002,8(1):9-11.
    [9]闫静,王振月,刘丹宁,等.白藜芦醇及其甙的生物活性研究进展[J].中医药学报,2000,(2):39-41.
    [10]赵克森,朱佐江.虎杖4号增强烧伤性休克早期心功能的效应[J].中华整形烧伤外科杂志,1989,5(4):275.
    [11]朱佐江,赵克森.虎杖4号对家兔失血性休克左心室功能的影响[J].中国病理生理杂志,1991,7(4):349.
    [12]金行中,张佩文,杨素琴.虎杖4号对大鼠工作心脏功能的影响[J].第一军医大学学报,1992,12(1):31.
    [13]骆苏芳,余传林,张佩文. 3, 4′, 5-三羟基芪-3-β-单-D-葡萄糖苷对培养乳鼠心肌细胞搏动频率及损伤的影响[J].中国药理学报,1990,11(2):147.
    [14]杨素琴,单春文,张佩.虎杖4号对人血小板聚集的影响[J].第一军医大学学报,1992,12(1):57.
    [15]罗盛康,罗力生.虎杖4号对静脉淤血皮瓣活力影响的实验研究[J].中华整形烧伤外科杂志,1994,10(3):222.
    [16]莫志贤,邵红霞.白藜芦醇苷体外对过氧化氢导致小鼠肝细胞损伤的保护作用[J].中国药理学通报,2000,16(5):519-521.
    [17]朱立贤,金征宇.白藜芦醇苷对高脂血症大鼠血脂代谢的影响及其抗氧化作用[J].中成药,2006,28(2):260-261.
    [18]张曼.白藜芦酵甙对大鼠内毒素休克的影响[J].中国病理生理杂志,1997,15(2):245.
    [19]张曼.白藜芦醇甙对内毒素刺激小鼠腹腔巨噬细胞产生TNF-α和NAG的影响[J].中国病理生理杂,1995,11(3):242.
    [20]阴健,郭立弓.中药现代研究与临床应用[M].北京:学苑出版社,1993,436.
    [21]孙娟,张援.白藜芦醇苷的药理作用及其在运动医学中的应用前景[J].辽宁体育科技,2010,32(4):22-24.
    [22]孙娟.虎杖中白藜芦醇苷和挥发油的分离分析研究[D].湖南:中南大学,2007.
    [23]叶秋雄,黄苇.白藜芦醇苷稳定性的研究[J].食品工业科技,2011,32(4):155-157.
    [24]闫有旺.环糊精包合物[J].化学世界,2006,(4):252-254.
    [25]胡硕.药物-β-环糊精包合物的制备、结构分析及分子模拟[D].河北:河北科技大学,2011.
    [26]黄丽珍.β-环糊精衍生物包合药物的研究与分析应用[D].兰州:兰州大学,2008.
    [27] Mischnick P. Determination of the patterns of substitution of hydroxyethyl and hydroxylpropyl-cyclomalto heptaoses[J]. Carbohydrate Research,198,192:233-241.
    [28]谢伯泰,杨国武,谢薇梅.羟丙基-β-环糊精特性及其在医药领域中的应用与安全性[J].国外医药,2002,23(5):302-305.
    [29]续浩,陈亮.环糊精包结物的制备与研究方法[J].分析测试技术与仪器,2001,7(3):143-151.
    [30] Okimoto K,Rajewski R A,Uekama K,et al. The interaction of charged and uncharged drugs with neutral (HP-β-CD) and anionically charged (SBE7-β-CD)β-cyclodextrin[J]. Pharm Res,1996,13(2):256-264.
    [31] Loftsson T, Brewster M E. Pharmaceutical applications of cyclodextrins.1.Drug solubilization and stabilization[J]. J Pharm Sci,1996,85(10):1017-1025.
    [32] Tawarah K W,Khouri S J. Determination of the stability and stoichiometry of p-methyl red inclusion complexes withγ- cyclodextrin[J]. Dyes Pigments,2000,45(1):229-233.
    [33]钟秀英.药用β-环糊精包合物制备、检验技术研究进展[J].中药材,2003,26(4):301-305.
    [34]施洁明,何仲贵,刑楠,等. 2-羟丙基-β-环糊精对吲哚美辛的增溶及稳定作用[J].中国药学杂志,2004,39(5):353-355.
    [35]双少敏,郭祀远,潘景浩,等.相溶解度法测定β-环糊精-芦丁包合物的形成常数[J].分析化学,1998,26(5):564-567.
    [36]李向军,连军,双少敏,等.相溶解法研究芦荟大黄素和环糊精及其衍生物的包结作用[J].分析科学学报,1999,15(5):368-371.
    [37]尤长城,赵彦利,刘育.竟争包结法研究β-环糊精及其两种衍生物对一些手性脂肪族客体分子的识别作用[J].高等学校化学学报,2001,22:218-222.
    [38] Cramer F D. Inclusion compounds[J]. Pure and Applied Chemistry,1995,5:143.
    [39] Tang B,Ma L,Wang H Y,et al. Study on the supramolecular interaction of curcumin andβ-cyclodextrin by spectrophotometry and its analytical application[J]. Agric Food Chem,2002,50:1355-1361.
    [40] Szente L,Osa T. Comprehensive Supramolecular Chemistry[J]. Pergamon Press,Oxford,1996,3:253-278.
    [41] Gines J M , Perez-Martinez J I , Arias M J , et al. Inclusion of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) with beta-cyclodextrin by different processing methods [J].Chemos Phere,1996,33:321-334.
    [42]李香,林秀丽.环糊精包合物表征手段的研究进展[J].食品与药品,2007,9(7):35-39.
    [43]佟铁光,马赤.薄荷冰-β-环糊精包结物的研究[J].吉林中医药,1991,(5):36.
    [44]孙伟张,刘明蓉,曹仁杰,等.盐酸异丙嗪-β-环糊精包合物的制备及其稳定性的初步研究[J].中国医药工业杂志,1996,27(11):500.
    [45]朱全红,邵伟艳,何建峰,等.β-环糊精包合物的1H-NMR研究[J].波谱学杂志,2001,18(4):377-382.
    [46]雍国平,李光水,刘少民,等.β-环糊精及羟丙基-β-环糊精与香兰素包合作用的谱学研究[J].化学研究与应用,2002,14(5):549-551.
    [47]陈亮,钞建宾,马丽花.氟哌酸-羟丙基环糊精固体包结物的制各及其性质研究[J].波谱学杂志,2000,17(3):203-210.
    [48] Dollo G,Corre P L,Choller M,et al. Improvement in solubility and dissolution rate of 1, 2-dithiole-3-thiones upon complexation withβ-cyclodextrin and its hydroxypropyl and sulfobutyl ether-7 derivatives[J]. J Pharm Sci,1999,88(9):889-895.
    [49]续浩,陈亮.环糊精包合物包合比的测定[J].分析测试技术与仪器,2001,7(3):152-155.
    [50]谷福根,高永良,崔福德.环糊精包合物研究进展[J].中国新药杂志,2005,14(6):686-693.
    [51] Li J F,Wei Y X,Ding L H,et al. Study on the inclusion complexes of cryptotanshinone withβ-cyclodextrin and hydroxypropyl-β-cyclodextrin[J]. Spectrochim Acta (A),2003,59(14):2759-2766.
    [52] Nina S S. The thermodynamic parameter of the formation of a complex between cyclodextrins and steroid bormones[J]. J Chromatogr A,1996,728(1-2):89-95.
    [53] Benesi H A,Hildebrand J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons[J]. J Am Chem.Soc,1994,949 (71):2703-2708.
    [54] Jozsef S. Complex dissociation-association equilibria and methods for determination of the stability constants-Spectroscopic methods[M]. Cyclodextrins Technology,Kluwer Academic Publishers,1988:148.
    [55] Eftink M R,Harrison J C. Calorimetric studies of p-nitrophenolbinding to CD[J]. Biochemistry,1981,10:388-398.
    [56] Fujimura K,Ueda T,Kitagawa M, et al. Reversed-phase retention behavior of aromatic compounds involvingβ-cyclodextrin inclusion complex formation in the mobile phase[J]. Anal Chem,1986,58:2668-2674.
    [57] Uekama K,Hirayama F,Irie T. The new method for determination of the stability constants of cyclodextrin prostaglangdin inclusion complexes by liquid chromatography[J]. Chem Lett,1978,661-664.
    [58] Wood D L,et al. 1HNMR study of the inclusion of aromatic molecules inα-cyclodextrin[J]. J. Am. Chem. Soc,1977,99(6):1735-1739.
    [59] Inoue Y,et al.Formation and molecular dynamics of cycloamylose in inclusion complexes with phenylalanine[J]. Bull Chem Soc Jpn,1981,54(3):809-816.
    [60] Lu R H,Hao J C,Wang H Q, et al. Determination of association constants for CD-SAA inclusion Complexes: A numerical methods based on surface tension measurements[J]. J Colloid InterfaceSci,1997,192:37-42.
    [61] Nelson G,Warner I M. The formation of pyrene-Cd complexes in the presence of nonionic surfactants[J]. Carbohydrate Research,1989,192:305-312.
    [62] Chu Y H,Chang C L,Hsu H F. Flavonoid content of several vegetables and their antioxidant activity[J]. Agric Food Chem,2000,80 (5):561-566.
    [63]文镜,等.保健食品清除自由基作用的体外测定方法和原理[J].食品科学,2004,25(1):190-195.
    [64]彭长连,等.用清除有机自由基DPPH法评价植物抗氧化能力[J].生物化学与生物物理进展,2000,27(6):658-611.
    [65] Sroka Z,Cisowski W. Hydrogen peroxide scavenging,antioxidant and anti-radical activity of some phenolic acids[J]. Food Chem Toxicol,2003,41:753-758. 
    [66]丁红秀,高荫榆,晁红娟,等.毛竹叶柄多糖体外抗氧化作用研究[J]. 2007,28(11):122-125.
    [67]高荫榆,洪雪娥,罗丽萍,等.薯蔓黄酮的体外抗氧化作用研究[J].食品科学,2006, 27(7):233-235.
    [68] Ng T B, Liu G,Wang Z T. Antioxidative activity of natural products from plants[J]. Life Science,2000, 66:709-723.
    [69]刘丽娜,吕静.花生多肽的体外抗氧化活性研究[J].中国粮油学报,2008,23(3):169-172.
    [70] Pulido R,Bravo L,Saura-Calixo F. Antioxidant activity of dietary poly phenols as determined by a modified ferric reducing/antioxidant power assay[J].J Agric Food Chem. 2000,48:3396-3402.
    [71]王会,郭立,谢文磊.抗氧化剂抗氧化活性的测定方法(二)[J].食品与发酵工业,2006,32(4):98-102.
    [72] Oliverira C M,Ferreira A C S, Pinho P G,et al. New qualitative approach in the characterization of antioxidants in white wines by antioxidant free radical scavenging and NMR techniques[J]. Agric Food Chem,2008,(56):10326-10331.
    [73]续洁琨,姚新生,栗原博.抗氧化能力指数(ORAC)测定原理及应用[J].中国药理学通报,2006,(8):1015-1021.
    [74] Cao G,Alessio H M,Cuher R G. Oxygen-radical absorbance capacity assay for antidxidants[J]. Free Radical Biol Med,1993,14(3):303-311.
    [75]张丽平,童华荣.样品抗氧化能力测定方法研究进展[J].粮食与油脂,2004,(6):20-23.
    [76] Goldberg D M,Ng E,Karumanchiri A,et al. Assay of resveratrol glucosides and isomers in wine by direct injection high performance liquid chromagraphy[J]. J of Chromatography A,1995,708:89-98.
    [77]张伶俐.β-环糊精包合物的研究[D].新疆:新疆大学,2007.
    [78]李彦威,石红翠,李凤,等.富马酸与三种环糊精在水溶液中包合作用的研究[J].食品科学,2008,29(3):94-98.
    [79]黄亮,刘敏敏. HPLC法测定不同地区虎杖的虎杖苷含量[J].中国药师,2006,9(5):408-409.
    [80]夏芸,邱利焱,金一.温敏性吲哚美辛/β-环糊精包合物的制备及体外评价[J].药学学报,2005,40(2):187.
    [81]张青,尚北城,邵建本,等.正交实验法制备替硝唑-β-环糊精包合物[J].华西药学杂志,2002,17(3):208.
    [82] Zhang A P,Liu W P,Wang L M,et al. Characterization of inclusion complexation between Fenoxaprop-p-ethyl and Cyclodextrin[J]. J. Agric Food Chem,2005,53 (18):7193-7197.
    [83] Loukas Y L. Evaluation of the methods for the determination of the stability constant of cyclodextrinchlorambucil inclusion complexes[J]. J Pharm Biomed Anal,1997,16(2):275-280.
    [84] Tong L H. Cyclodextrin Chemistry-foundation and Application[M].Beijing:Science Press,2001.
    [85]陈晓昱,张志荣,任科,等.辣椒碱-羟丙基-β-环糊精包合物制备鉴定及热力学稳定性研究[J].中国中药杂志,2009,34(4):394-397.
    [86]张斌,秦岭,张玲玲,等.β-环糊精及其衍生物与毒死蜱包合物的制备及表征[J].农药学学报,2010,12(2):127-134.
    [87]陈泳,林中祥,张丹红.脱氢枞胺(4-羟基)水杨醛Schiff碱β-环糊精包合物的制备与表征[J].南京林业大学学报(自然科学版),2011,35(1):62-66.
    [88]张学农,唐丽华,阎雪莹,等.马蔺子素-羟丙基-β-环糊精包合物的鉴定及热力学稳定性研究[J].中草药,2005,36(2):198-202.
    [89]葛竹兴,张小华.甲砜霉素-羟丙基-β-环糊精包合物的制备和鉴定[J].南京师大学报(自然科学版),2008,31(4):74-79.
    [90]杨郁,双少敏,钞建宾,等.β-环糊精对氨基苯甲酸同分异构体的分子识别作用的研究[J].化学学报,2004,62(2):176-182.
    [91]何翊.β-CD/1-MCP包结作用的1H-NMR研究[J].辽宁师范大学学报,2008,31(3):336-338.
    [92]门娟.β-环糊精与有机小分子及无机化合物的超分子作用研究[D].天津:天津大学,2005.
    [93]张荣发.环糊精衍生物对丹皮酚包合特性研究[D].重庆:重庆大学,2009.
    [94]安伟捐.白藜芦醇分子环糊精包合物的研究[D].河北:河北农业大学,2009.
    [95] Higuchi T,Connors K A. Phase solubility techniques[J]. Adv Anal Chem Instrum,1965,4(1):117-212.
    [96]魏丹毅.β-环糊精及其某些衍生物对酚的包合作用[J].化学试剂,1999,21(5):261-263.
    [97] Ravelet C,Geze A,Villet A,et al. Chromatographic determination of the association constants between nimesulide and native and modifiedβ-cyclodextrin[J]. J Pharm Biomed Anal,2002,29(3):425-430.
    [98]邵伟,谢清香,王春香,等.槲皮素-羟丙基-β-环糊精包合物的研究[J].中药材,2002,25(2):121-123.
    [99] Battino M, Bullon P,Wilson M,et al. Oxidative injury and inflammatory periodontal diseases: the challenge of antioxidants to free radicals and reactive oxygen species[J]. Crit Rev Oral Biol Med,1999,10(4):458-476.
    [100] Toledo P,Luish M D,Alexanderh M D,et al. Antioxidant ischemic disease[J]. Critical Care Medicine,2008,36(12):3275-3276.
    [101] Brzilai A,Yamamoto K. DNA damage responses to oxidative stress[J]. DNA Repair,2004,3(8/9):1109-1115.
    [102] Daviesmj. The oxidative environment and protein damage[J]. Biochim Biophys Acta,2005,1703(2):93-109.
    [103]陈翠,杨丽云,吕丽芬,等. 10种药用植物提取物抗氧化活性的研究[J].云南中医中药杂志,2008,29(11):51-52.
    [104] D. Villa?no M S,Fern′andez-Pach′on M L,Moy′a A M,et al. Radical scavenging ability of polyphenolic compounds towards DPPH free radical[J]. Talanta,2007,71:230-235.
    [105]姜天甲,应铁进,陈秋平,等.油茶籽壳总黄酮的提取及抗氧化研究[J].中国食品学报,2010,10(1):93-99.
    [106]勾明玥,刘梁,张春枝.采用DPPH法测定26种植物的抗氧化活性[J].食品与发酵工业,2010,36(3):148-150.
    [107] Benzie I F,Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of‘‘antioxidant power’’the FRAP assay[J]. Analytical Biochemistry,1996,239:70-76.
    [108] Surveswaran S,Cai Y Z,Corke H,et al. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plant[J]. Food Chemistry,2007,102:938-953.
    [109] Jacqueeline C,Barreto M T S,Trevisan W E. Characterization and Quantitation of Polyphenolic Compounds in Bark, Kernel, Leaves, and Peel of Mango (Mangifera indica L)[J]. J Agric.Food Chem,2008,56:5599-5610.
    [110] Benzie I F F,Strain J J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration [J]. Methods Enzymol,1999,299:15-27.
    [111] Pulido R,Bravo L,Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay[J]. J Agric.Food Chem,2000,48:3396-3402.
    [112]刘志杰,陈立功.白藜芦醇的分离分析及其在制剂学研究中的应用[D].天津:天津大学药物科学与技术学院,2004.
    [113]曹庸,于华忠,张敏,等. HPLC法测定虎杖中白藜芦醇的含量及其稳定性研究[J].林产化学与工业,2004,24(2):61-64.
    [114]陈季武,朱振勤,杭凯,等.八种天然黄酮类化合物的抗氧化构效关系[J].华东师范大学学报(自然科学版),2002:90-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700