用户名: 密码: 验证码:
脱氧核酶抗丙型肝炎病毒活性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代分子生物学及相关学科的飞速发展,近年来发现多种具有特定生物催化功能的酶性DNA分子(catalytic DNA),即所谓脱氧核酶(deoxyribozyme)。脱氧核酶结构不同,生物催化功能也相异;其中,活性中心为5'-GGCTAGCTACAACGA-3',能特异性剪切RNA分子的脱氧核酶在基因调控中的潜在应用价值尤为引人注目。与反义寡脱氧核苷酸(ASODN)相比,脱氧核酶分子既具有一定的反义抑制效果,又能通过改变RNA分子的空间构象以促其断裂;一个脱氧核酶分子可剪切多个RNA分子。与核酶相比,脱氧核酶识别的位点为5'…Y↓R…3'(Y=A/G,R=U/C),有更多可供选择的靶位,且性质相对稳定,结构相对简单。因此,它可能兼具核酶和ASODN的优势。应用脱氧核酶抗HIV-1、HPV-16、多种恶性肿瘤相关基因mRNA等的初步研究已显示了不同程度的效果,但应用脱氧核酶抗肝炎病毒的研究鲜见。
    病毒性肝炎至今仍缺乏充分有效的治疗措施。长期以来人们不断在探索各种可能的治疗新策略;脱氧核酶的发现为这种尝试提供了新的机遇。本课题通过分析丙型肝炎病毒5'-非编码区及部分C区(HCV 5'-NCR-C)的序列和5'-NCR的二级结构,设计4组3类共12种脱氧核酶,对其在体外分子水平、转基因肝癌细胞和感染有HCV的胎肝细胞水平的剪切和/或抑制活性进行系统评价,探讨其用作抗肝炎病毒基因调控或治疗的可能性。
    一、丙型肝炎病毒特异性脱氧核酶的设计和靶位筛选
    靶位的选择是脱氧核酶的设计基础,需结合多方面的因素加以考虑。HCV 5'-NCR高度保守,含有内部核糖体进入位点(IRES)等关键功能区。化学探测、核酸酶消化试验、热力学(自由能)推算及计算机模拟等均显示其二级结构可划分为Ⅰ~Ⅳ区。Ⅰ区可能有阻止病毒翻译启动的作用;Ⅱ区可稳定5'-NCR的空间结构及其与宿主核糖体等的结合,从而消除Ⅰ区的影响;Ⅲ和Ⅳ区是IRES的主要跨越区域,是5'-NCR最为重要的翻译启动和调控功能区。因此,靶位选择主要应在Ⅲ和Ⅳ区进行,适当兼顾Ⅱ区,避免位于Ⅰ区。5'-NCR在不同的临床分离株仍存在一定变异;为了保证所设计的脱氧核酶对各临床分离株具有普遍性作用,应避免选择存在碱基变异的区域作靶序列。此外,虽然符合5'…R↓Y…3' 特征的位点均有可能是脱氧核酶的作用靶位,但5'…A↓U…3' 或5'…G↓U…3' 可能相对易被切开,是优先考虑的位点。
    通过测序确证质粒pHCV-neo中HCV 5'-NCR-C的序列后,根据5'-NCR的二级结构模型和脱氧核酶所能识别的底物序列特征,综合比较HCV 5'-NCR中各潜在靶位所
    
    处的功能区域和局部结构特点,确定第-232、-127、-84和+1共4个位点为研究对象,从而分别设计出3类脱氧核酶,即未经修饰的脱氧核酶(DRz)、两端各有两个碱基被硫代修饰的脱氧核酶(TDRz)和活性中心人工突变的脱氧核酶(MDRz)。
    二、丙型肝炎病毒特异性脱氧核酶在细胞外分子水平的剪切活性
    用限制性内切酶Nar I将pHCV-neo完全线性化,以WizardR DNA纯化系统回收长3133bp的HCV RNA 5'-NCR-C转录模板。以T7转录试剂盒体外转录获取HCV 5'-NCR-C,用CIP去除其5' 端磷酸,再以T4聚核苷酸激酶和γ-32p-ATP进行5' 端标记。产物用8%变性聚丙烯酰胺凝胶电泳(PAGE)分离纯化。各剪切反应体系分别含每种DRz、TDRz或MDRz 5μmol/L(两种TDRz联合应用时各为2.5μmol/L),放射性标记底物200nmol/L,在合适的pH及Mg2+浓度下,混合物经适当变性、复性并于37℃孵育一定时间后,进行8%变性PAGE,-70℃放射自显影,应用Gel DocTM 2000型凝胶成像分析仪分析各条带光密度值并计算剪切百分率。结果显示,各脱氧核酶定点剪切底物RNA的能力相差较大,以DRz-127、TDRz-127和DRz1、TDRz1的活性相对较高;37℃孵育90min后,剪切率分别达32.6%、30.8%和24.3%、21.5%。
    TDRz与对应DRz相比,剪切率无显著性差别,提示适当硫代修饰对脱氧核酶活性无明显影响。MDRz无产物条带,提示基本丧失剪切能力,表明脱氧核酶活性中心基序(motif)高度保守。TDRz-127和TDRz1的单独及联合剪切率分别从15min时的8.3%、7.4%和15.1%提升到90min时的31.1%、20.3%和42.6%,提示联合应用有一定的叠加效应。反应75~90min后剪切率难以进一步提升,可能与靶位是否得当、底物结合区长度是否优化以及底物二级结构的形成等有关。由于碱基构成不同,对底物结合区进行优化有可能在一定程度上改善活性。HCV RNA全长约9400nt,必然较单纯5'-NCR-C形成更复杂的二级结构,且细胞内环境较细胞外环境复杂得多;因此,有必要在细胞水平进一步评价脱氧核酶的活性。
    三、丙型肝炎病毒特异性脱氧核酶在转基因肝癌细胞株中的活性
    应用转基因细胞株和化学发光法可以快速、准确地评价脱氧核酶在细胞内对靶基因的作用效果。理论上,脱氧核酶在细胞内对靶RNA的总抑制活性包括反义抑制和定点剪切两个方面。通常设计一组无剪切活性但反义抑制效果相似的对照组(MDRz)进行比较以间接推证剪切效应。HCV 5'-NCR-C调控性荧光素酶转基因HepG2.9706细胞以每孔1×104/100μl接种于96孔培养板,孵育适当时间后给予不同浓度的脱氧核酶,给予方法包括Lipofectin转染5h、直接给予5h或24h。细胞培养完毕后,向?
With the rapid development of modern molecular biology and correlated science, several kinds of short special DNA molecules with biocatalytic activity have been found in recent years. These catalytic DNAs are named as deoxyribozymes, and have different catalytic activity for the difference in their structures. Among the family of catalytic DNAs, those with the highly-conserved motif of 5'-GGCTAGCTACAACGA-3', which acts as the active center and contributes to the ability of cleaving target RNA site-specifically, have caught the great attention of scientists for their potential usage as the tools of gene modulation or therapy. Compared with antisense oligodeoxynucleotides (ASODN), these deoxyribozymes may not only have antisense inhibition effect on target RNAs, but also own the ability to break special RNAs by distorting their configurations, and one deoxyribozyme molecule can cleave several substrate RNAs. In comparison with ribozymes, the deoxyribozymes can recognize all the sequences characterized with 5'…Y↓R…3' (Y=A/G, R=U/C), thus have more target sites to be selected. Furthermore, they are more stable than ribozymes and have relatively simple structures. So it is considered that the deoxyribozymes may have both advantages of ASODN and ribozymes. Now the deoxyribozymes have been proved to be effective to certain extent in some incipient researches, such as cleaving RNAs of human immunodeficiency virus-1, human papilloma virus-16, and mRNAs of mutant genes in malignant tumors; but articles on their ability to cleave hepatitis virus are rarely seen.
    As is well known, the lack of ideally effective antiviral drugs is still an major problem in the treatment of viral hepatitis, and medical scientists have been trying their best to explore every new possible strategy to eradicate hepatitis virus in patients. The find of deoxyribozymes may bring a new hope for this purpose. In this study, we designed four groups of specific deoxyribozymes targeting at 5'-noncoding region (5'-NCR) of hepatitis C virus (HCV) according to its sequence and secondary structure, and investigated their possibility for using as antiviral measures by systematically evaluating the activity of cleavage in vitro at molecular level, inhibition or/and cleavage effect in HCV 5'-NCR-C transgeneic hepatoma cells and HCV-infected fetal hepatocytes.
    
    
    1. Selection of target sites and design of specific deoxyribozymes
    Selection of target sites is the essential steps for design of deoxyribozymes, and should be done according to several factors. HCV 5'-NCR is highly conserved, and containing important functional domains, such as internal ribosome entry sites (IRES). Chemical probing, nuclease digestion test, thermadynamics (free energy) calculation and computer simulation all demonstrate that the secondary structure of HCV 5'-NCR can be divided into domainⅠ~Ⅳ. Domain Ⅰ might have the ability to impede the start of HCV translation, but domain Ⅱ could counteract this effect by stabilizing the configuration of 5'-NCR and its binding to host ribosomes. Domain Ⅲ and Ⅳ are the main spanning regions of IRES, thus act as the most important functional regions in 5'-NCR for controlling initiation and modulation of HCV translation. Based on these findings, it is wise to locate the target sites in domain Ⅲ and Ⅳ preferably, or domain Ⅱ to some extent, but avoid domain Ⅰ. 5'-NCR may have some mutant bases among different clinical HCV separate strains, and sequences containing those mutant bases should not be selected as target sites in order to keep the designed deoxyribozymes have universal cleavage or/and inhibition effect on every HCV variants. On the other hand, though all sequences characterized with 5'…R↓Y…3' might be the potential target sites, the 5'…A↓U…3' or 5'…G↓U…3' had been proved by Santoro et al to be more easily cleaved than other sites, thus should be selected preferably.
    After confirmation of sequence of HCV 5'-NCR-C from pHCV-neo in a DNA sequencer, the secondary structure of 5'-NCR was figured and all the possib
引文
1. Breaker RR. Making catalytic DNAs. Science, 2000, 290(5499): 2095-2096
    2. Breaker RR. Catalytic DNA: in training and seeking employment. Nat Biotechnol, 1999, 17(5): 422-423
    3. Li Y, Breaker RR. Deoxyribozymes: new players in the ancient game of biocatalysis. Curr Opin Struct Biol, 1999, 9(3): 315-323
    4. Li Y, Sen D. Toward an efficient DNAzyme. Biochemistry, 1997, 36(18): 5589-5599
    5. Perrin DM, Garestier T, Henele C. Bridging the gap between proteins and nucleic acids: metal-independent RNAse A mimic with two protein-like functionalities. J Am Chem Soc, 2001, 123(8):1556-1563
    6. Tanner NK. Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol Rev, 1999, 23(3): 257-275
    7. Lilley DM. Structure, folding and catalysis of the small nucleolytic ribozymes. Curr Opin Struc Biol, 1999, 9(3): 330-338
    8. Jaschke A. Artificial ribozymes and deoxyribozymes. Curr Opin Struct Bio, 2001, 11(3): 321-326
    9. Sioud M, Leird M. Therapeutic RNA and DNA enzymes. Biochem Pharmacol, 2000, 60(8): 1023-1026
    10. Carmi N, Balkhi SR, Breaker RR. Cleaving DNA with DNA. Proc Natl Acad Sci USA, 1998, 95(5): 2233-2237
    11. Carmi N, Shultz LA, Breaker RR. In vitro selection of self-cleaving DNAs. Chem Biol, 1996, 3(12): 1039-1046
    12. Carmi N, Breaker RR. Characterization of a DNA-cleaving deoxyribozyme. Bioorg Med Chem, 2001, 9(10):2589-2600
    13. Li Y, Liu Y, Breaker RR. Capping DNA with DNA, 2000, 39(11):3106-3114.8
    14. Li Y, Breaker RR. In vitro selection of kinase and ligase deoxyribozymes. Methods, 2001, 23(2): 179-190
    15. Cuenoud B, Szostak JW. A DNA metalloenzyme with DNA ligase activity. Nature, 1995, 375(6532): 611-614
    16. Levy M, Ellington AD. Selection of deoxyribozyme ligases that catalyze the formation of an unnatural internucleotide linkage. Bioorg Med Chem, 2001, 9(10):2581-2587
    Breaker RR, Joyce GF. A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase
    
    17. activity. Chem Biol, 1995, 2(10): 655-660
    18. Travascio P, Bennet AJ,Wang DY, et al. A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem Biol, 1999, 6(11): 779-787
    19. Li Y, Breaker RR. Phosphorylating DNA with DNA. Proc Natl Acad Sci USA, 1999, 96(6): 2746-2751
    20. Cairns MJ, Hopkins TM, Witherington C, et al. Target site selection for an RNA-cleaving catalytic DNA. Nat Biotechnol, 1999, 17(5): 480-486
    21. Khachigian LM. Catalytic DNAs as potential therapeutic agents and sequence- specific molecular tools to dissect biological function. J Clin Invest, 2000, 106(10): 1189-1195
    22. Sun LQ, Cairns MJ, Saravolac EG, et al. Catalytic nucleic acids: from lab to applications. Pharmacol Rev, 2000, 52(3): 325-347
    23. Akhtar S, Hughes MD, Khan A, et al. The delivery of antisense therapeutics. Adv Drug Deliv Rev, 2000, 44(1): 3-21
    24. Jen KY, Gewirtz AM. Suppression of gene expression by targeted disruption of messenger RNA: available options and current strategies. Stem Cells, 2000, 18(5): 307-319
    25. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA, 1997, 94(8):4262-4266
    26. Santoro SW, Joyce GF. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry, 1998, 37(38):13330-13342
    27. Liu C, Cheng R, Sun LQ, et al. Supression of platelet-type 12-lipoxygenase activity in human erythroleukemia cells by an RNA-cleaving DNAzyme. Biochem Biophys Res Com, 2001, 284(4): 1077-1082
    28. Zhang X, Xu Y, Ling H, et al. Inhibition of infection of incoming HIV-1 virus by RNA-cleaving DNA enzyme. FEBS Lett, 1999, 458(2): 151-156
    29. Sriram B, Banerjea AC. In vitro-selected RNA cleaving DNA enzymes from a combinatorial library are potent inhibitors of HIV-1 gene expression. Biochem J, 2000, 352(Pt 3): 667-673
    30. Unwalla H, Banerjea AC. Inhibition of HIV-1 gene expression by novel macrophage-tropic DNA enzymes targeted to cleave HIV-1 TAT/Rev RNA. Biochem J, 2001, 357(Pt 1):147-155
    Asahina Y, Ito Y, Wu CH, et al. DNA ribonucleases that are active against intracellular
    
    31. hepatitis B viral RNA targets. Hepatology, 1998, 28(2): 547-554
    32. Sioud M, Leirdal M. Design of nuclease resistant protein kinase calpha DNA enzymes with potential therapeutic application. J Mol Biol, 2000, 296(3): 937-947
    33. Stojanovic MN, de Prada P, Landry DW. Homogeneous assays based on deoxyribozyme catalysis. Nucleic Acids Res, 2000, 28(15): 2915-2918
    34. Cairns MJ, King A, Sun LQ. Nucleic acid mutation analysis using catalytic DNA. Nucleic Acids Res, 2000, 28(3): E9
    35. Wu Y, Yu L, McMahon R, et al. Inhibition of bcr-abl oncogen expression by novel deoxyribozymes(DNAzymes). Hum Gene Ther, 1999, 10(17): 2847-2857
    36. Yen L, Strittmatter SM, Kalb RG. Sequence-specific cleavage of Huntingtin mRNA by catalytic DNA. Ann Neurol, 1999, 46(3): 366-373
    37. Sun LQ, Cairns MJ, Gerlach WL, et al. Suppression of smooth muscle cell proliferation by a c-myc RNA-cleaving deoxyribozyme. J Biol Chem, 1999, 274(24): 17236-17241
    38. Pyle AM, Chu VT, Jankowsky E, et al. Using DNAzymes to cut, process, and map RNA molecules for structural studies or modification. Methods Enzymol, 2000, 317: 140-146
    39. Todd AV, Fuery CJ, Impey HL, et al. DzyNA-PCR: use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clin Chem, 2000, 46(5): 625-630
    40. Santiago FS, Lowe HC, Kavurma MM, et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med, 1999, 5(11):1264-1269
    41. Lowe HC, Fahmy RG, Kavurma MM, et al. Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis. Circ Res, 2001, 89(8):670-677
    42. Manns MP, Cornberg M, Wedemeyer H. Current and future treatment of hepatitis C. Indian J- Gastroenterol, 2001, 20(Suppl 1): C47-51
    43. Boyer N, Marcellin P. Pathogenesis, diagnosis and management of hepatitis C. J Hepatol, 2000, 32 (Suppl 1): 98-112
    44. Hamamoto S, Fukuda R, Ishimura N, et al. 9-cis retinoic acid enhances the antiviral effect of interferon on hepatitis C virus replication through increased expression of type I interferon receptor. J Lab Clin Med, 2003, 141(1):58-66
    
    
    45. Carreno V. Present treatment expectations and risks of chronic hepatitis C. Clin Microbiol Infect, 2002, 8(2):74-79
    46. He Y, Katze MG. To interfere and to anti-interfere: the interplay between hepatitis C virus and interferon. Viral Immunol, 2002, 15(1):95-119
    47. Dymock BW, Jones PS, Wilson FX. Novel approaches to the treatment of hepatitis C virus infection. Antivir Chem Chemother, 2000, 11(2): 79-96
    48. Lehmann TJ, Engels JW. Synthesis and properties of bile acid phosphoramidites 5'-tethered to antisense oligodeoxynucleotides against HCV. Bioorg Med Chem, 2001, 9(7): 1827-1835
    49. 王升启, 王小红, 管伟, 等. HCV 5'-NCR调控抑制活性的反义寡核苷酸的筛选. 中华肝脏病杂志, 2000, 8(5):288-290
    50. Tan SL, Pause A, Shi Y, et al. Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov, 2002 , 1(11):867-881
    51. Odreman MF, Baralle FE, Buratti E. Mutational analysis of the different bulge regions of hepatitis C virus domain II and their influence on internal ribosome entry site translational ability. J Biol Chem, 2001, 276(45): 41648-41655
    52. Beales LP, Rowlands DJ, Holzenburg A. The internal ribosome entry site (IRES) of hepatitis C virus visualized by electron microscopy. RNA, 2001, 7(5): 661-670
    53. Kieft JS, Zhou K, Jubin R, et al. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol, 1999, 292(3): 513-529
    54. Odreman MF, Tisminetzky SG, Zotti M, et al. Influence of correct secondary and tertiary RNA folding on the binding of cellular factors to the HCV IRES. Nucleic Acids Res, 2000, 28(4):875-885
    55. Buratti E, Tisminetzky S, Zotti M, et al. Functional analysis of the interaction between HCV 5'UTR and putative subunits of eukaryotic translation initiation factor eIF3a. Nucleic Acids Res, 1998, 26(13):3179-3187
    56. Klinck R, Westhof E, Walker S, et al. A potential RNA drug target in the hepatitis C virus internal ribosomal entry site. RNA, 2000, 6(10): 1423-1431
    57. Jubin R, Vantuno N, Kieft JS, et al. Hepatitis C virus internal ribosome entry site(IRES)stem Ⅲd contains a phylogenetically conserved GGG triple essential for translation and IRES folding. J Virol, 2000, 74(22):10430-10437
    Tanaka Y, Shimoike T, Ishii K, et al. Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5' untranslated region of the viral
    
    58. genome. Virology, 2000, 270(1): 229-236
    59. Honda M, Ping LH, Rijinbrand RC, et al. Structure requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology, 1996, 222(1):31-42
    60. Honda M, Brown EA, Lemon SM. Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA, 1996, 2(10):955-968
    61. Honda M, Beard MR, Ping LH, et al. A phylogenetically conserved stem-loop structure at the 5' border of the internal ribosome entry site of hepatits C virus is required for cap-independent viral translation. J Virol, 1999, 73(2):1165-1174
    62. Kim YK, Kim CS, Lee SH, et al. Domains I and II in the 5' nontranslated region of the HCV genome are required for RNA replication. Biochem Biophys Res Commun, 2002, 290(1): 105-112
    63. Brown EA, Zhang HC, Ping LH, et al. Secondary structure of the 5'-nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res, 1992, 20(19):5041-5045
    64. Kruger M, Beger C, Li QX, et al. Identification of eIF2Bgamma and eIF2gamma as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach. Proc Natl Acad Sci USA, 2000, 97(15): 8566-8571
    65. Wood J, Frederickson RM, Fields S, Patel AH. Hepatitis C virus 3'X region interacts with human ribosomal proteins. J Virol, 2001, 75(3): 1348-1355
    66. Schuster C, Isel C, Imbert I, et al. Secondary structure of the 3' terminus of hepatitis C virus minus-strand RNA. J Virol, 2002, 76(16): 8058-8068
    67. Tuplin A, Wood J, Evans DJ, et al. Thermodynamic and phylogenetic prediction of RNA secondary structures in the coding region of hepatitis C virus. RNA, 2002, 8(6): 824-841
    68. Di Bisceglie AM. Hepatitis C: virology and future antiviral targets. Am J Med, 1999, 107(6B): S 45-48
    69. 郝飞, 余宙耀, 主编. 丙型肝炎基础与临床. 北京:人民卫生出版社, 1998. 1-328
    70. 毕胜利, 白宪鹤, 丛勉尔, 等. 中国人丙型肝炎病毒基因组一级结构及其变异. 病毒学报, 1993, 9(2):114-127
    71. Pan WH, Devlin HF, Kelley C, et al. A selection system for identifying accessible sites in target RNAs.RNA, 2001, 7(4):610-621
    
    
    72. Sooter LJ, Riedel T, Davidson EA, et al. Toward automated nucleic acid enzyme selection. Biol Chem, 2001, 382(9):1327-1334
    73. Cairns MJ, Hopkins TM, Witherington C, et al. The influence of arm length asymmetry and base substitution on the activity of the 10-23 DNA enzyme. Antisense Nucleic Acid Drug Dev, 2000, 10(5): 323-332
    74. Lee SE, Sidorov A, Gourlain T, et al. Enhancing the catalytic repertoire of nucleic acids: a systemic studuy of linker length an rigidity. Nucleic Acids Res, 2001, 29(7): 1565-1573
    75. Geyer CR, Sen D. Use of intrinsic binding energy for catalysis by a cofactor-independent DNA enzyme. J Mol Biol, 2000, 299(5): 1387-1398
    76. Hausch F, Jaschke A. Multifunctional DNA conjugates for the in vitro selection for new catalysts.Nucleic Acids Res, 2000, 28(8):E35
    77. Sugimoto N, Nakano S, Katoh M, et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry, 1995, 34(35): 11211-11216
    78. Tereshko V, Wallace ST, Usman N, et al. X-ray crystallographic observation of "in-line" and "adjacent" conformations in a buldged self-cleaving RNA/DNA hybrid. RNA, 2001, 7(3):405-420
    79. Lilley DM. Structures of helical junctions in nucleic acids. Q Rev Biophys, 2000, 33(2): 109-159
    80. Okumoto Y, Sugimoto N. Effects of metal ions and catalytic loop sequences on the complex formation of a deoxyribozyme and its RNA substrate. J Inorg Biochem, 2000, 82(1-4): 189-195
    81. Impey HL, Applegate TL, Haughton MA, et al. Factors that influence deoxyribo- zyme cleavage during polymerase chain reaction. Anal Biochem, 2000, 286(2): 300-303
    82. Geyer CR, Sen D. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem Biol, 1997, 4(8): 579-593
    83. Li J, Zheng W, Kwon AH, et al. In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res, 2000, 28(2): 481-488
    84. Geyer CR, Sen D. Lanthanide probes for a phosphodiester-cleaving, lead-dependent, DNAzyme. J Mol Biol, 1998, 275(3): 483-489
    Ota N, Warashina M, Hirano K, et al. Effects of helical structures formed by the binding arms of DNAzymes and their substrates on catalytic activity. Nucleic Acids
    
    85. Res, 1998, 26(14): 3385-3389
    86. Peracchi A. Preferential activation of the 8-17 deoxyribozyme by Ca2+ ions. Evidence for the identity of 8-17 with the catalytic domain of the Mg5 deoxyribozyme. J Biol Chem, 2000, 275(16): 11693-11697
    87. Sugimoto N, Okumoto Y. Development of a short Ca2+-dependent deoxyribozyme with RNA cleavage activity. Nucleic Acids Symp Ser, 1999, (42):281-282
    88. Faulhammer D, Famulok M. Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J Mol Biol, 1997, 269(2): 188-202
    89. Roth A, Breaker RR. An amino acid as a cofactor for a catalytic polynucleotide. Proc Natl Acad Sci USA, 1998, 95(11): 6027-6031
    90. Gourlain T, Sidorov A, Mignet N, et al. Enhancing the catalytic repertoire of nucleic acids.Ⅱ.Simultaneous incorpration of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res, 2001, 29(9):1898-1905
    91. Wang DY, Sen D. A novel mode of regulation of an RNA-cleaving DNAzyme by effectors that bind to both enzyme and substrate. J Mol Bio, 2001, 310(4):723-734
    92. Chu ZL, Pio F, Xie Z, et al. A novel enhancer of the Apaf1 apoptosome involved in cytochrome c-dependent caspase activation and apoptosis. J Biol Chem, 2001, 276(12): 9239-9245
    93. Blight KJ, McKeating JA, Marcotrigiano J, et al. Efficient Replication of Hepatitis C Virus genotype 1a RNAs in Cell Culture. J Virol, 2003, 77(5):3181-3190
    94. Lohmann V, Hoffmann S, Herian U, et al. Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J Virol, 2003, 77(5):3007-3019
    95. Sung VM, Shimodaira S, Doughty AL, et al. Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus in vivo and in vitro: the apoptotic effects of virus infection. J Virol, 2003, 77(3):2134-2146
    96. Hu Y, Shahidi A, Park S, et al. Detection of extrahepatic hepatitis C virus replication by a novel, highly sensitive, single-tube nested polymerase chain reaction. Am J Clin Pathol, 2003, 119(1):95-100
    97. Lim SP, Soo HM, Tan YH, et al. Inducible system in human hepatoma cell lines for hepatitis C virus production. Virology, 2002, 303(1):79-99
    Randall G, Rice CM. Hepatitis C virus cell culture replication systems: their potential use for the development of antiviral therapies. Curr Opin Infect Dis, 2001,
    
    98. 14(6):743-747
    99. 宋志强, 郝飞, 王英杰, 等. 丙型肝炎病毒体外感染原代人胎肝细胞的研究. 中华微生物学和免疫学杂志, 2000, 20(5):427-429
    100. Bartenschlager R. Hepatitis C virus replicons: potential role for drug development. Nat Rev Drug Discov, 2002, 1(11):911-916
    101. Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci USA, 2003, 100(1):235-240
    102. Kapadia SB, Brideau AA, Chisar FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci USA, 2003, 100(4): 2014-2018
    103. 王小红, 郭鹏, 管伟, 等. HCV 5'-NCR转基因小鼠模型的初步建立. 中华肝脏病杂志, 2002, 10(1):37-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700