用户名: 密码: 验证码:
热处理铝代针铁矿的结构演化及其表面反应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁氧化物是地表系统的重要组成矿物。目前已知的铁氧化物矿物共有16种,其中以赤铁矿、针铁矿、磁铁矿、纤铁矿、水铁矿5种矿物最为常见。针铁矿是表生氧化环境最主要的铁氧化物,也是土壤和沉积物中极具表面活性和生物化学活性的重要组分之一。作为天然的纳-微米矿物,针铁矿对地表系统中有机污染物、无机阴离子(团)、重金属等环境有毒有害物质的迁移、转化及最终的环境归宿具有重要的影响,因此,针铁矿结构和表面反应性的研究已成为近年矿物学、环境地球化学等领域的一个研究热点。但目前已有的研究主要集中在针铁矿体相结构及其物理化学性质的研究,对其表面特性与结构间的关系,特别是其原子局域结构对表面反应活性的制约机制缺乏深入的研究,从而影响了人们对矿物环境自净化过程和机制的深入认识,而这是我们理解和掌握地表系统物质循环和污染物环境归趋的关键。另一方面,虽然目前已有的研究非常关注纯相针铁矿的结构及其物理学化学特性,但由于地质条件的复杂性,已有的少数研究表明,针铁矿中往往存在一定程度的类质同象置换(如,Al~(3+)→Fe~(3+)),类质同象置换对针铁矿的局域结构、晶体化学特性及其表面反应性有什么影响,对于这一问题的研究至今为止还鲜有报道。
     为此,本论文从铝代针铁矿的合成入手,采用微区微束技术(场发射扫描电镜、透射电镜等)和现代谱学技术(FTIR、Raman等),结合矿物相和晶体化学表征方法,通过合成铝代针铁矿和天然针铁矿的对比研究,揭示了Al~(3+)→Fe~(3+)置换对针铁矿及其处理产物局域结构、表面物理化学特征及其热稳定性等的影响及其制约机制,建立了铝代针铁矿的结构演化模式;在此基础上,采用吸附实验方法,阐明了针铁矿局域结构变化的对其吸附、催化性能的影响机理及其反应机制,并取得了如下主要创新成果:
     1、识别出针铁矿晶体存在的1种结构羟基、3种表面羟基和1种新发现的无氢键作用的Fe-OH,以及3层表面吸附水。
     2、铝代针铁的合成实验表明,高pH有利于提高铝离子进入针铁矿晶格,形成较高铝含量的铝代针铁矿。发现溶液中铝离子存在不仅阻碍针铁矿的生长、降低结晶度,而且影响针铁矿的晶体形貌,表现为铝替代越多针铁矿长径比越小。铝对Fe的类质同象置换可提高针铁矿结构的稳定性,当铝替代量从0增加到9.1%,针铁矿脱水相变为赤铁矿的峰值温度从225℃提高到了275℃,相应的针铁矿热分解活化能也从117.8kJ/mol增加到126.7kJ/mol。铝替代还提高了针铁矿的热还原转变为赤铁矿、纳米铁的温度。
     3、查明新桥褐铁矿矿石由呈针状、片状的纳米针铁矿交织排列组成,并形成了具有开放孔隙的纳米孔结构,其中针铁矿含量超过95%,且部分针铁矿晶格铁为铝所替代。在空气气氛中,针铁矿在225℃左右开始转化为赤铁矿。生成的赤铁矿不仅保留了针铁矿原有的形貌,而且由于针铁矿晶体脱水相变多晶化,新生了颗粒间纳米孔。随着煅烧温度升高,赤铁矿颗粒变大,赤铁矿粒间空隙变大,比表面积降低,250-350℃煅烧针铁矿具有最大比表面积。与煅烧前针铁矿相比,产物比表面积从12.7m~2/g增加到111.6m~2/g,提高了8.8倍。这一成果为天然针铁矿煅烧产物发挥吸附性能和催化剂载体作用提供理论基础。
     4、基于铝代针铁矿热处理结构演化规律认识和表面反应性响应的理解,对空气气氛煅烧获得的赤铁矿、氢还原获得的磁铁矿和纳米铁等纳米结构化材料在吸附除磷、催化脱焦油、还原净化水中硝酸盐和亚硝酸盐、转化对硝基酚、去除重金属离子等效果进行系统研究,并把天然针铁矿演化产物与合成针铁矿演化产物、商品铁氧化物和纳米铁进行性能对比,发现天然针铁矿演化产物比合成针铁矿的演化产物具有了更好的表面性能和反应活性,其原因归结于天然针铁矿中存在的少量类质同象替代的铝导致了衍生产物赤铁矿、磁铁矿、纳米铁的晶格缺陷增多,比表面积增大、表面活性和化学反应活性的增强。表明天然纳米矿物材料在上述污染物净化方面表现出的特异性能具有巨大的应用潜力。同时实验研究中,对检测方法进行了创新,研究出利用总有机碳分析仪(TOC/N仪)检测气体中有机碳、无机碳、甲烷等含量的方法。
Iron oxides are important mineral component of the earth’s surface system. Thereare sixteen kinds of iron oxides were found in natural environments, in which commoniron oxides take up5types, namely hematite, goethite, magnetite, lepidocrocite,ferrihydrite. Moreover, goethite is the most crucial iron oxides in the supergeneoxidation environment as well as the one of the most important components havingstrong surface activity and chemical-biological activities in soils and deposits. As anatural nano-micron mineral, goethite plays an important role in transfer, transforamtionand enrichment of organic pollutions, inorgainc anions and heavy metals in theenvironments. Therefore, the structure and surface reactvity of goethite became the hotpoint in the field of mineralogy and environmental geochemistry. However, the currentstudy mianly concentrates on the bulk structure and its physicochemical properties. Thestudy on the relationship between the surface stucture and reactivity especially for theeffect of the struture of atomic local area was scarely reported, which limited theunderstanding of the role of mineral in environmental self-purification. On the otherhand, the study on the structure and physicochemical properties of pure goethite wasreported extensively. However, the researchs on the effect of isomorphrous substitutionby Al on the local structure, crystal chemical properties and surface reactivity wasrarely reported, although the existence of Al substitution for Fe in the structure ofgoethite has been demonstrated.
     Therefore, in this present thesis, the techniques of micro-beam and micro district(FESEM, TEM, etc), modern spectroscopy techniques (FTIR, Raman, etc) andcharacterization techniques of mineral phase and crystal chemistry were used tocharacterize the synthetic Al-substituted goethite and natural goethite. The objective isto illuminate the effect of Al substitution for Fe in the structure of goethite on the localstructure, surface physicochemical properties and thermal stability of goethite.Eventually, the functionized natural goethite by annealing in air or hydrogen was usedas catalysts or catalysts carrier to catalytic cracking biomass tar, decompose nitrate andPNP, remove phosphate and heavy metals ions from aqueous solution. The maincreative results are list as fellows.
     Four kinds of hydroxyl and three kinds of surface water were identified accordingto the results of FT-ATR and FT-IES. The four hydroxyl groups contained one structurehydroxyl and three surface hydroxyls.
     The synthesis of Al-substituted goethite indicated that the high pH favored theformation of Al-substituted goethite. The occurrence of Al susbtitution not onlyhampered the growth of goethite and decreased the crystallinity, but also affected thecrystal morphology reflecting in the decrease of long-width ratio with the increase of Alsubstitution amount. The substitution of Al for Fe increased the thermal stability ofgoethite. The starting temperature of the transforamtion of goethite to hematiteincreased from225oC to275oC and the active energy increased from117.8kJ/mol to126.7kJ/mol as the Al substitution amount increased from0to9.1mol%. In addition,the Al substitution still hindered the transformation of goethite to metallic iron.
     Limonite obtained from Xinqiao was mainly composed of acicular goethites withopen nano pore structure, in which the content of goethite was over95%. In addition,the existence of Al-substituted goethite was proved in the samples. The transforamtionof goethite to hematite occured at225oC, newly formed hamatite kept the originalshape of goethite and much nanopore was formed due to the dehydroxyl of goethite.The particles of hematite and pore size increased with the increase of annealingtemperature resulting in the reduce of specific surface area. The formed hematite had alargest surface area after annealing at the range of250-350oC. Comparing with thegothite, the surface area of annealed products increased from12.7to111.6m~2/g, whichprovided a crucial predomination for the utilizaiton of annealed goethite as a catalyst orcatalyst carrier.
     Based on the understanding to the structural evolution of Al-substituted goethite,the annealed products involving hematite, magnetite and zero valent iron were utilizedto catalytic cracking of biomass tar, decompose nitrate and PNP, remove phosphate andheavy metals compared with commercial iron powder. The results showed that naturalgoethite had better property as catalyst carrier than synthetic goethite. In addition, nanozero valent iron (NZVI) prepared by reducing natural goethite had a better surfacereactivity in decomposition of nitrate and PNP, and removal of heavy metals fromaqueous solution than that of commercial iron powder. It was speculated that the strongsurface reactivity of newly formed hematie and this NZVI contributed to the crystaldefects and large surface area. This indicated that natural goethite possesses promisingapplication potential in purifying pollutions. Besides, a new approach to detect theconcentration of carbonaous gases was exploited. The TOC/N was proved to be a goodinstrument for detecting organic carbon, inorganic carbon and methane, etc.
引文
1. Cornell, R.M. and U. Schwertmann, The iron oxides: structure, properties, reactions,occurences and uses.2th edition, WILEY-VCH GmbH&Co. KGaA.,2003.
    2.格兰纳,地质过程中铁的表生氧化物.地质与勘探,1967.5(2): p.65-70.
    3. Schwertmann, U. and R.M. Cornell, Iron oxides in the laboratory2th edition, WILEY-VCHGmbH, D-69469Weinheim.,2000.
    4. Mackay, A.L., b-Ferric oxyhydroxide-akaganeite. Mineralogical Magazine,1962.33: p.270-280.
    5. Bigham, J.M., L. Carlson, and E. Murad, Schwertmannite, a new iron oxyhydroxy-sulfatefrom Pyhasalmi, Finland, and other localitites. Mineralogical Magazine,1994.58(641-648).
    6. Blgham, J.M., et al., A poorly crystallized oxyhydroxysulfate of iron formed by bacterialoxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta,1990.54(10): p.2743-2758.
    7. Yu, J.-Y., M. Park, and J. Kim, Solubilities of synthetic schwertmannite and ferrihydrite.Geochimical Journal,2002.36: p.119-132.
    8. Chukhrov, F.V., et al., Feroxyhyte, a new modification of FeOOH. International GeologyReview,1977.19(8): p.873-890.
    9. Chukhrov, F.V., et al., Ferrihydite. Izvest. Akad. Nauk, SSSR, Ser.Geol.,1973.4(23-33).
    10. Birch, W.D., et al., Bernalite, Fe(OH)3, a new mineral from Broken Hill, New South Wales;description and structure. American Mineralogist,1993.78(7-8): p.827-834.
    11. Kolitsch, U., Bernalite from the Clara Mine, Germany, and the incorporation of tungsten inminerals containing ferric iron. Vol.36.1998: Mineralogical Association of Canada.
    12. Dronskowski, R., The Little Maghemite Story: A Classic Functional Material. AdvancedFunctional Materials,2001.11(1): p.27-29.
    13. Forestier, H. and G. Guillot-Guilbin, Ferromagnetic variety of Fe2O3Comptes Rendus deAcademie des Sciences,1934.199: p.720.
    14. Schrader, R. and G. Büttner, Eine neue Eisen(III)-oxidphase:-Fe2O3. Zeitschrift füranorganische und allgemeine Chemie,1963.320(5-6): p.220-234.
    15. Pernet, M., et al., Caracterisation et Etude par effet M ssbauer d'une nouvelle variete hautepression de FeOOH. Solid State Communications,1973.13(8): p.1147-1154.
    16. Bragg, W.H. and W.L. Bragg, X-rays and crystal structure3rd. G. Bell and Sons. London,1918.
    17. Bragg, W.H., The structure of magnetite and the spinels. Nature,1915.95: p.561.
    18. Naono, H., et al., Evaluation of microporpus texture of undecomposed and decomposedb-FeOOH fine particles by means of adsorption of isotherms of nitrogen gas and water vapor.Processing of6th International Conference on Fundemantal of Adsorption, Kyyoto,1992: p.467-474.
    19. Goldsztaub, S., Structure cristalline de la goethite. Compt. Rend. Acad. Sci. Paris,1932.195.
    20. Forsyth, J.B., I.G. Hedley, and C.E. Johnson, The magnetic structure and hyperfine field ofgoethite (α-FeOOH). Journal of Physics C: Solid State Physics,1968.1(1): p.179.
    21. Szytu a, A., et al., Neutron Diffraction Studies of α-FeOOH. physica status solidi (b),1968.26(2): p.429-434.
    22. Sampson, C.F., Lattice parameters of natural single crystal and synthetically producedgoethite (α-FeOOH),1969, International Union of Crystallography.
    23. Schulze, D., G., The Influence of Aluminum on Iron Oxides. VIII. Unit-Cell Dimensions ofAl-Substituted Goethites and Estimation of Al From Them. Clays and Clay Minerals,1984.32(1): p.36-44.
    24. Schwertmann, U., P. Cambier, and E. Murad, Properties of goethites of varying crystallinity.Clays and Clay Minerals,1985.33(5): p.369-378.
    25. Schwertmann, U. and G. Pfab, Structural vanadium in synthetic goethite. Geochimica etCosmochimica Acta,1994.58(20): p.4349-4352.
    26. Atkinson, R.J., A.M. Posner, and J.P. Quirk, Adsorption of potential-determining ions at theferric oxide-aqueous electrolyte interface. The Journal of Physical Chemistry,1967.71(3): p.550-558.
    27. Strauss, R., G.W. BrüMmer, and N.J. Barrow, Effects of crystallinity of goethite: II. Rates ofsorption and desorption of phosphate. European Journal of Soil Science,1997.48(1): p.101-114.
    28. Russell, J.D., et al., Surface structures of gibbsite goethite and phosphated goethite. Nature,1974.248(5445): p.220-221.
    29. Schwertmann, U., The double dehydroxylation peak of goethite. Thermochimica Acta,1984.78(1–3): p.39-46.
    30.李超,杨守业,长江沉积物中赤铁矿和针铁矿的漫反射光谱分析.中国地质大学学报,2012.37(增刊): p.11-19.
    31. Busca, G., N. Cotena, and P.F. Rossi, Infrared spectroscopic study of micronised geothite.Materials Chemistry,1978.3(4): p.271-283.
    32. Rochester, C.H. and S.A. Topham, Infrared study of surface hydroxyl groups on goethite.Journal of the Chemical Society, Faraday Transactions1: Physical Chemistry in CondensedPhases,1979.75: p.591-602.
    33. Boily, J.-F., et al., Modeling proton binding at the goethite (α-FeOOH)–water interface.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001.179(1): p.11-27.
    34. Villalobos, M., M.A. Trotz, and J.O. Leckie, Variability in goethite surface site density:evidence from proton and carbonate sorption. Journal of Colloid and Interface Science,2003.268(2): p.273-287.
    35. Ghose, S.K., et al., Hydrated goethite (α-FeOOH)(100) interface structure: Ordered water andsurface functional groups. Geochimica et Cosmochimica Acta,2010.74(7): p.1943-1953.
    36. Rustad, J.R. and J.-F. Boily, Density functional calculation of the infrared spectrum of surfacehydroxyl groups on goethite (α-FeOOH). American Mineralogist,2010.95(2-3): p.414-417.
    37. Han, S.K., et al., Evidence of singlet oxygen and hydroxyl radical formation in aqueousgoethite suspension using spin-trapping electron paramagnetic resonance (EPR).Chemosphere,2011.84(8): p.1095-101.
    38. Boily, J.-F., Water Structure and Hydrogen Bonding at Goethite/Water Interfaces: Implicationsfor Proton Affinities. The Journal of Physical Chemistry C,2012.116(7): p.4714-4724.
    39. Gast, R.G., E.R. Landa, and G.W. Meyer, The interaction of water with goethite andamorphous hydrated ferric oxide surfaces. Clays and Clay Minerals,1974.22: p.31-39.
    40.曾丁才,吴宏海,林怡英,杜鹃.针铁矿/水界面反应性的实验研究.矿物岩石学杂志,2009.28(4): p.387-394.
    41. Liu, H., et al., The effect of hydroxyl groups and surface area of hematite derived fromannealing goethite for phosphate removal. J Colloid Interface Sci,2013.398: p.88-94.
    42. Zhang, T., et al., Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generationfrom aqueous ozone: Property and activity relationship. Applied Catalysis B: Environmental,2008.82(1–2): p.131-137.
    43. Hingston, F.J., M. Posner A, and P. Quirk J, Adsorption of Selenite by Goethite, in AdsorptionFrom Aqueous Solution1968, AMERICAN CHEMICAL SOCIETY. p.82-90.
    44. Manceau, A. and L. Charlet, The Mechanism of Selenate Adsorption on Goethite and HydrousFerric Oxide. Journal of Colloid and Interface Science,1994.168(1): p.87-93.
    45. Saeki, K. and S. Matsumoto, Mechanisms of ligand exchange reactions involving selenitesorption on goethite labeled with oxygen‐stable isotope. Communications in Soil Scienceand Plant Analysis,1998.29(19-20): p.3061-3072.
    46. Rietra, R.P., T. Hiemstra, and W.H. van Riemsdijk, Comparison of selenate and sulfateadsorption on goethite. Journal of Colloid and Interface Science,2001.240(2): p.384-390.
    47. Das, S., M. Jim Hendry, and J. Essilfie-Dughan, Adsorption of selenate onto ferrihydrite,goethite, and lepidocrocite under neutral pH conditions. Applied Geochemistry,2013.28: p.185-193.
    48.赵安珍,徐仁扣,二氧化锰对As(III)的氧化及其对针铁矿去除水体中As(III)的影响.环境污染与防治,2006.28(4): p.252-274.
    49. Atkinson, R.J., A.M. Posner, and J.P. Quirk, Kinetics of isotopic exchange of phosphate at theα-FeOOH-aqueous solution interface. Journal of Inorganic and Nuclear Chemistry,1972.34(7): p.2201-2211.
    50. Parfitt, R.L., R.J. Atkinson, and R.S.C. Smart, The mechanism of phosphate fixation by ironoxides. Soil Sci. Soc. Am. J.,1975.39(5): p.837-841.
    51. Sigg, L. and W. Stumm, The interaction of anions and weak acids with the hydrous goethite(α-FeOOH) surface. Colloids and Surfaces,1981.2(2): p.101-117.
    52. Geelhoed, J., W. Van Riemsdijk, and G. Findenegg, Effects of sulphate and pH on theplant-availability of phosphate adsorbed on goethite. Plant and Soil,1997.197(2): p.241-249.
    53. Geelhoed, J.S., T. Hiemstra, and W.H. Van Riemsdijk, Phosphate and sulfate adsorption ongoethite: Single anion and competitive adsorption. Geochimica et Cosmochimica Acta,1997.61(12): p.2389-2396.
    54. Venema, P., T. Hiemstra, and W.H. van Riemsdijk, Interaction of Cadmium with Phosphate onGoethite. Journal of Colloid and Interface Science,1997.192(1): p.94-103.
    55. Geelhoed, J.S., T. Hiemstra, and W.H. Van Riemsdijk, Competitive Interaction betweenPhosphate and Citrate on Goethite. Environmental Science&Technology,1998.32(14): p.2119-2123.
    56. Barrow, N.J., A simple equation to describe sorption of anions by goethite. European Journalof Soil Science,1999.50(1): p.151-155.
    57. Nowack, B. and A.T. Stone, The Influence of Metal Ions on the Adsorption of Phosphonatesonto Goethite. Environmental Science&Technology,1999.33(20): p.3627-3633.
    58. Li, L. and R. Stanforth, Distinguishing adsorption and surface precipitation of phosphate ongoethite (α-FeOOH). Journal of Colloid and Interface Science,2000.230(1): p.12-21.
    59. Gao, Y. and A. Mucci, Acid base reactions, phosphate and arsenate complexation, and theircompetitive adsorption at the surface of goethite in0.7M NaCl solution. Geochimica etCosmochimica Acta,2001.65(14): p.2361-2378.
    60. Dideriksen, K. and S.L.S. Stipp, The adsorption of glyphosate and phosphate to goethite: amolecular-scale atomic force microscopy study. Geochimica et Cosmochimica Acta,2003.67(18): p.3313-3327.
    61. Gao, Y. and A. Mucci, Individual and competitive adsorption of phosphate and arsenate ongoethite in artificial seawater. Chemical Geology,2003.199(1-2): p.91-109.
    62. Ler, A. and R. Stanforth, Evidence for surface precipitation of phosphate on goethite.Environmental Science&Technology,2003.37(12): p.2694-2700.
    63. Gimsing, A.L., O.K. Borggaard, and P. Sestoft, Modeling the Kinetics of the CompetitiveAdsorption and Desorption of Glyphosate and Phosphate on Goethite and Gibbsite and inSoils. Environmental Science&Technology,2004.38(6): p.1718-1722.
    64. Lin, S.-H., et al., An EXFAS study of the structures of copper and phosphate sorbed ontogoethite. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004.234(1-3):p.71-75.
    65. Wang, K. and B. Xing, Mutual effects of cadmium and phosphate on their adsorption anddesorption by goethite. Environmental Pollution,2004.127(1): p.13-20.
    66. Antelo, J., et al., Effects of pH and ionic strength on the adsorption of phosphate and arsenateat the goethite–water interface. Journal of Colloid and Interface Science,2005.285(2): p.476-486.
    67. Chitrakar, R., et al., Phosphate adsorption on synthetic goethite and akaganeite. Journal ofColloid and Interface Science,2006.298(2): p.602-608.
    68. Nowack, B. and A.T. Stone, Competitive adsorption of phosphate and phosphonates ontogoethite. Water Res,2006.40(11): p.2201-9.
    69. Cheng, T., et al., Reactive transport of uranium(VI) and phosphate in a goethite-coated sandcolumn: an experimental study. Chemosphere,2007.68(7): p.1218-23.
    70. Luengo, C., M. Brigante, and M. Avena, Adsorption kinetics of phosphate and arsenate ongoethite. A comparative study. Journal of Colloid and Interface Science,2007.311(2): p.354-360.
    71. Rahnemaie, R., T. Hiemstra, and W.H. van Riemsdijk, Carbonate adsorption on goethite incompetition with phosphate. J Colloid Interface Sci,2007.315(2): p.415-25.
    72. Kim, J., et al., Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH),akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a31P NMR Study. Energy&Environmental Science,2011.4(10): p.4298.
    73.邵鹏辉,唐朝春,简美鹏,余荷根,磷在磁铁矿-针铁矿混合相上的吸附.环境工程学报,2013.7(9): p.3433-3438.
    74. Hingston, F.J., A.M. Posner, and J.P. Quirk, Anion adsorption by goethite and gibbsite.Journal of Soil Science,1972.23(2): p.177-192.
    75. Hiemstra, T. and W.H. Van Riemsdijk, Fluoride adsorption on goethite in relation to differenttypes of surface sites. Journal of Colloid and Interface Science,2000.225(1): p.94-104.
    76. Peak, D., R.G. Ford, and D.L. Sparks, An in Situ ATR-FTIR Investigation of Sulfate BondingMechanisms on Goethite. Journal of Colloid and Interface Science,1999.218(1): p.289-299.
    77. Rietra, R.P.J.J., T. Hiemstra, and W.H. van Riemsdijk, Sulfate Adsorption on Goethite. Journalof Colloid and Interface Science,1999.218(2): p.511-521.
    78. Juang, R.-S. and W.-L. Wu, Adsorption of sulfate and copper(II) on goethite in relation to thechanges of zeta potentials. Journal of Colloid and Interface Science,2002.249(1): p.22-29.
    79. Beattie, D.A., et al., In Situ ATR FTIR Studies of SO4Adsorption on Goethite in the Presenceof Copper Ions. Environmental Science&Technology,2008.42(24): p.9191-9196.
    80. Kersten, M. and N. Vlasova, Silicate adsorption by goethite at elevated temperatures.Chemical Geology,2009.262(3-4): p.336-343.
    81. Grossl, P.R. and D.L. Sparks, Evaluation of contaminant ion adsorption/desorption ongoethite using pressure jump relaxation kinetics. Geoderma,1995.67(1–2): p.87-101.
    82. Fendorf, S., et al., Arsenate and Chromate Retention Mechanisms on Goethite.1. SurfaceStructure. Environmental Science&Technology,1997.31(2): p.315-320.
    83. Matis, K.A., et al., Flotation removal of As(V) onto goethite. Environmental Pollution,1997.97(3): p.239-245.
    84. Manning, B.A., S.E. Fendorf, and S. Goldberg, Surface Structures and Stability of Arsenic(III)on Goethite: Spectroscopic Evidence for Inner-Sphere Complexes. Environmental Science&Technology,1998.32(16): p.2383-2388.
    85. Liu, F., A. De Cristofaro, and A. Violante, Effect of pH, phosphate and oxalate on theadsorption/desorption of arsenate on/from goethite. Soil Science,2001.166(3).
    86. Waltham, C.A. and M.J. Eick, Kinetics of arsenic adsorption on goethite in the presence ofsorbed silicic acid. Soil Science Society of America Journal,2002.66(3): p.818-825.
    87. Gr fe, M., M. Nachtegaal, and D.L. Sparks, Formation of Metal Arsenate Precipitates at theGoethite Water Interface. Environmental Science&Technology,2004.38(24): p.6561-6570.
    88. Gr fe, M. and D.L. Sparks, Kinetics of zinc and arsenate co-sorption at the goethite–waterinterface. Geochimica et Cosmochimica Acta,2005.69(19): p.4573-4595.
    89. Dixit, S. and J.G. Hering, Sorption of Fe(II) and As(III) on goethite in single-anddual-sorbate systems. Chemical Geology,2006.228(1-3): p.6-15.
    90. Lakshmipathiraj, P., et al., Adsorption of arsenate on synthetic goethite from aqueoussolutions. J Hazard Mater,2006.136(2): p.281-7.
    91. Giménez, J., et al., Arsenic sorption onto natural hematite, magnetite, and goethite. Journal ofHazardous Materials,2007.141(3): p.575-580.
    92. Sahai, N., et al., Role of Fe(II) and phosphate in arsenic uptake by coprecipitation.Geochimica et Cosmochimica Acta,2007.71(13): p.3193-3210.
    93. Stachowicz, M., T. Hiemstra, and W.H. van Riemsdijk, Arsenic Bicarbonate Interaction onGoethite Particles. Environmental Science&Technology,2007.41(16): p.5620-5625.
    94. Grafe, M., et al., Copper and arsenate co-sorption at the mineral-water interfaces of goethiteand jarosite. J Colloid Interface Sci,2008.322(2): p.399-413.
    95. Luxton, T., M. Eick, and D. Rimstidt, The role of silicate in the adsorption/desorption ofarsenite on goethite. Chemical Geology,2008.252(3-4): p.125-135.
    96. Stachowicz, M., T. Hiemstra, and W.H. van Riemsdijk, Multi-competitive interaction of As(III)and As(V) oxyanions with Ca(2+), Mg(2+), PO(3-)(4), and CO(2-)(3) ions on goethite. JColloid Interface Sci,2008.320(2): p.400-14.
    97. Asta, M.P., et al., Arsenic removal by goethite and jarosite in acidic conditions and itsenvironmental implications. J Hazard Mater,2009.171(1-3): p.965-72.
    98. Dimirkou, A., et al., Sorption of Cadmium and Arsenic by Goethite and Clinoptilolite.Communications in Soil Science and Plant Analysis,2009.40(1-6): p.259-272.
    99. Hartzog, O.K., et al., Normalization, comparison, and scaling of adsorption data: arsenate andgoethite. J Colloid Interface Sci,2009.333(1): p.6-13.
    100. Catalano, J.G., Y. Luo, and B. Otemuyiwa, Effect of aqueous Fe(II) on arsenate sorption ongoethite and hematite. Environ Sci Technol,2011.45(20): p.8826-33.
    101. Mamindy-Pajany, Y., et al., Arsenic (V) adsorption from aqueous solution onto goethite,hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility.Desalination,2011.281: p.93-99.
    102. Wang, Y., et al., Photooxidation of arsenite by natural goethite in suspended solution. EnvironSci Pollut Res Int,2013.20(1): p.31-8.
    103. Abdel-Samad, H. and P.R. Watson, An XPS study of the adsorption of chromate on goethite(α-FeOOH). Applied Surface Science,1997.108(3): p.371-377.
    104. Hiemstra, T., R. Rahnemaie, and W.H. van Riemsdijk, Surface complexation of carbonate ongoethite: IR spectroscopy, structure and charge distribution. J Colloid Interface Sci,2004.278(2): p.282-90.
    105. Torrent, J., U. Schwertmann, and V. Barron, Fast and slow phosphate sorption by goethite-richnatural materials. Clays and Clay Minerals,1992.40(1): p.14-21.
    106. Tejedor-Tejedor, M.I. and M.A. Anderson, The protonation of phosphate on the surface ofgoethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir,1990.6(3): p.602-611.
    107. Torrent, J., V. Barron, and U. Schwertmann, Phosphate adsorption and desorption by goethitesdiffering in crystal morphology. Soil Science Society of America Journal,1990.54(4): p.1007-1012.
    108. Nowack, B. and A.T. Stone, Adsorption of Phosphonates onto the Goethite–Water Interface.Journal of Colloid and Interface Science,1999.214(1): p.20-30.
    109. Jonasson, R.G., et al., Surface reactions of goethite with phosphate. Journal of the ChemicalSociety, Faraday Transactions1,1988.84(7): p.2311.
    110. Anderson, M.A., M.I. Tejedor-Tejedor, and R.R. Stanforth, Influence of aggregation on theuptake kinetics of phosphate by goethite. Environmental Science&Technology,1985.19(7):p.632-637.
    111. Zhang, J.S., R. Stanforth, and S.O. Pehkonen, Proton-arsenic adsorption ratios and zetapotential measurements: implications for protonation of hydroxyls on the goethite surface. JColloid Interface Sci,2007.315(1): p.13-20.
    112. Amstaetter, K., et al., Redox Transformation of Arsenic by Fe(II)-Activated Goethite(α-FeOOH). Environmental Science&Technology,2009.44(1): p.102-108.
    113. Das, S., M.J. Hendry, and J. Essilfie-Dughan, Effects of adsorbed arsenate on the rate oftransformation of2-line ferrihydrite at pH10. Environ Sci Technol,2011.45(13): p.5557-63.
    114. Guo, H., et al., Enhancement of arsenic adsorption during mineral transformation fromsiderite to goethite: mechanism and application. Environ Sci Technol,2013.47(2): p.1009-16.
    115. Tejedor-Tejedor, M.I., E.C. Yost, and M.A. Anderson, Characterization of benzoic andphenolic complexes at the goethite/aqueous solution interface using cylindrical internalreflection Fourier transform infrared spectroscopy.2. Bonding structures. Langmuir,1992.8(2): p.525-533.
    116. Cornell, R.M. and P.W. Schindler, Infrared study of the adsorption of hydroxycarboxylic acidsonα-FeOOH and amorphous Fe (III)hydroxide. Colloid and Polymer Science,1980.258(10):p.1171-1175.
    117. Persson, P. and K. Axe, Adsorption of oxalate and malonate at the water-goethite interface:Molecular surface speciation from IR spectroscopy. Geochimica et Cosmochimica Acta,2005.69(3): p.541-552.
    118. Fu, H. and X. Quan, Complexes of fulvic acid on the surface of hematite, goethite, andakaganeite: FTIR observation. Chemosphere,2006.63(3): p.403-10.
    119. Filius, J.D., et al., Adsorption of fulvic acid on goethite. Geochimica et Cosmochimica Acta,2000.64(1): p.51-60.
    120. Barja, B.C. and M. dos Santos Afonso, Aminomethylphosphonic Acid and GlyphosateAdsorption onto Goethite: A Comparative Study. Environmental Science&Technology,2004.39(2): p.585-592.
    121. Filius, J.D., T. Hiemstra, and W.H. Van Riemsdijk, Adsorption of Small Weak Organic Acidson Goethite: Modeling of Mechanisms. Journal of Colloid and Interface Science,1997.195(2): p.368-380.
    122. Iglesias, A., et al., Adsorption of paraquat on goethite and humic acid-coated goethite. JHazard Mater,2010.183(1-3): p.664-8.
    123. Brigante, M., G. Zanini, and M. Avena, Effect of humic acids on the adsorption of paraquat bygoethite. J Hazard Mater,2010.184(1-3): p.241-7.
    124. B ckstr m, M., et al., Effects of a fulvic acid on the adsorption of mercury and cadmium ongoethite. Science of The Total Environment,2003.304(1-3): p.257-268.
    125. Norén, K. and P. Persson, Adsorption of monocarboxylates at the water/goethite interface:The importance of hydrogen bonding. Geochimica et Cosmochimica Acta,2007.71(23): p.5717-5730.
    126. Lindegren, M., J.S. Loring, and P. Persson, Molecular structures of citrate and tricarballylateadsorbed on alpha-FeOOH particles in aqueous suspensions. Langmuir,2009.25(18): p.10639-47.
    127. Barja, B.C., M.I. Tejedor-Tejedor, and M.A. Anderson, Complexation of MethylphosphonicAcid with the Surface of Goethite Particles in Aqueous Solution. Langmuir,1999.15(7): p.2316-2321.
    128. Filius, J.D., J.C.L. Meeussen, and W.H. van Riemsdijk, Transport of malonate in agoethite-silica sand system. Colloids and Surfaces A: Physicochemical and EngineeringAspects,1999.151(1): p.245-253.
    129. Axe, K., M. Vejgarden, and P. Persson, An ATR-FTIR spectroscopic study of the competitiveadsorption between oxalate and malonate at the water-goethite interface. J Colloid InterfaceSci,2006.294(1): p.31-7.
    130. Mustafa, G., R.S. Kookana, and B. Singh, Desorption of cadmium from goethite: effects ofpH, temperature and aging. Chemosphere,2006.64(5): p.856-65.
    131. Boily, J.F., P. Persson, and S. Sjoberg, Benzenecarboxylate Surface Complexation at theGoethite (alpha-FeOOH)/Water Interface. Journal of Colloid and Interface Science,2000.227(1): p.132-140.
    132. Lindegren, M. and P. Persson, Competitive adsorption involving phosphate andbenzenecarboxylic acids on goethite--effects of molecular structures. J Colloid Interface Sci,2010.343(1): p.263-70.
    133. Weng, L.P., et al., Interactions of calcium and fulvic acid at the goethite-water interface.Geochimica et Cosmochimica Acta,2005.69(2): p.325-339.
    134. Weng, L., et al., Ligand and Charge Distribution (LCD) model for the description of fulvicacid adsorption to goethite. J Colloid Interface Sci,2006.302(2): p.442-57.
    135. Saito, T., et al., Adsorption of humic acid on goethite: isotherms, charge adjustments, andpotential profiles. Langmuir,2003.20(3): p.689-700.
    136. Weng, et al., Adsorption of Humic Substances on Goethite: Comparison between HumicAcids and Fulvic Acids. Environmental Science&Technology,2006.40(24): p.7494-7500.
    137. Kang, S. and B. Xing, Humic acid fractionation upon sequential adsorption onto goethite.Langmuir,2008.24(6): p.2525-2531.
    138. Angove, M.J., M.B. Fernandes, and J. Ikhsan, The sorption of anthracene onto goethite andkaolinite in the presence of some benzene carboxylic acids. J Colloid Interface Sci,2002.247(2): p.282-9.
    139. Sheals, J., et al., Coadsorption of Cu(II) and glyphosate at the water–goethite (α-FeOOH)interface: molecular structures from FTIR and EXAFS measurements. Journal of Colloid andInterface Science,2003.262(1): p.38-47.
    140. Jonsson, C.M., et al., Adsorption of glyphosate on goethite (α-FeOOH): surface complexationmodeling combining spectroscopic and adsorption data. Environmental Science&Technology,2008.42(7): p.2464-2469.
    141. Angove, M.J., J.D. Wells, and B.B. Johnson, The influence of temperature on the adsorptionof mellitic acid onto goethite. J Colloid Interface Sci,2006.296(1): p.30-40.
    142. Shareef, A., et al., Sorption of bisphenol A,17alpha-ethynylestradiol and estrone to mineralsurfaces. J Colloid Interface Sci,2006.297(1): p.62-9.
    143. Xu, N., C. Christodoulatos, and W. Braida, Adsorption of molybdate and tetrathiomolybdateonto pyrite and goethite: effect of pH and competitive anions. Chemosphere,2006.62(10): p.1726-35.
    144. Xu, N., C. Christodoulatos, and W. Braida, Modeling the competitive effect of phosphate,sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite.Chemosphere,2006.64(8): p.1325-33.
    145. Hanna, K. and C. Carteret, Sorption of1-hydroxy-2-naphthoic acid to goethite, lepidocrociteand ferrihydrite: batch experiments and infrared study. Chemosphere,2007.70(2): p.178-86.
    146. Hiemstra, T., M.O. Barnett, and W.H. van Riemsdijk, Interaction of silicic acid with goethite.J Colloid Interface Sci,2007.310(1): p.8-17.
    147. Miranda Masutti, C.S. and A.R. Mermut, Sorption of fipronil and its sulfide derivative bysoils and goethite. Geoderma,2007.140(1-2): p.1-7.
    148. Trivedi, P. and D. Vasudevan, Spectroscopic Investigation of Ciprofloxacin Speciation at theGoethite Water Interface. Environmental Science&Technology,2007.41(9): p.3153-3158.
    149. Carrasquillo, A.J., et al., Sorption of Ciprofloxacin and Oxytetracycline Zwitterions to Soilsand Soil Minerals: Influence of Compound Structure. Environmental Science&Technology,2008.42(20): p.7634-7642.
    150. Depalma, S., et al., Adsorption thermodynamics of p-arsanilic acid on iron (oxyhydr)oxides:in-situ ATR-FTIR studies. Environmental Science&Technology,2008.42(6): p.1922-1927.
    151. Tunega, D., et al., Model study on sorption of polycyclic aromatic hydrocarbons to goethite. JColloid Interface Sci,2009.330(1): p.244-9.
    152. Journey, J.S., R.M. Anderson, and M.E. Essington, The Adsorption of2-Ketogluconate byGoethite. Soil Science Society of America Journal,2010.74(4): p.1119.
    153. Olsson, R., R. Giesler, and P. Persson, Adsorption mechanisms of glucose in aqueous goethitesuspensions. J Colloid Interface Sci,2011.353(1): p.263-8.
    154. Nassar, N.N. and A. Ringsred, Rapid Adsorption of Methylene Blue from Aqueous Solutionsby Goethite Nanoadsorbents. Environmental Engineering Science,2012.29(8): p.790-797.
    155. Yang, Y., W. Yan, and C. Jing, Dynamic adsorption of catechol at the goethite/aqueoussolution interface: a molecular-scale study. Langmuir,2012.28(41): p.14588-97.
    156. Guo, X., et al., Sorption thermodynamics and kinetics properties of tylosin andsulfamethazine on goethite. Chemical Engineering Journal,2013.223: p.59-67.
    157. Grimme, H., Die adsorption von Mn, Co, Cu und Zn durch goethite aus verdünnten L sungen.Zeitschrift für Pflanzenern hrung und Bodenkunde,1968.121(1): p.58-65.
    158. Gerth, J. and G. Brümmer, Adsorption und festlegung von nickel, zink und cadmium durchgoethite (α-FeOOH). Fresenius' Zeitschrift für analytische Chemie,1983.316(6): p.616-620.
    159. Bruemmer, G.W., J. Gerth, and K.G. Tiller, Reaction kinetics of the adsorption and desorptionof nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. Journal of SoilScience,1988.39(1): p.37-52.
    160. Hu, B., et al., Sorption of radionickel to goethite: Effect of water quality parameters andtemperature. Journal of Radioanalytical and Nuclear Chemistry,2010.285(2): p.389-398.
    161. Padmanabham, M., Adsorption-desorption behaviour of copper(II) at the goethite-solutioninterface. Soil Research,1983.21(3): p.309-320.
    162. Padmanabham, M., Comparative study of the adsorption-desorption behaviour of copper(II),zinc(II), cobalt(II) and lead(II) at the goethite solution interface. Soil Research,1983.21(4): p.515-525.
    163. L vgren, L., S. Sj berg, and P.W. Schindler, Acid/base reactions and Al(III) complexation atthe surface of goethite. Geochimica et Cosmochimica Acta,1990.54(5): p.1301-1306.
    164. Tinnacher, R.M., et al., Kinetics of neptunium(V) sorption and desorption on goethite: Anexperimental and modeling study. Geochimica et Cosmochimica Acta,2011.75(21): p.6584-6599.
    165. Huang, L., et al., Influences of low molar mass organic acids on the adsorption of Cd2+andPb2+by goethite and montmorillonite. Applied Clay Science,2010.49(3): p.281-287.
    166. Yan, L., F. Qiaohui, and W. Wangsuo, Sorption of Th(IV) on goethite: effects of pH, ionicstrength, FA and phosphate. Journal of Radioanalytical and Nuclear Chemistry,2011.289(3):p.865-871.
    167. Ali, M.A. and D.A. Dzombak, Effects of simple organic acids on sorption of Cu2+and Ca2+on goethite. Geochimica et Cosmochimica Acta,1996.60(2): p.291-304.
    168. Forbes, E.A., A.M. Posner, and J.P. Quirk, The specific adsorption of divalent Cd, Co, Cu, Pb,and Zn on goethite. Journal of Soil Science,1976.27(2): p.154-166.
    169. Angove, M.J., J.D. Wells, and B.B. Johnson, The Influence of Temperature on the Adsorptionof Cadmium(II) and Cobalt(II) on Goethite. Journal of Colloid and Interface Science,1999.211(2): p.281-290.
    170. Buerge-Weirich, D., et al., Adsorption of Cu, Cd, and Ni on goethite in the presence of naturalgroundwater ligands. Environmental Science&Technology,2002.36(3): p.328-336.
    171. Wang, K. and B. Xing, Adsorption and desorption of cadmium by goethite pretreated withphosphate. Chemosphere,2002.48(7): p.665-670.
    172. Buerge-Weirich, D., P. Behra, and L. Sigg, Adsorption of copper, nickel, and cadmium ongoethite in the presence of organic ligands. Aquatic Geochemistry,2003.9(2): p.65-85.
    173. Mustafa, G., B. Singh, and R.S. Kookana, Cadmium adsorption and desorption behaviour ongoethite at low equilibrium concentrations: effects of pH and index cations. Chemosphere,2004.57(10): p.1325-33.
    174. Swedlund, P.J., J.G. Webster, and G.M. Miskelly, Goethite adsorption of Cu(II), Pb(II), Cd(II),and Zn(II) in the presence of sulfate: Properties of the ternary complex. Geochimica etCosmochimica Acta,2009.73(6): p.1548-1562.
    175.肖萍,袁林,魏世强,针铁矿对重金属Pb2+、Cd2+的吸附特征.四川环境,2009.28(1): p.17-38.
    176. Kooner, Z.S., C.D. Cox, and J.L. Smoot, Prediction of adsorption of divalent heavy metals atthe goethite/water interface by surface complexation modeling. Environmental Toxicologyand Chemistry,1995.14(12): p.2077-2083.
    177. Rodda, D.P., J.D. Wells, and B.B. Johnson, Anomalous Adsorption of Copper(II) on Goethite.Journal of Colloid and Interface Science,1996.184(2): p.564-569.
    178. Robertson, A.P. and J.O. Leckie, Acid/Base, Copper Binding, and Cu2+/H+ExchangeProperties of Goethite, an Experimental and Modeling Study. Environmental Science&Technology,1998.32(17): p.2519-2530.
    179. Huerta-Diaz, M.A., Influence of light on the adsorption of copper from seawater onto goethiteand birnessite. Bull Environ Contam Toxicol,2006.77(1): p.60-6.
    180. Jonsson, J., S. Sjoberg, and L. Lovgren, Adsorption of Cu(II) to schwertmannite and goethitein presence of dissolved organic matter. Water Res,2006.40(5): p.969-74.
    181. Weng, L., W.H. Van Riemsdijk, and T. Hiemstra, Cu2+and Ca2+adsorption to goethite in thepresence of fulvic acids. Geochimica et Cosmochimica Acta,2008.72(24): p.5857-5870.
    182. Perelomov, L.V., D.L. Pinskiy, and A. Violante, Effect of organic acids on the adsorption ofcopper, lead, and zinc by goethite. Eurasian Soil Science,2011.44(1): p.22-28.
    183. Abdel-Samad, H. and P.R. Watson, An XPS study of the adsorption of lead on goethite(α-FeOOH). Applied Surface Science,1998.136(1–2): p.46-54.
    184. Kraemer, S.M., et al., Effect of hydroxamate siderophores on Fe release and Pb(II) adsorptionby goethite. Geochimica et Cosmochimica Acta,1999.63(19–20): p.3003-3008.
    185. Kova evi, D., et al., The adsorption of lead species on goethite. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000.166(1–3): p.225-233.
    186. Ostergren, J.D., et al., Inorganic ligand effects on Pb(II) sorption to goethite (a-FeOOH).Journal of Colloid and Interface Science,2000.225(2): p.483-493.
    187. Ostergren, J.D., et al., Inorganic ligand effects on Pb(II) sorption to goethite (a-FeOOH).Journal of Colloid and Interface Science,2000.225(2): p.466-482.
    188. Villalobos, M., M.A. Trotz, and J.O. Leckie, Surface complexation modeling of carbonateeffects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite. Environmental Science&Technology,2001.35(19): p.3849-3856.
    189. Glover, L.J., II, M.J. Eick, and P.V. Brady, Desorption kinetics of cadmium(2+) and lead(2+)from goethite: Influence of time and organic acids. Soil Science Society of America Journal,2002.66(3): p.797-804.
    190. Wu, Z., et al., Effects of organic acids on adsorption of lead onto montmorillonite, goethiteand humic acid. Environmental Pollution,2003.121(3): p.469-475.
    191. Orsetti, S., L. Quiroga Mde, and E.M. Andrade, Binding of Pb(II) in the system humicacid/goethite at acidic pH. Chemosphere,2006.65(11): p.2313-21.
    192. Garman, S.M., M.J. Eick, and M. Beck, Desorption Kinetics of Lead from Goethite. SoilScience,2007.172(3): p.177-188.
    193. Kosmulski, M., C. Saneluta, and E. M czka, Electrokinetic study of specific adsorption ofcations on synthetic goethite. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2003.222(1-3): p.119-124.
    194. Xu, Y., et al., Bidentate Complexation Modeling of Heavy Metal Adsorption and Competitionon Goethite. Environmental Science&Technology,2006.40(7): p.2213-2218.
    195. Wang, Y.J., et al., Zinc adsorption on goethite as affected by glyphosate. J Hazard Mater,2008.151(1): p.179-84.
    196. Rietra, R.P.J.J., T. Hiemstra, and W.H. van Riemsdijk, Interaction between calcium andphosphate adsorption on goethite. Environmental Science&Technology,2001.35(16): p.3369-3374.
    197. Davis, A.P. and M. Upadhyaya, Desorption of cadmium from goethite (α-FeOOH). WaterResearch,1996.30(8): p.1894-1904.
    198. Venema, P., T. Hiemstra, and W.H. van Riemsdijk, Multisite Adsorption of Cadmium onGoethite. Journal of Colloid and Interface Science,1996.183(2): p.515-527.
    199. Collins, C.R., K.V. Ragnarsdottir, and D.M. Sherman, Effect of inorganic and organic ligandson the mechanism of cadmium sorption to goethite. Geochimica et Cosmochimica Acta,1999.63(19–20): p.2989-3002.
    200. Granados-Correa, F., et al., Comparison of the Cd(II) adsorption processes between boehmite(γ-AlOOH) and goethite (α-FeOOH). Chemical Engineering Journal,2011.171(3): p.1027-1034.
    201.熊慧欣,周立祥,不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(VI)上的作用.岩石矿物学杂质,2008.27(6): p.559-566.
    202. Marcussen, H., et al., Nickel sorption to goethite and montmorillonite in presence of citrate.Environmental Science&Technology,2009.43(4): p.1122-1127.
    203. Collins, C.R., D.M. Sherman, and K.V. Ragnarsdottir, Surface Complexation of Hg2+onGoethite: Mechanism from EXAFS Spectroscopy and Density Functional Calculations.Journal of Colloid and Interface Science,1999.219(2): p.345-350.
    204. Sahai, N., et al., X-Ray absorption spectroscopy of strontium(II) coordination. Journal ofColloid and Interface Science,2000.222(2): p.198-212.
    205. Giammar, D.E. and J.G. Hering, Time scales for sorption desorption and surface precipitationof uranyl on goethite. Environmental Science&Technology,2001.35(16): p.3332-3337.
    206. Missana, T., M. Garc a-Gutiérrez, and C. Maffiotte, Experimental and modeling study of theuranium (VI) sorption on goethite. Journal of Colloid and Interface Science,2003.260(2): p.291-301.
    207. Cheng, T., et al., Effects of Phosphate on Uranium(VI) Adsorption to Goethite-Coated Sand.Environmental Science&Technology,2004.38(22): p.6059-6065.
    208. Sherman, D.M., C.L. Peacock, and C.G. Hubbard, Surface complexation of U(VI) on goethite(α-FeOOH). Geochimica et Cosmochimica Acta,2008.72(2): p.298-310.
    209. Guo, Z., Y. Li, and W. Wu, Sorption of U(VI) on goethite: effects of pH, ionic strength,phosphate, carbonate and fulvic acid. Appl Radiat Isot,2009.67(6): p.996-1000.
    210. Yusan, S. and S. Erenturk, Sorption behaviors of uranium (VI) ions on α-FeOOH.Desalination,2011.269(1-3): p.58-66.
    211. Singh, A., et al., Molecular-scale structure of uranium(VI) immobilized with goethite andphosphate. Environ Sci Technol,2012.46(12): p.6594-603.
    212. Peacock, C.L. and D.M. Sherman, Vanadium(V) adsorption onto goethite (α-FeOOH) at pH1.5to12: a surface complexation model based on ab initio molecular geometries and EXAFSspectroscopy. Geochimica et Cosmochimica Acta,2004.68(8): p.1723-1733.
    213. Leuz, A.-K., H. M nch, and C.A. Johnson, Sorption of Sb(III) and Sb(V) to Goethite:Influence on Sb(III) Oxidation and Mobilization. Environmental Science&Technology,2006.40(23): p.7277-7282.
    214. Watkins, R., et al., Investigations into the kinetics and thermodynamics of Sb(III) adsorptionon goethite (alpha-FeOOH). J Colloid Interface Sci,2006.303(2): p.639-46.
    215. Martínez‐Lladó, X., et al., Sorption of antimony (V) onto synthetic goethite in carbonatemedium. Solvent Extraction and Ion Exchange,2008.26(3): p.289-300.
    216.席建红,王鲲鹏,张桂枝, Sb(V)在针铁矿表面的吸附: pH、竞争性离子与胡敏酸的影响.土壤通报,2013.44(4): p.875-878.
    217. Persson, P., K. Zivkovic, and S. Sj berg, Quantitative Adsorption and Local Structures ofGallium(III) at the Water-α-FeOOH Interface. Langmuir,2006.22(5): p.2096-2104.
    218. Pokrovsky, O.S., et al., Experimental study of germanium adsorption on goethite andgermanium coprecipitation with iron hydroxide: X-ray absorption fine structure andmacroscopic characterization. Geochimica et Cosmochimica Acta,2006.70(13): p.3325-3341.
    219. Rovira, M., et al., Sorption of selenium(IV) and selenium(VI) onto natural iron oxides:goethite and hematite. J Hazard Mater,2008.150(2): p.279-84.
    220. Armstrong, C.R. and S.A. Wood, Effect of fulvic acid on neodymium uptake by goethite. JColloid Interface Sci,2012.387(1): p.228-33.
    221. Russell, J.D., et al., Adsorption of carbon dioxide on goethite ([small alpha]-FeOOH) surfaces,and its implications for anion adsorption. Journal of the Chemical Society, FaradayTransactions1: Physical Chemistry in Condensed Phases,1975.71(0): p.1623-1630.
    222. Rochester, C.H. and S.A. Topham, Infrared studies of the adsorption of probe molecules ontothe surface of goethite. Journal of the Chemical Society, Faraday Transactions1: PhysicalChemistry in Condensed Phases,1979.75(0): p.872-882.
    223. Ishiwaka, T. and K. Inouye, The selective adsorption of NO on synthetic iron(III) oxidehydroxides, in Frontiers in Colloid Science In Memoriam Professor Dr. Bun-ichi Tamamushi,M. Nakagaski, K. Shinoda, and E. Matijevi, Editors.1983, Steinkopff. p.152-157.
    224. Baltrusaitis, J., D.M. Cwiertny, and V.H. Grassian, Adsorption of sulfur dioxide on hematiteand goethite particle surfaces. Phys Chem Chem Phys,2007.9(41): p.5542-54.
    225. Kaneko, K. and K. Inouye, The mechanism of chemisorption of SO2on iron (III) hydroxideoxides. Corrosion Science,1981.21(9–10): p.639-646.
    226. Kaneko, K. and A. Matsumoto, The role of surface defects in the chemisorption of nitric oxideand sulfur dioxide on variable-sized crystalline.alpha.-iron hydroxide oxide. The Journal ofPhysical Chemistry,1989.93(24): p.8090-8095.
    227. Simonetti, S., et al., Sulfur adsorption on the goethite (110) surface. Surface Review andLetters,2006.13(04): p.387-395.
    228. Simonetti, S., et al., The adsorption and bonding of H2S on the α-FeOOH(110) surface.Surface Review and Letters,2007.14(02): p.209-217.
    229. Yao, D., et al., Effect of natural and hydrothermal synthetic goethite on the release of mathanein the anaerobic decomposition process of organic matter. Environmental Science,2013.34(2): p.635-641.
    230.吴大清,刁桂仪,含铁矿物的表面催化氧化作用及其环境意义.矿物岩石,2003.23(4): p.11-14.
    231.孙振亚,祝春水,龚文琪,铁(氢)氧化物矿物对有机污染物的光催化氧化作用.矿物学报,2003.23(4): p.341-348.
    232.何立平,杨迎春,徐成华,叶芝祥,刘盛余,针铁矿催化降解废水中的罗丹明B.化工环保,2008.28(5): p.396-400.
    233. Shindo, H. and P.M. Huang, Catalytic Effects of Manganese (IV), Iron(III), Aluminum, andSilicon Oxides on the Formation of Phenolic Polymers1. Soil Sci. Soc. Am. J.,1984.48(4): p.927-934.
    234. Cunningham, K.M., M.C. Goldberg, and E.R. Weiner, Mechanisms for aqueous photolysis ofadsorbed benzoate, oxalate, and succinate on iron oxyhydroxide (goethite) surfaces.Environmental Science&Technology,1988.22(9): p.1090-1097.
    235. Muruganandham, M. and J.J. Wu, Granular α-FeOOH–A stable and efficient catalyst for thedecomposition of dissolved ozone in water. Catalysis Communications,2007.8(4): p.668-672.
    236. Krysa, J., et al., Competitive adsorption and photodegradation of salicylate and oxalate ongoethite. Catalysis Today,2011.161(1): p.221-227.
    237. Lin, K., et al., Goethite-mediated transformation of bisphenol A. Chemosphere,2012.89(7): p.789-795.
    238. Lu, M.-C., Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite.Chemosphere,2000.40(2): p.125-130.
    239. He, J., et al., Photoreaction of aromatic compounds at alpha-FeOOH/H2O interface in thepresence of H2O2: evidence for organic-goethite surface complex formation. Water Res,2005.39(1): p.119-28.
    240. Muruganandham, M., J.-S. Yang, and J.J. Wu, Effect of Ultrasonic Irradiation on the CatalyticActivity and Stability of Goethite Catalyst in the Presence of H2O2at Acidic Medium.Industrial&Engineering Chemistry Research,2006.46(3): p.691-698.
    241. Wu, H., et al., Decolourization of the azo dye Orange G in aqueous solution via aheterogeneous Fenton-like reaction catalysed by goethite. Environmental Technology,2012.33(14): p.1545-1552.
    242. Zhang, T. and J. Ma, Catalytic ozonation of trace nitrobenzene in water with syntheticgoethite. Journal of Molecular Catalysis A: Chemical,2008.279(1): p.82-89.
    243. Lin, S.S. and M.D. Gurol, Heterogeneous catalytic oxidation of organic compounds byhydrogen peroxide. Water Science and Technology,1996.34(9): p.57-64.
    244. Lu, M.-C., J.-N. Chen, and H.-H. Huang, Role of goethite dissolution in the oxidation of2-chlorophenol with hydrogen peroxide. Chemosphere,2002.46(1): p.131-136.
    245. Mazellier, P. and M. Bolte, Heterogeneous light-induced transformation of2,6-dimethylphenol in aqueous suspensions containing goethite. Journal of Photochemistryand Photobiology A: Chemistry,2000.132(1): p.129-135.
    246. Andreozzi, R., V. Caprio, and R. Marotta, Oxidation of3,4-dihydroxybenzoic acid by meansof hydrogen peroxide in aqueous goethite slurry. Water Research,2002.36(11): p.2761-2768.
    247. Andreozzi, R., A. D’Apuzzo, and R. Marotta, Oxidation of aromatic substrates inwater/goethite slurry by means of hydrogen peroxide. Water Research,2002.36(19): p.4691-4698.
    248. Chun, C.L., R.M. Hozalski, and W.A. Arnold, Degradation of drinking water disinfectionbyproducts by synthetic goethite and magnetite. Environmental Science&Technology,2005.39(21): p.8525-8532.
    249. Chun, C.L., R.L. Penn, and W.A. Arnold, Kinetic and Microscopic Studies of ReductiveTransformations of Organic Contaminants on Goethite. Environmental Science&Technology,
    2006.40(10): p.3299-3304.
    250. Liu, G.L., et al., Solid-phase photocatalytic degradation of polyethylene-goethite compositefilm under UV-light irradiation. J Hazard Mater,2009.172(2-3): p.1424-9.
    251. Zhang, H., H. Fu, and D. Zhang, Degradation of C.I. Acid Orange7by ultrasound enhancedheterogeneous Fenton-like process. J Hazard Mater,2009.172(2-3): p.654-60.
    252. M kie, P., P. Persson, and L. sterlund, Solar Light Degradation of Trimethyl Phosphate andTriethyl Phosphate on Dry and Water-Precovered Hematite and Goethite Nanoparticles. TheJournal of Physical Chemistry C,2012.116(28): p.14917-14929.
    253. Norrish, K. and R.M. Taylor, The isomorphous replacement of iron by aluminium in soilgoethite. Journal of Soil Science,1961.12(2): p.294-306.
    254. Mendelovici, E., S. Yariv, and R. Villalba, Aluminum-bearing goethite in Venezuelan laterites.Clays and Clay Minerals,1979.27(5): p.368-372.
    255. Fitzpatrick, R.W. and U. Schwertmann, Al-substituted goethite—An indicator of pedogenicand other weathering environments in South Africa. Geoderma,1982.27(4): p.335-347.
    256. Golden, D.C., et al., M ssbauer Studies Of Synthetic And Soil-occurringAluminum-substituted Goethites. Soil Sci. Soc. Am. J.,1979.43(4): p.802-808.
    257. Fey, M.V. and J.B. Dixon, Synthesis and properties of poorly crystalline hydrated aluminousgoethites. Clays and Clay Minerals,1981.29(2): p.91-100.
    258. Goodman, B.A. and D.G. Lewis, M ssbauer spectra of aluminous goethite (α-FeOOH).Journal of Soil Science,1981.32(3): p.351-364.
    259. Fysh, S.A. and P.M. Fredericks, Fourier transform infrared studies of aluminous goethites andhematites. Clays and Clay Minerals,1983.31(5): p.377-382.
    260. Schulze, D.G. and U. Schwertmann, The influence of aluminium on iron oxides; X, Propertiesof Al-substituted goethites. Clay Minerals,1984.19(4): p.521-539.
    261. Schulze, D.G. and U. Schwertmann, The influence of aluminium on iron oxides: XIII.properties of goethites synthesised in0-3m KOH at25°C. Clay Minerals,1987.22: p.83-92.
    262. Schwertmann, U. and E. Murad, The influence of aluminum on iron oxides; XIV,Al-substituted magnetite synthesized at ambient temperatures. Clays and Clay Minerals,1990.38(2): p.196-202.
    263. Ruan, H.D. and R.J. Gilkes, Dehydroxylation of aluminous goethite; unit cell dimensions,crystal size and surface area. Clays and Clay Minerals,1995.43(2): p.196-211.
    264. Scheinost, A.C., D.G. Schulze, and U. Schwertmann, Diffuse reflectance spectra of Alsubstituted goethite; a ligand field approach. Clays and Clay Minerals,1999.47(2): p.156-164.
    265. Ruan, H.D., et al., Infrared spectroscopy of goethite dehydroxylation. II. Effect of aluminiumsubstitution on the behaviour of hydroxyl units. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2002.58(3): p.479-491.
    266. Blanch, A.J., et al., The crystal chemistry of Al-bearing goethites: an infrared spectroscopicstudy. Mineralogical Magazine,2008.72(5): p.1043-1056.
    267. Morozov, V. and S. Vasil’ev, Effect of isomorphic substitutions on the M ssbauer andmagnetic parameters of goethite. Eurasian Soil Science,2010.43(7): p.795-801.
    268. Liu, H., et al., Effect of aging time and Al substitution on the morphology of aluminousgoethite. Journal of Colloid and Interface Science,2012.385(1): p.81-86.
    269. Liu, H., et al., Kinetic study of goethite dehydration and the effect of aluminium substitutionon the dehydrate. Thermochimica Acta,2012.545(0): p.20-25.
    270.陈世益,铝针铁矿的X射线衍射分析研究.轻金属,1997(7): p.7-10.
    271.章明奎,俞震豫,王人潮,历仁安,红壤中针铁矿的铝替代及其与土壤发育的关系.科技通报,1991.7(6): p.326-330.
    272. Frost, R., Z. Ding, and H. Ruan, Thermal analysis of goethite. Journal of Thermal Analysisand Calorimetry,2003.71(3): p.783-797.
    273. Parfitt, R.L., J.D. Russell, and V.C. Farmer, Confirmation of the surface structures of goethite(α-FeOOH) and phosphated goethite by infrared spectroscopy. Journal of the ChemicalSociety, Faraday Transactions1: Physical Chemistry in Condensed Phases,1976.72: p.1082-1087.
    274. Ainsworth, C.C. and M.E. Sumner, Effect of Aluminum Substitution in Goethite onPhosphorus Adsorption: II. Rate of Adsorption1. Soil Sci. Soc. Am. J.,1985.49(5): p.1149-1153.
    275. Ainsworth, C.C., M.E. Sumner, and V.J. Hurst, Effect of Aluminum Substitution in Goethiteon Phosphorus Adsorption: I. Adsorption and Isotopic Exchange1. Soil Sci. Soc. Am. J.,1985.49(5): p.1142-1149.
    276. Spathariotis, E. and C. Kallianou, Adsorption of Copper, Zinc, and Cadmium on Goethite,Aluminum‐Substituted Goethite, and a System of Kaolinite–Goethite: SurfaceComplexation Modeling. Communications in Soil Science and Plant Analysis,2007.38(5-6):p.611-635.
    277.吴思源,练有为,郑红,蔡鹏,濮玉兵,制备条件对合成针铁矿的影响.环境化学,2012.31(10): p.1625-1630.
    278.沈致隆,合成a-FeOOH形态及表面特征的研究.北京轻工业学院学报,1992.10(1): p.78-84.
    279. B hm, J., über Aluminium-und Eisenhydroxyde. I. Zeitschrift für anorganische undallgemeine Chemie,1925.149(1): p.203-216.
    280. Lewis, D.G. and U. Schwertmann, The effect of [OH] on the goethite produced fromferrihydrite under alkaline conditions. Journal of Colloid and Interface Science,1980.78(2): p.543-553.
    281. D. G. Lewis, U.S., The influence of aluminum of the formation of oxides. IV. the influence of[Al],[OH], and temperature Clays and Clay Minerals,1979.27(3): p.195-200.
    282. Zhong, B., et al., Proton interaction in phosphate adsorption onto goethite. Journal of Colloidand Interface Science,2007.308(1): p.40-48.
    283. F.J., E., The crystal structure of diaspore. Journal of Chemical Physics,1935.3(203-207).
    284. Shaw, S., et al., The kinetics and mechanisms of goethite and hematite crystallization underalkaline conditions, and in the presence of phosphate. American Mineralogist,2005.90(11-12): p.1852-1860.
    285. Kustova, G.N., et al., Vibrational spectroscopic investigation of the goethite thermaldecomposition products. Physics and Chemistry of Minerals,1992.18(6): p.379-382.
    286. Tarassov, M., et al., Chemical composition and vibrational spectra of tungsten-bearinggoethite and hematite from Western Rhodopes, Bulgaria. European Journal of Mineralogy,2002.14(5): p.977-986.
    287. Fu, F. and Q. Wang, Removal of heavy metal ions from wastewaters: A review. Journal ofEnvironmental Management,2011.92(3): p.407-418.
    288. Tejedor-Tejedor, M.I. and M.A. Anderson,"In situ" ATR-Fourier transform infrared studies ofthe goethite (α-FeOOH)-aqueous solution interface. Langmuir,1986.2(2): p.203-210.
    289. Betancur, A.F., Quantitative approach in iron oxides and oxyhydroxides by vibrationalanalysis. Optica Pura y Aplicada,2012.45(3): p.269-275.
    290. Cagnasso, M., et al., ATR-FTIR studies of phospholipid vesicle interactions with α-FeOOHand α-Fe2O3surfaces. Colloids Surf B Biointerfaces,2010.76(2): p.12-12.
    291. Van Der Kraan, A.M. and J. Medema, The nature of fine particles of α-FeOOH. Journal ofInorganic and Nuclear Chemistry,1969.31(7): p.2039-2044.
    292. Ruan, H.D., et al., Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopyof in situ study of the thermal transformation of goethite to hematite. Spectrochimica ActaPart A: Molecular and Biomolecular Spectroscopy,2002.58(5): p.967-981.
    293. Ruan, H.D., R.L. Frost, and J.T. Kloprogge, The behavior of hydroxyl units of syntheticgoethite and its dehydroxylated product hematite. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2001.57(13): p.2575-2586.
    294. Prasad, P.S.R., et al., In situ FTIR study on the dehydration of natural goethite. Journal ofAsian Earth Sciences,2006.27(4): p.503-511.
    295. Cambier, P., Infrared study of goethites of varying crystallinity and particle size; I,Interpretation of OH and lattice vibration frequencies. Clay Minerals,1986.21(2): p.191-200.
    296. Yapp, C.J. and H. Poths, Stable hydrogen isotopes in iron oxides: III. Nonstoichiometrichydrogen in goethite. Geochimica et Cosmochimica Acta,1995.59(16): p.3405-3412.
    297. Schwarzmann, E. and H. Sparr, Die wasserstoffbruchenbindung in hydroxiden mitdiasporstruktur. Zeitschrift fur Naturforschung,1969.24: p.8-11.
    298. Gasser, U.G., et al., Properties of synthetic goethites with Co for Fe substitution. ClayMinerals,1996.31(4): p.465-476.
    299. Frost, R.L., S.J. Mills, and M.L. Weier, Peisleyite an unusual mixed anion mineral—avibrational spectroscopic study. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2005.61(1–2): p.177-184.
    300. Libowitzky, E., Correlation of O-H Stretching Frequencies and O-H O Hydrogen BondLengths in Minerals, in Hydrogen Bond Research, P. Schuster and W. Mikenda, Editors.1999,Springer Vienna. p.103-115.
    301. Stanjek, H. and U. Schwertmann, The influence of aluminum on iron oxides; Part XVI,Hydroxyl and aluminum substitution in synthetic hematites. Clays and Clay Minerals,1992.40(3): p.347-354.
    302. Elzinga, E.J. and D.L. Sparks, Phosphate adsorption onto hematite: An in situ ATR-FTIRinvestigation of the effects of pH and loading level on the mode of phosphate surfacecomplexation. Journal of Colloid and Interface Science,2007.308(1): p.53-70.
    303. Murphy, J. and J.P. Riley, A modified single solution method for the determination ofphosphate in natural waters. Analytica Chimica Acta,1962.27(0): p.31-36.
    304. Gualtieri, A.F. and P. Venturelli, In situ study of the goethite-hematite phase transformation byreal time synchrotron powder diffraction. American Mineralogist,1999.84(5-6): p.895-904.
    305. zdemir,. and D.J. Dunlop, Intermediate magnetite formation during dehydration ofgoethite. Earth and Planetary Science Letters,2000.177(1–2): p.59-67.
    306.邹雪华,陈天虎,张萍,陈冬,刘海波,庆承松,天然针铁矿热处理产物的结构特征.硅酸盐学报,2013.41(10):p.1442-1446.
    307. Serna, C.J. and J.E. Iglesias, Nature of protohaematite and hydrohaematite. Journal ofMaterials Science Letters,1986.5(9): p.901-902.
    308. Barron, V., M. Herruzo, and J. Torrent, Phosphate Adsorption by Aluminous Hematites ofDifferent Shapes. Soil Science Society of America Journal,1988.52(3): p.647.
    309. R., T., Zum system a-FeOOH-a-AlOOH. Z. Anorg. Allg. Chem.,1963.326: p.70-78.
    310. Bronevoi, V.A. and L.N. Furmakova, Formation conditions for aluminogoethites in bauxites.Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva,1975.104: p.461-466.
    311. Shannon, R.D. and C.T. Prewitt, Effective ionic radii in oxides and fluorides. ActaCrystallographica Section B,1969.25(5): p.925-946.
    312. Taylor, R.M. and U. Schwertmann, The influence of aluminum on iron oxides; Part1, Theinfluence of Al on Fe oxide formation from the Fe(II) system. Clays and Clay Minerals,1978.26(6): p.373-383.
    313. Morozov, V.V. and S.V. Vasil’ev, Effect of isomorphic substitutions on the M ssbauer andmagnetic parameters of goethite. Eurasian Soil Science,2010.43(7): p.795-801.
    314. Silva, J., et al., The role of Al-goethites on arsenate mobility. Water Res,2010.44(19): p.5684-92.
    315. Beattie, I.R. and T.R. Gilson, The single-crystal Raman spectra of nearly opaque materials.Iron(III) oxide and chromium(III) oxide. Journal of the Chemical Society A: Inorganic,Physical, Theoretical,1970.0(0): p.980-986.
    316. Thibeau, R.J., C.W. Brown, and R.H. Heidersbach, Raman Spectra of Possible CorrosionProducts of Iron. Appl. Spectrosc.,1978.32(6): p.532-535.
    317. de Faria, D.L.A., S. Venancio Silva, and M.T. de Oliveira, Raman microspectroscopy of someiron oxides and oxyhydroxides. Journal of Raman Spectroscopy,1997.28(11): p.873-878.
    318. de Faria, D.L.A. and F.N. Lopes, Heated goethite and natural hematite: Can Ramanspectroscopy be used to differentiate them? Vibrational Spectroscopy,2007.45(2): p.117-121.
    319. Liu, H., et al., Effect of additives on catalytic cracking of biomass gasification tar over anickel-based catalyst. Chinese Journal of Catalysis,2010.31(4): p.409-414.
    320. Das, S. and M.J. Hendry, Changes of crystal morphology of aged goethite over a range of pH(2–13) at100°C. Applied Clay Science,2011.51(1-2): p.192-197.
    321. Singh, S.S. and H. Kodama, Effect of the presence of aluminum ions in iron solutions on theformation of iron oxyhydroxides (FeOOH) at room temperature under acidic environment.Clays and Clay Minerals,1994.42(5): p.606-613.
    322. Dowty, E., A computer program for dispalying atmoic structures. Copyright E. Dowty,1991:p.122.
    323. Schwertmann, U. and H. Stanjek, Stirring effects on properties of Al goethite formed fromferrihydrite. Clays and Clay Minerals,1998.46(3): p.317-321.
    324. Smith, K.L. and R.A. Eggleton, Botryoidal goethite; a transmission electron microscope study.Clays and Clay Minerals,1983.31(5): p.392-396.
    325. Schwartmann, U., The influence of aluminium on iron oxides: IX. dissolution of Al-goethitesin6M HCl. Clay Minerals,1984.19: p.9-19.
    326. Van der Woude, J.H.A., J.B. Rijnbout, and P.L. de Bruyn, Formation of colloidal dispersionsfrom supersaturated iron(III) nitrate solutions. IV. Analysis of slow flocculation of goethite.Colloids and Surfaces,1984.11(3–4): p.391-400.
    327. Van Der Woude, J.H.A. and P.L. De Bruyn, Formation of colloid dispersions fromsupersaturated iron(Ⅲ) nitrate solutions. Ⅲ.develpoment of goethite at room tempeartureColloids and Surfaces,1984.9: p.173-188.
    328. Van der Woude, J.H.A. and P.L. de Bruyn, Formation of colloidal dispersions fromsupersaturated iron(III) nitrate solutions v. Synthesis of monodisperse goethite sols. Colloidsand Surfaces,1984.12(0): p.179-188.
    329. Goss, C.J., The kinetics and reaction mechanism of the goethite to hematite transformation.Mineralogical Magazine,1987.51: p.437-451.
    330. Naono, H., et al., Porous texture in hematite derived from goethite: Mechanism of thermaldecomposition of geothite. Journal of Colloid and Interface Science,1987.120(2): p.439-450.
    331. Ford, R.G. and P.M. Bertsch, Distinguishing between surface and bulkdehydration-dehydroxylation reactions in synthetic goethites by high resolutionthermogravimetric analysis. Clays and Clay Minerals,1999.47(3): p.329-337.
    332. Rendon, J.L., et al., Pore structure of thermally treated goethite (α-FeOOH). Journal ofColloid and Interface Science,1983.92(2): p.508-516.
    333.戚立宽,针铁矿的相变与Al2O3的溶出率.轻金属,1991(8): p.11-14.
    334. Pomiès, M.P., M. Menu, and C. Vignaud, Tem observations of goethite dehydration:application to archaeological samples. Journal of the European Ceramic Society,1999.19(8):p.1605-1614.
    335. Watari, F., et al., Electron microscopic study of dehydration transformations. Part III: Highresolution observation of the reaction process FeOOH→Fe2O3. Journal of Solid StateChemistry,1983.48(1): p.49-64.
    336. Zoppi, A., et al., Al-for-Fe substitution in hematite: the effect of low Al concentrations in theRaman spectrum of Fe2O3. Journal of Raman Spectroscopy,2008.39(1): p.40-46.
    337. Devi, L., K.J. Ptasinski, and F.J.J.G. Janssen, A review of the primary measures for tarelimination in biomass gasification processes. Biomass and Bioenergy,2003.24(2): p.125-140.
    338. Asadullah, M., et al., A comparison of Rh/CeO2/SiO2catalysts with steam reformingcatalysts, dolomite and inert materials as bed materials in low throughput fluidized bedgasification systems. Biomass and Bioenergy,2004.26(3): p.269-279.
    339. Olivares, A., et al., Biomass Gasification: Produced Gas Upgrading by In-Bed Use ofDolomite. Industrial&Engineering Chemistry Research,1997.36(12): p.5220-5226.
    340. Rapagnà, S., N. Jand, and P.U. Foscolo, Catalytic gasification of biomass to producehydrogen rich gas. International Journal of Hydrogen Energy,1998.23(7): p.551-557.
    341. Constantinou, D.A. and A.M. Efstathiou, The steam reforming of phenol over natural calcitematerials. Catalysis Today,2009.143(1-2): p.17-24.
    342. Constantinou, D.A., J.L.G. Fierro, and A.M. Efstathiou, A comparative study of the steamreforming of phenol towards H2production over natural calcite, dolomite and olivinematerials. Applied Catalysis B: Environmental,2010.95(3-4): p.255-269.
    343. Noichi, H., A. Uddin, and E. Sasaoka, Steam reforming of naphthalene as model biomass tarover iron–aluminum and iron–zirconium oxide catalyst catalysts. Fuel Processing Technology,
    2010.91(11): p.1609-1616.
    344. Polychronopoulou, K., et al., Absorption-enhanced reforming of phenol by steam oversupported Fe catalysts. Journal of Catalysis,2006.241(1): p.132-148.
    345. Polychronopoulou, K., K. Giannakopoulos, and A.M. Efstathiou, Tailoring MgO-basedsupported Rh catalysts for purification of gas streams from phenol. Applied Catalysis B:Environmental,2012.111-112: p.360-375.
    346. Virginie, M., et al., Characterization and reactivity in toluene reforming of a Fe/olivinecatalyst designed for gas cleanup in biomass gasification. Applied Catalysis B: Environmental,2010.101(1-2): p.90-100.
    347. Wang, L., et al., Catalytic performance and characterization of Ni-Fe catalysts for the steamreforming of tar from biomass pyrolysis to synthesis gas. Applied Catalysis A: General,2011.392(1-2): p.248-255.
    348. Zhao, B., et al., Steam reforming of toluene as model compound of biomass pyrolysis tar forhydrogen. Biomass and Bioenergy,2010.34(1): p.140-144.
    349. Devi, L., et al., Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization.Applied Catalysis A: General,2005.294(1): p.68-79.
    350. Devi, L., K.J. Ptasinski, and F.J.J.G. Janssen, Pretreated olivine as tar removal catalyst forbiomass gasifiers: investigation using naphthalene as model biomass tar. Fuel ProcessingTechnology,2005.86(6): p.707-730.
    351. wierczyński, D., et al., Steam reforming of tar from a biomass gasification process overNi/olivine catalyst using toluene as a model compound. Applied Catalysis B: Environmental,2007.74(3-4): p.211-222.
    352. Kuhn, J.N., et al., Ni-olivine catalysts prepared by thermal impregnation: Structure, steamreforming activity, and stability. Applied Catalysis A: General,2008.341(1-2): p.43-49.
    353. Myrén, C., et al., Catalytic tar decomposition of biomass pyrolysis gas with a combination ofdolomite and silica. Biomass and Bioenergy,2002.23(3): p.217-227.
    354. Corella, J., J.M. Toledo, and G. Molina, Performance of CaO and MgO for the hot gas cleanup in gasification of a chlorine-containing (RDF) feedstock. Bioresour Technol,2008.99(16):p.7539-44.
    355. Sato, K. and K. Fujimoto, Development of new nickel based catalyst for tar reforming withsuperior resistance to sulfur poisoning and coking in biomass gasification. CatalysisCommunications,2007.8(11): p.1697-1701.
    356. Wang, T.J., et al., The steam reforming of naphthalene over a nickel–dolomite crackingcatalyst. Biomass and Bioenergy,2005.28(5): p.508-514.
    357. Kimura, T., et al., Development of Ni catalysts for tar removal by steam gasification ofbiomass. Applied Catalysis B: Environmental,2006.68(3-4): p.160-170.
    358. Miyazawa, T., et al., Catalytic properties of Rh/CeO2/SiO2for synthesis gas production frombiomass by catalytic partial oxidation of tar. Science and Technology of Advanced Materials,2005.6(6): p.604-614.
    359. Miyazawa, T., et al., Catalytic performance of supported Ni catalysts in partial oxidation andsteam reforming of tar derived from the pyrolysis of wood biomass. Catalysis Today,2006.115(1-4): p.254-262.
    360. Nakamura, K., et al., Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3in the steamgasification of biomass. Applied Catalysis B: Environmental,2009.86(1-2): p.36-44.
    361. Nishikawa, J., et al., Promoting effect of Pt addition to Ni/CeO2/Al2O3catalyst for steamgasification of biomass. Catalysis Communications,2008.9(2): p.195-201.
    362. Nishikawa, J., et al., Catalytic performance of Ni/CeO2/Al2O3modified with noble metals insteam gasification of biomass. Catalysis Today,2008.131(1-4): p.146-155.
    363. Reshetenko, T., Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3,Fe-Ni-Al2O3) for methane decomposition at moderate temperaturesI. Genesis of calcined andreduced catalysts. Applied Catalysis A: General,2004.268(1-2): p.127-138.
    364. Bellier, N., F. Chazarenc, and Y. Comeau, Phosphorus removal from wastewater by mineralapatite. Water Research,2006.40(15): p.2965-2971.
    365. Leo, C.P., et al., Phosphorus removal using nanofiltration membranes. Water science andtechnology: a journal of the International Association on Water Pollution Research,2011.64(1): p.199-205.
    366. Ugurlu, A. and B. Salman, Phosphorus removal by fly ash. Environment International,1998.24(8): p.911-918.
    367. Erickson, B.E., Technology Solutions: Phosphorus removal from agricultural effluents.Environmental Science&Technology,2003.37(5): p.93A-93A.
    368. Morton, S.C., et al., Analysis of Reduced Phosphorus in Samples of Environmental Interest.Environmental Science&Technology,2005.39(12): p.4369-4376.
    369. Yeom, R.J.B.K.U.D.I.T., Phosphorus removal in low alkalinity secondary effluent using alum.International Jornal of Environmantal Science and Technology,2008.5(1): p.93-98.
    370. Zheng, X., Y. Chen, and R. Wu, Long-Term Effects of Titanium Dioxide Nanoparticles onNitrogen and Phosphorus Removal from Wastewater and Bacterial Community Shift inActivated Sludge. Environmental Science&Technology,2011.45(17): p.7284-7290.
    371. Zheng, X., R. Wu, and Y. Chen, Effects of ZnO Nanoparticles on Wastewater BiologicalNitrogen and Phosphorus Removal. Environmental Science&Technology,2011.45(7): p.2826-2832.
    372.顾维,赵玲,董元华,汤莉莉,针铁矿吸附诺氟沙星特征的研究.中国环境科学,2011.31(8): p.1314-1320.
    373.林志荣,赵玲,董元华,徐建强,针铁矿催化过氧化氢降解PCB28.环境科学学报,2011.31(11): p.2403-2408.
    374. de-Bashan, L.E. and Y. Bashan, Recent advances in removing phosphorus from wastewaterand its future use as fertilizer (1997–2003). Water Research,2004.38(19): p.4222-4246.
    375. Liu, H., et al., Catalytic cracking of tars derived from rice hull gasification over goethite andpalygorskite. Applied Clay Science,2012.70(0): p.51-57.
    376. Ponder, S.M., J.G. Darab, and T.E. Mallouk, Remediation of Cr(VI) and Pb(II) AqueousSolutions Using Supported, Nanoscale Zero-valent Iron. Environmental Science&Technology,2000.34(12): p.2564-2569.
    377. Su, C. and R.W. Puls, Nitrate Reduction by Zerovalent Iron: Effects of Formate, Oxalate,Citrate, Chloride, Sulfate, Borate, and Phosphate. Environmental Science&Technology,2004.38(9): p.2715-2720.
    378. Liu, T., D.C.W. Tsang, and I.M.C. Lo, Chromium(VI) Reduction Kinetics by Zero-Valent Ironin Moderately Hard Water with Humic Acid: Iron Dissolution and Humic Acid Adsorption.Environmental Science&Technology,2008.42(6): p.2092-2098.
    379.曹茜,陈家玮,溶解氧对零价铁去除水中六价铬的影响.现代地质,2013.27(2): p.435-439.
    380.王丹丽,董晓丹,王恩德,针铁矿对重金属离子的吸附作用.黄金,2002.23(2): p.44-46.
    381.易正戟,肖玉梅,曹新星,谢叶归,零价铁腐蚀产物对硫酸盐还原沉淀铀的影响.采矿技术,2009.9(3): p.129-132.
    382. Agrawal, A. and P.G. Tratnyek, Reduction of Nitro Aromatic Compounds by Zero-Valent IronMetal. Environmental Science&Technology,1995.30(1): p.153-160.
    383. Cheng, I.F., et al., Reduction of nitrate to ammonia by zero-valent iron. Chemosphere,1997.35(11): p.2689-2695.
    384. Schultz, C.A. and T.J. Grundl, pH Dependence on Reduction Rate of4-Cl-Nitrobenzene byFe(II)/Montmorillonite Systems. Environmental Science&Technology,2000.34(17): p.3641-3648.
    385. Alowitz, M.J. and M.M. Scherer, Kinetics of Nitrate, Nitrite, and Cr(VI) Reduction by IronMetal. Environmental Science&Technology,2002.36(3): p.299-306.
    386. Franke, R., et al., Auger parameters and relaxation energies of phosphorus in solid compounds.Journal of Electron Spectroscopy and Related Phenomena,1991.56(4): p.381-388.
    387. Moulder J. F., S.W.F., Sobol P. E., Handbook of X-ray Photoelectron Spectroscopy.. Montreal:Perkin-elmer Corporation Publisher,2004.
    388. Ghauch, A., Rapid removal of flutriafol in water by zero-valent iron powder. Chemosphere,2008.71(5): p.816-826.
    389. Huang, C.-P., H.-W. Wang, and P.-C. Chiu, Nitrate reduction by metallic iron. Water Research,1998.32(8): p.2257-2264.
    390. Farrell, J., et al., Investigation of the Long-Term Performance of Zero-Valent Iron forReductive Dechlorination of Trichloroethylene. Environmental Science&Technology,1999.34(3): p.514-521.
    391. Gu, B., et al., Biogeochemical Dynamics in Zero-Valent Iron Columns: Implications forPermeable Reactive Barriers. Environmental Science&Technology,1999.33(13): p.2170-2177.
    392. Joo, S.H., A.J. Feitz, and T.D. Waite, Oxidative Degradation of the Carbothioate Herbicide,Molinate, Using Nanoscale Zero-Valent Iron. Environmental Science&Technology,2004.38(7): p.2242-2247.
    393. Teng, X., et al., Platinum-Maghemite Core Shell Nanoparticles Using a Sequential Synthesis.Nano Letters,2003.3(2): p.261-264.
    394. Arai, Y. and D.L. Sparks, ATR–FTIR Spectroscopic Investigation on Phosphate AdsorptionMechanisms at the Ferrihydrite–Water Interface. Journal of Colloid and Interface Science,2001.241(2): p.317-326.
    395. Mills, P. and J.L. Sullivan, A study of the core level electrons in iron and its three oxides bymeans of x-ray photoelectron spectroscopy. J. Phys. D: Apll. Phys.,1983.16: p.723-732.
    396. Wang, C.-B. and W.-x. Zhang, Synthesizing Nanoscale Iron Particles for Rapid and CompleteDechlorination of TCE and PCBs. Environmental Science&Technology,1997.31(7): p.2154-2156.
    397. Glavee, G.N., et al., Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions inAqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders.Inorganic Chemistry,1995.34(1): p.28-35.
    398. Elliott, D., H. Lien, and W. Zhang, Degradation of Lindane by Zero-Valent Iron Nanoparticles.Journal of Environmental Engineering,2009.135(5): p.317-324.
    399. Joo, S.H. and D. Zhao, Destruction of lindane and atrazine using stabilized iron nanoparticlesunder aerobic and anaerobic conditions: Effects of catalyst and stabilizer. Chemosphere,2008.70(3): p.418-425.
    400. Gillham, R.W. and S.F. O'Hannesin, Enhanced Degradation of Halogenated Aliphatics byZero-Valent Iron. Ground Water,1994.32(6): p.958-967.
    401. Chuang, F.-W., R.A. Larson, and M.S. Wessman, Zero-Valent Iron-Promoted Dechlorinationof Polychlorinated Biphenyls. Environmental Science&Technology,1995.29(9): p.2460-2463.
    402. Li, A., et al., Debromination of Decabrominated Diphenyl Ether by Resin-Bound IronNanoparticles. Environmental Science&Technology,2007.41(19): p.6841-6846.
    403. Shih, Y.-h. and Y.-t. Tai, Reaction of decabrominated diphenyl ether by zerovalent ironnanoparticles. Chemosphere,2010.78(10): p.1200-1206.
    404. Liu, Y., et al., TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale IronParticles with Different Properties. Environmental Science&Technology,2005.39(5): p.1338-1345.
    405. Naja, G., et al., Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) UsingZerovalent Iron Nanoparticles. Environmental Science&Technology,2008.42(12): p.4364-4370.
    406. Zhang, X., Y.-m. Lin, and Z.-l. Chen,2,4,6-Trinitrotoluene reduction kinetics in aqueoussolution using nanoscale zero-valent iron. Journal of Hazardous Materials,2009.165(1–3): p.923-927.
    407. Ambashta, R.D., E. Repo, and M. Sillanp, Degradation of Tributyl Phosphate UsingNanopowders of Iron and Iron–Nickel under the Influence of a Static Magnetic Field.Industrial&Engineering Chemistry Research,2011.50(21): p.11771-11777.
    408. Choe, S., et al., Kinetics of reductive denitrification by nanoscale zero-valent iron.Chemosphere,2000.41(8): p.1307-1311.
    409. elebi, O., et al., A radiotracer study of the adsorption behavior of aqueous Ba2+ions onnanoparticles of zero-valent iron. Journal of Hazardous Materials,2007.148(3): p.761-767.
    410. Klimkova, S., et al., Zero-valent iron nanoparticles in treatment of acid mine water from insitu uranium leaching. Chemosphere,2011.82(8): p.1178-1184.
    411. üzüm,., et al., Application of zero-valent iron nanoparticles for the removal of aqueousCo2+ions under various experimental conditions. Chemical Engineering Journal,2008.144(2): p.213-220.
    412. Li, X.-q. and W.-x. Zhang, Sequestration of Metal Cations with Zerovalent IronNanoparticlesA Study with High Resolution X-ray Photoelectron Spectroscopy (HR-XPS).The Journal of Physical Chemistry C,2007.111(19): p.6939-6946.
    413. Karabelli, D., et al., Batch Removal of Aqueous Cu2+Ions Using Nanoparticles of Zero-ValentIron: A Study of the Capacity and Mechanism of Uptake. Industrial&Engineering ChemistryResearch,2008.47(14): p.4758-4764.
    414. Kanel, S.R., J.-M. Grenèche, and H. Choi, Arsenic(V) Removal from Groundwater UsingNano Scale Zero-Valent Iron as a Colloidal Reactive Barrier Material. Environmental Science&Technology,2006.40(6): p.2045-2050.
    415. Zhu, H., et al., Removal of arsenic from water by supported nano zero-valent iron onactivated carbon. Journal of Hazardous Materials,2009.172(2–3): p.1591-1596.
    416. Dickinson, M. and T.B. Scott, The application of zero-valent iron nanoparticles for theremediation of a uranium-contaminated waste effluent. Journal of Hazardous Materials,2010.178(1–3): p.171-179.
    417. Riba, O., et al., Reaction mechanism of uranyl in the presence of zero-valent ironnanoparticles. Geochimica et Cosmochimica Acta,2008.72(16): p.4047-4057.
    418. Liu, H., et al., Catalytic cracking of biomass tar over Ni-based on palygorskite. Journal of theChinese Ceramic Society2011.39(4): p.590-595.
    419. Liu, H.B., et al., Nitrate reduction over nanoscale zero-valent iron prepared by hydrogenreduction of goethite. Materials Chemistry and Physics,2012.133(1): p.205-211.
    420. Liu, H., et al., Effect of preparation method of palygorskite-supported Fe and Ni catalysts oncatalytic cracking of biomass tar. Chemical Engineering Journal,2012.188(0): p.108-112.
    421. Azharuddin, M., et al., Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel,2008.87(4-5): p.451-459.
    422. Bigg, T. and S.J. Judd, Zero-Valent Iron for Water Treatment. Environmental Technology,2000.21(6): p.661-670.
    423. Cundy, A.B., L. Hopkinson, and R.L.D. Whitby, Use of iron-based technologies incontaminated land and groundwater remediation: A review. Science of The Total Environment,2008.400(1–3): p.42-51.
    424. Comba, S., A. Di Molfetta, and R. Sethi, A Comparison Between Field Applications of Nano-,Micro-, and Millimetric Zero-Valent Iron for the Remediation of Contaminated Aquifers.Water, Air,&Soil Pollution,2011.215(1): p.595-607.
    425. Burris, D.R., T.J. Campbell, and V.S. Manoranjan, Sorption of Trichloroethylene andTetrachloroethylene in a Batch Reactive Metallic Iron-Water System. Environmental Science&Technology,1995.29(11): p.2850-2855.
    426. Lavine, B.K., G. Auslander, and J. Ritter, Polarographic studies of zero valent iron as areductant for remediation of nitroaromatics in the environment. Microchemical Journal,2001.70(2): p.69-83.
    427. Odziemkowski, M., Spectroscopic studies and reactions of corrosion products at surfaces andelectrodes, in Spectroscopic Properties of Inorganic and Organometallic Compounds2009,The Royal Society of Chemistry. p.385-449.
    428. Noubactep, C., et al., Mitigating Uranium in Groundwater: Prospects and Limitations.Environmental Science&Technology,2003.37(18): p.4304-4308.
    429. C., N., Processes of contaminant removal in Fe-H2O system revisited: The importance ofcoprecipitation. Open enviromental journal,2007.1: p.9-13.
    430. Noubactep, C., A critical review on the process of contaminat removal in Fe0-H2O systems.Environmental Technology,2008.29(8): p.909-920.
    431. O'Hannesin, S.F. and R.W. Gillham, Long-Term Performance of an In Situ “Iron Wall” forRemediation of VOCs. Ground Water,1998.36(1): p.164-170.
    432. Scherer, M.M., et al., Chemistry and Microbiology of Permeable Reactive Barriers for In SituGroundwater Clean up. Critical Reviews in Microbiology,2000.26(4): p.221-264.
    433. Thiruvenkatachari, R., S. Vigneswaran, and R. Naidu, Permeable reactive barrier forgroundwater remediation. Journal of Industrial and Engineering Chemistry,2008.14(2): p.145-156.
    434. Han, J. and H. Kim, The reduction and control technology of tar during biomassgasification/pyrolysis: An overview. Renewable and Sustainable Energy Reviews,2008.12(2):p.397-416.
    435. Muegge, J.P. and P.W. Hadley, An evaluation of permeable reactive barrier projects inCalifornia. Remediation Journal,2009.20(1): p.41-57.
    436. Phillips, D.H., et al., Ten Year Performance Evaluation of a Field-Scale Zero-Valent IronPermeable Reactive Barrier Installed to Remediate Trichloroethene ContaminatedGroundwater. Environmental Science&Technology,2010.44(10): p.3861-3869.
    437. Henderson, A.D. and A.H. Demond, Long-Term Performance of Zero-Valent Iron PermeableReactive Barriers: A Critical Review. Environmental Engineering Science,2007.24(4): p.401-423.
    438. Gu, B., et al., Adsorption and desorption of natural organic matter on iron oxide: mechanismsand models. Environmental Science&Technology,1994.28(1): p.38-46.
    439. Kohn, T., et al., Longevity of Granular Iron in Groundwater Treatment Processes:Corrosion Product Development. Environmental Science&Technology,2005.39(8): p.2867-2879.
    440. Daniels, S.L. and D.G. Parker, Removing phosphorus from waste water. EnvironmentalScience&Technology,1973.7(8): p.690-694.
    441. C., N., The fundamental mechanism of aqueous contaminant removal by metallic iron. WaterSouth African,2010.36(5): p.663-670.
    442. Noubactep, C., Aqueous contaminant removal by metallic iron: Is the paradigm shifting?Water South African,2011.37(3): p.419-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700