禽畜粪便水分特征及生物脱水途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽畜粪便排放对环境产生严重的污染。好氧堆肥作为一种粪便处理技术手段,被广泛应用。但是,适宜堆肥水分含量一般为50%~60%,非垫料或非冲洗禽畜粪便的含水量一般在60%~85%,因受资源与成本等因素制约,采用调理剂调节水分的方法,难以推广应用。虽然采用机械固液分离方法,可以降低粪便水分,但机械分离,耗能较大。所以,研究探索高湿粪便脱水新技术与新途径,对于粪便成功高温堆肥十分重要。
     本研究采集了奶牛粪、猪粪、鸡粪等鲜样,对其水分特征、固体形态等性质进行了分析,试图寻找新的粪便脱水方法。结果表明:单位重量奶牛粪样品吸水能力最强,可达7.14克·克干重~(-1),其中,以吸附与毛细管形态水比例最高,占总水量的61.8%;猪粪与鸡粪单位重量吸水量分别为:3.36克·克干重~(-1)、4.62克·克干重~(-1)。奶牛粪样品纤维、胶体含量分别为51.6%、3.4%,明显高于猪粪与鸡粪,奶牛粪样品CEC,最高,达到28.74毫克当量·100克~(-1);分别对奶牛粪进行纤维素酶处理(降低纤维含量)、酸处理(改变CEC,)、去除胶体,测定水分特征曲线,结果表明纤维含量、胶体含量及CEC,与吸水能力有一定的正相关性。如何破坏纤维与胶体等物质形成的蓄水结构,将不易去除的吸附水、毛细管水转为易去除的重力水是进一步研究粪便脱水技术的主要方向,也为开展生物脱水技术研究提供的理论依据。
     试验研究了10%FeCl_3溶液、10%NaOH溶液、1%聚丙烯酰胺溶液(冷冻保藏,使用时稀释为1%_0)、10%硫酸溶液、20%十二烷基苯磺酸钠溶液(SDS-阴离子)、20%十六烷基三甲基氯化铵溶液(DTAC-阳离子)、20%吐温溶液(非离子)等化学调理剂、絮凝剂、表面活性剂等对奶牛粪的脱水效果,结果表明:经酸与表面活性剂处理奶牛粪,固液分离效果最好。由于产表面活性剂微生物在烃类物质存在、好氧条件下,才能产生表面活性物质,在实际状态中不可行,本研究选择了从改变酸破度与破坏奶牛粪纤维蓄水结构入手,开展了生物脱水技术进一步研究。
     本研究筛选了自然界普遍存在的乳酸菌,经初步鉴定为乳杆菌属Lactobacillusplantarum;同时筛选了常温、微好氧纤维降解复合菌群,在改良PCS培养基的基础上,通过定期改变传代方法,从污泥、森林土、发酵腐熟奶牛粪、堆肥处理麦杆中筛选并驯化出1组纤维素分解能力强而稳定的纤维素混合菌群Xc,100ml培养物在37℃静置培养5d,对滤纸纤维素、脱脂棉、麦杆(片)、奶牛粪纤维降解率分别达到81%、41%、25%、40%。Xc在37℃、28℃,分解滤纸时,分别在第5d、7d时CMC酶活最高,分别达到104.5U·ml~(-1)、95.3U·ml~(-1)。在初始pH5~9的不同培养基上接种,均能表现出较强的分解能力。在连续投放滤纸情况下,纤维素分解能力保持22d以上,30d的发酵液仍然可以用于接种,发酵液的pH在有滤纸时稳定在6.5~7.5,没有滤纸时稳定在8.5左右,DGGE法比较来源于不同时期菌群16SrDNA条带表明,菌群结构已稳定.
     使用所筛选的菌剂对奶牛粪的固液分离效果进行了研究。接种后的奶牛粪有明显的水层析出现象。pH测定也表明接种菌剂处理的奶牛粪pH值下降很快,其中6%水平混合接种处理第10天pH值已基本降至最低点,为5.31,在第30d最终降至5.15,远低于CK的5.95。混合接种的奶牛粪pH值下降快于接种单一菌剂处理的奶牛粪。接种菌剂处理的奶牛粪固液分离效果明显好于CK。其中6%水平混合接种处理第15天固液分离后含水率已基本降至最低点,为78.3%,在第30d最终降至77.7%,远低于CK的82.1%。混合接种的奶牛粪固液分离效果好于单独接种处理的奶牛粪。接种菌剂处理的奶牛粪蒸发量大于CK,其中6%水平混合接种处理为74.2g,高于CK的39.2g。接种Xc菌剂的奶牛粪中粗纤维含量均有不同程度的下降,其中6%水平单独接种Xc菌剂的奶牛粪中粗纤维含量最低,为45.6%,远低于CK的52.30%。试验表明两种菌剂能够有效提高奶牛粪脱水程度。
Livestock manure emissions is serious pollution to the environment. Aerobic fermentation can be used to solve pollution problems caused by faeces widely. However, the test results have shown that 50% -60% of normal moisture content suitable for composting. Non-washing manure moisture is generally 60%~85%. Manure moisture content should be regulated to the extent appropriate with a certain degree of difficulty. In particular, because of resource and cost conditions, measure of moisture opsonin can not be used. Although the use of mechanically separated completely basic separation of solid-liquid separation, greater energy consumption. Therefore, the study of techno-dehydration of animal wastes is very important for the fermentation.
     In this study, We analysed quality about moisture content characteristic, shape of solid. etc for the fresh sample of cow manure, pig manure, chicken manure and so on. The result illustrated that sample of cow manure per gram have the best ability of drink to water, to 7.14g·g~(-1). The proportion of absorb water with the capillary shape account for 61.8%; but pig manure and chicken manure are merely up to 3.36g·g~(-1), 4.62g·g~(-1) respectively. The content of fiber and colloid are obviously higher than pig manure and chicken manure, it is about 51.6%, 3.4% respectively, CEC_v of cow manure is about 28.74milligram·100g~(-1). For the determination moisture content characteristic curve, we carried on fibre-enzyme processing(lower fibre), the acid treatment(transform CEC_v), removes the colloid. The result indicated the textile fiber content, the colloid content and the colloid surface negative charge and the infiltration capacity have the certain relevance. There have further studies how to destroys the structure of stores water which is made up of textile fiber and colloid forms.etc and transfers which will not be easy absorbed water, capillary water from which will easily to remove the gravitational water, it offers theory of bio-dehydration.
     In this study, we used the 10%FeCl_3 solution, the 10%NaOH solution, 1%polyacrylamide solution to the cow dung in (freezing preservation, when use dilution is 1‰), 10% H_2SO_4, 20% SDS, 20% DTAC, 20% Tween, experiments its solid fluid separation effect. The result indicated that, after the acid and the surface active agent processing cow dung, the solid fluid separates the effect to be best. Because producing the surface active agent microorganism need hydrocarbon compound physical existence, the good oxygen condition, can produce the surface-active substance, is not feasible in the actual condition. Therefore we choose the study of change pH and destroy fibre-sluice framework, expanded new more research.
     This research has screened the nature universal Lactobacillus, it's Lactobacillus.sp after the preliminary appraisal; Simultaneously aims at in the cow dung the textile fiber (to see second chapter) in moisture content characteristic importance, after ameliorated PCS culture medium, a cellulose degradation microbial community Xc was isolated from sullage, soil of forest, cow manure and haulm of compost, through change method of inoculation. It was found that 81% of filter paper, 41% of absorbent cotton, 25% of wheat straw, or 40% of fibre of cow manure can be degraded by 100ml of Xc at 37℃with in 120 hour under static culture. At 37℃and 28℃, the XC saccharification activity were much higher at 120,168th hours when degrading filter paper that were 104.5U·ml~(-1), 95.3 U·ml~(-1). The Xc could be inoculated in a wide pH rang, from 5 to 9; however, the final pH would be changed to neutrality after incubation and have efficient ability. This capability of degradation maintained more than 22 days when the substrates were continually added. The XC could be inoculated in 30 days. The pH would be stability with filter paper between 6.5 and 7.5, and about 8.5 with out the filter paper, The main DNA bands are not changed by the method of 16SrDNA PCR-DGGE after culture of five months so that Xc is very stable.
     The use of cow dung screening agent for the study of solid-liquid separation. The cow dung were obviously out of the water chromatography phenomenon. It dicated that pH agents were quickly dropped the pH of cow dung. 6% level were mixed with paragraph 10 days has reached the lowest pH value of 5.31. finally to 5.15 in 30th days, below the 5.95 CK. The pH of cow dung mixed rapid decline in vaccination coverage of a cow agent, the reason could be that some fiber degradated, microbial breeding more easily, produce more organic acids. Effect of microbial inoculum of solid-liquid separation has been better than cow dung CK. 6% level were mixed solid-liquid separation clause after 15 days has reached the lowest water rates to 78.3%. in 30th day to 77.7%, below the 82.1% CK. Solid-liquid separation of cow dung mixed results were better than single inoculation of cow dung. The reason could be that Xc degradated fiber, damaged the water-structure, so it release more free water. After cow dung inoculumed microbial, evaporation were 74.2g in 6% level, evaporation of CK was 39.2g, the reasons for the increase of free water content, crude fiber of cow dung were decreased. In Xc 6% level of inoculation, Crude fiber content of cow dung was 45.6%, lower than the 52.30% of CK. The experiment indicated two kind of microbial inoculum caneffectively enhance the cow dung dehydration degree.
引文
[1] Xin-tao He.Chemical properties ofmunicipal solid waste composts[J].J.of Environmental Quality.1992,318~329.
    [2] 盐桥光育.堆肥腐熟度简易判断法[J].(日)农业技术研究,1982,31(12).
    [3] 李国学,李玉春,李彦富.固体废弃物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报,2003,22(2):252~256.
    [4] Merillot J M.Recycling organic municipal wastes in Franc[J].Biocycle,1989,7(1):30~31.
    [5] 李建国.堆肥腐熟度指标的探讨探讨[J].城市环境生态,1990,(2):19~21.
    [6] 魏源送,李永强,樊耀波等.不同通风方式对污泥堆肥的影响[J].环境科学,2001,22(3):54~59.
    [7] 陈世和等.好氧堆肥过程中适宜水分的讨论[J].城市环境卫生通讯,1997,(2).
    [8] Chen Y,Yang H,Gu G.Effcct of acid and surfactant treatment on activated sludge dewatering and settling[J].WaterRes 2001,35(11):2615~2620
    [9] 蒋展鹏主编.环境工程学[M].高等教育出版社.1991
    [10] 杨宝林.污泥脱水技术的实践和动向[J].工业用水与废水,1991,(03):51~58
    [11] 张冰莹.污泥脱水新方法——污泥干化池法[J].环境保护,1991,(02)
    [12] 吴健波,刘振鸿,陈季华.剩余污泥处置的减量化发展方向[J].中国给水排水,2001,17(11):24~26.
    [13] 许泽美.谈谈污泥脱水与干化[J].环境保护,1978,(01):19~21.
    [14] 唐立夫主编.过滤机[M]北京:机械工业出版社,1984.
    [15] 叶荣达,陈国牛.GD-2型絮凝剂在污泥脱水中的应用[J].中国给水排水,1991,(05)
    [16] 金祥屺.BAJZ型自动板框压滤机应用于污泥脱水[J].环境污染与防治,1983,(01)
    [17] 污泥脱水成套设备[J].技术与市场,1998,(02)
    [18] 董进.螺旋沉降离心机在污泥脱水装置上的应用[J].石油化工环境保护,1996,(04)
    [19] 袁泉,孙宾.污泥脱水用带式压滤机的应用经验[J].过滤与分离,2005,(01)
    [20] 夏声,胡美玲,陆美芳等.带式滤机用于印染污水生化处理污泥脱水[J].纺织学报,1984,(09)
    [21] 刘增元.YDP-1000型带式压滤机用于油毡原纸厂污泥脱水[J].中国造纸,1985,(03)
    [22] 王钊.北京污水处理厂污泥干化处理工艺选择的探讨[J].市政技术,2004,22(6):374~377
    [23] 杨小文,杜英豪.国外污泥干化技术进展[J].给水排水,2004,28(2):35~36
    [24] 陈世朋,张景来.污水处理中的污泥脱水技术研究进展[J].污染防治技术.2006(2),19(1):16~19
    [25] 王璠,柯尊忠,田秀敏.城市污泥干化技术研究[J].机电产品开发与创新.2003(2),9~32
    [26] 李军,李嫒,Hohnecker H G.流化床焚烧炉污泥焚烧工艺特性研究[J].环境工程,2004,22(3):76~79.
    [27] 黎兵,谭德见,黄永军等.污泥循环流化床焚烧技术的研究进展[J].电站系统工程,2007,23(1):5~8.
    [28] 李嫒.流化床焚烧工艺在污泥处理中的研究进展[J].节能与环保,2004,2(2):24~26.
    [29] 李丹阳,陈刚,张光明.超声波预处理污泥研究进展[J].环境污染治理技术与设备,2003,4(8):70~72.
    [30] 张光明,吴敏生,张维吴等.城市污泥超声波处理技术[J].城市环境与城市生态,2003,16(6):258~259.
    [31] 杨顺生,高晓勇.超声波技术在污泥处理利用中的应用现状及前景预测[J].四川环境,2006,25(1):61~69.
    [32] 刘春红,杨顺生,戴本林.我国超声波处理污泥技术的研究进展[J].安徽化工,2007,33(2):20~22.
    [33] 曹秀芹 陈王碧.超声波技术在污泥处理中的研究及发展[J].环境工程,2002,20(4):23~25.
    [34] 王治军,王伟,李芬芳.污泥热水解技术的发展及应用[J].中国给水排水,2003,19(10):25~27.
    [35] 王治军,王伟.污泥热水解过程中固体有机物的变化规律[J].中国给水排水,2004,20(7):1~5.
    [36] 王治军,王伟,张锡辉.处理污泥的“热水解——ASBR”组合工艺研究[J].北京大学学报(自然科学版),2006,42(6):746~750.
    [37] 孙路长,张书廷.生物污泥的电渗析脱水[J].中国给水排水,2004,20(5):32~34.
    [38] 陈家森,叶土,陈树德.电场对水结构的影响[J].物理,1995,24(7):424~428.
    [39] 周加祥,佘鹏,刘铮,等.水平电场污泥脱水过程[J].化工学报,2001,52(7):635~638.
    [40] 邹鹏,宋碧玉,舒丽芬.高分子絮凝剂对污泥脱水性能的影响[J].化工环保,2004,24(增刊):114~116.
    [41] 尹军,焦畅,霍玉丰等.新型絮凝剂在污水处理和污泥脱水中的应用[J].吉林建筑工程学院学报,2006,23(4):13~16.
    [42] 姚毅等.活性污泥的表面特性与其沉降脱水性能的关系[J].中国给水排水.1996,12(1):22~26
    [43] J Ruhsing Pan,C Huang, C Gang Fu. Effect of surfactant on alum sludge condition ing and dewater ability [J].Wat.Sci.Tech..2000.41 (8): 17~22.
    [44] 吴桂标,杨海真,陈银广等.表面活性剂对污泥沉降及脱水性能的影响[J].中国给水排 水.2001,17(1):68~70
    [45] 金儒林,刘永.污泥处置[M].北京:中国建筑工业出版社,1988.
    [46] 郑宗和,牛宝联,雷海燕.利用太阳能进行污泥脱水干燥的试验[J].中国给水排水,2003,19(13):111~113.
    [47] 田禹,王宁.冻结熔融法对大豆类食品污水污泥脱水性能的影响及应用研究[J].环境工程,2004,22(2):9~12.
    [48] 占寿罡,阮胜寿.陶瓷过滤机在硫化污泥脱水中的应用[J].硫酸工业,2004(1):28~30.
    [49] Jewell W J. Dondero N C et al. High temperature stabilization and moisture remove from animal wastes for by-product recovery[J]. Final report for the Cooperative State Research service, USA, Washington, DC. Project number SEA/CR 616-15-168.1984.169.
    [50] Tom L Richard Composting strategies for highmoisturemanure.1998http:\\www.conell.edc.
    [51] Choi H L.etal. Composting High Moisture materials[J]. Bio-drying poultry Manure in a sequentially fed reactor.1996,38(6):649-658.
    [52] Tom L Richard etal. Optimizing the composting process for moisture removal[J], the oretical analysis and experimental results an ASAE meeting presentation. 1996.
    [53] 常志州,朱万宝等.畜禽粪便除臭及生物干燥技术研究[J].农业环境保护.2000,19(4):213~215
    [54] 常志州,朱万宝等.畜禽粪便除臭及生物干燥技术研究进展[J].农村生态环境.2000,16(1)41~43
    [55] 刘桂珍,王慧.浅谈养禽对环境污染的解决途径[J].中国家禽.2004,26(13).31~33
    [56] 张延贵.降低家禽粪便中氮、磷排除量的方法[J].畜牧兽医杂志,2005,1(24).36~39
    [57] 杨朝飞.加强禽畜粪便污染防治迫在眉睫[J].生态与自然保护.2001,1.23~25
    [58] 有马启,等(日).生物净化环境技术.北京:化学工业出版社,1980,19~37
    [59] 杨毓峰等.畜禽废弃物好氧堆肥化条件研究[J].陕西农业科学.1998,6.10~11.
    [60] 金家志等.肉鸡舍垫料堆肥化处理研究[J].农业环境保护.1997,12(2):65~67
    [61] 黄红英,朱万宝,常志州等.不同堆制方法对奶牛粪和鸡粪发酵脱水的影响[J].农村生态环境.19(1):53~55
    [62] Nicolas Katsiris, Alexandra Kouzell-Katsiri. Boundwatercontent of Biological sludges in relationt of iltration and dewatering [J].Wat.Res.,1987,21 (11):1319~1327.
    [63] Duu Jong Lee, Sun F Lee. Measurement of bound water content in sludge: The use of differential scanning calorimetry (DSC) [J]. J.Chem. Tech. Biotechnol., 1995, 62:359~365
    [64] John T Novak, et.al. Conditioning, Filtering, and expressing waste activated sludge [J].J. Environ. Eng..1999, 125(9):816~824
    [65] 张志良,吴光耀主编.植物生物化学实验技术与方法[M].北京一农业出版社 1986.12
    [66] 雷志栋等,土壤水动力学[M].北京:清华大学出版社,1988
    [67] J Kopp. N Dichtl. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution [J]. Wat. Sci. Tech., 2001, 43(11):135~143
    [68] 周立祥,沈其荣,陈同斌,章申重金属及养分元素在城市污泥主要组分中的分配极其化学形态.环境科学学报,2000,20(3):269~274
    [69] Mac Nicol R C, Beckett P H .The distribuion of heavery metal between the principal components of digested sewage sludge [J]. Wat. Res.,1989,23(2): 199~206
    [70] 熊毅,土壤胶体[M].北京:科学出版社,1983
    [71] 鲍士旦,土壤农化分析(第三版)[M].北京:中国农业出版社出版,2000
    [72] 中国土壤学会,土壤农业化学分析方法[M].北京:中国农业科技出版社,1999
    [73] 李启隆,迟锡增等,仪器分析[M].北京:北京师范大学出版社,2001
    [74] 张剑荣,戚苓等,仪器分析实验[M].北京:科学出版社,1999
    [75] 盖钧镒.试验统计方法[M]北京:中国农业出版社.2000
    [76] M J.Swenson(美),家畜生理学[M].北京:科学出版社,1978:372~380
    [77] 胡春香,刘永定等.荒漠藻结皮的胶结机理[J].科学通报.2002.6(12):931~937
    [78] 单建平等.国外对树木细根的研究动态[J].生态学杂志.1992.11(4):46~49
    [79] Vogt K A et al. Production, tumover, and nutrient dynamics of above-and belowground ditriros of workj forests[J]. Advances in Ecological Research, 1983, 15; 303~373
    [80] 鲁索芸等编译.植物根际生态学与根病生物防治进展[M].中国人民大学出版社,1990
    [81] 袁园,杨海真.表面活性剂及酸处理对污泥脱水性能影响的研究[J] 四川环境.2003:22.(5)
    [82] 吕应年等.一种脂肽类生物表面活性剂产生菌的筛选[J].微生物学杂志,2005:25.(2)
    [83] 丁立孝,何国庆等.微生物产生的生物表面活性剂及其应用研究[J].生物技术,2003:13.(5)
    [84] 汪维云,朱金华,吴守一.纤维素科学及纤维素酶的研究进展.江苏理工大学学报.1998,19(13):20~28
    [85] 朱军莉,韩剑众,励建荣.纤维素分解菌BSX5的分离鉴定及产酶条件.食品与生物技术学报.2006,25(3)15~18
    [86] Mandel M, Steinberg D. Recent advances in cellulose technology. J. Ferment. Technol. 1976,54(4):267~286
    [87] Takao, S Kamagata, Y, S asaki H. Cellulose production by penicillium purpurogenam. J. Ferment. Technol., 1985,63(2): 127~134.
    [88] 史玉英,沈其荣,娄无忌等.纤维素分解菌群的分离和筛选.南京农业大学学报,1996,19(3):59~62.
    [89] 崔宗均,李美丹,朴哲,黄志勇等.一组高效稳定纤维素分解菌菌群XC的筛选及功能.环境科学.2002,23(3):36~39
    [90] 凌代文,东秀珠.乳酸细菌分类鉴定及实验方法[J].北京:中国轻工业出版社,1999.
    [91] B.施特马赫著,钱嘉渊译.酶的测定方法.北京:中国轻工业出版社,1992.103~177.
    [92] Updegraff D M. Semimicro Determination of Cellulosein Biological Materials. Analytical Biochemistry, 1969,32:420~424.
    [93] 李季伦等著.微生物生理学.北京:北京农业大学出版社,1988.74~79,400~401
    [94] 沈同,王镜岩主编.生物化学.北京:高等教育出版社,1989.253~256
    [95] 孙晓华,罗安程.纤维素分解菌的分离、筛选及其环境适应性初步研究.科技通报,2006,21(2)
    [96] 王伟东,崔宗均,王小芬等.快速木质纤维素分解菌复合系MC1对秸秆的分解能力及稳定性.环境科学,2005,26(5)156~160
    [97] F.奥斯伯(Fredefick M.Ausubel)等著,F.奥苏贝尔译.精编分子生物学实验指南.北京:科学出版社,1998.6.
    [98] Ki-Yong Lee,Jae-Seong So.Thin layer chromatographic determination of organic acids for rapid identification of bifidobacteria at genus level[J].Journal of Microbiological Mateods,2001,45:1~61
    [99] 张龙翔,张廷芳,李令嫒.生化实验方法和技术[M].北京:高等教育出版社,1996.233~2341
    [100] Zhu H,Qu F, Zhu L H.Isolation of genomic DNAs from plant Fungi and bacteria using benzyl chloride[J].Nucleic Acid Res., 1993,21:5278~5280.
    [101] Bhatti AU, Khan Q, Gurmani AH, Khan MJ. Effect of organic manure and chemical amendments on soil properties and crop yield on a salt affected entisol[J]. Pedosphere. 2005, 15(1): 46~51
    [102] 王伟东,崔宗均,王小芬等.快速木质纤维素分解菌复合系MC1对秸秆的分解能力及稳定性.环境科学.2005.26(5):156~160
    [103] Weissburg W G, Barms S M. 16s ribosomal DNA amplification for phylogenntic study [J]. J Bacterial 1991, 173:697~703
    [104] Sanguinetti C J, D Nero, A J G Simpson. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J]. Bio Techniques. 1994, 17:915~919
    [105] Zoetendal E G, A von Wright, et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces[J]. Appl Environ Microbiol. 2002, 68:3401~3407
    [106] 罗海峰,齐鸿雁,薛凯,等.在PCR-DGGE研究土壤微生物多样性中应用GC发卡 结构的效应[J].生态学报,2003,23(10):2170~2175
    [107] Emilio O C, Hendrik S, Lluis B et al. Identification of and spatiotemporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis [J]. Appl Environ Microbiol. 2000,66 (2): 499~508
    [108] Eric S, Paula L, Suzanne Get al. Diversity and seasonal fluctuation of the dominat members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods [J]. Appl Environ Microbiol. 2001, 67 (5): 2284~2291
    [109] Muyzer G, Waal E C D, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16SrRNA[J]. Appl Environ Microbiol. 1993, 59:695~700
    [110] K T Seow, G Meurer, M Gerlitz, et al. A study of iterative type Ⅱ polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorgaanisms[J]. Journal of Bacteriology. 1997, 179 (23): 7360~7368
    [111] 沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,2000.
    [112] 布坎南RE,吉布斯NE.伯杰细菌鉴定手册.第8版[M].北京:科学出版社,1984.
    [113] Kemppainen, E. Ammonia binding capacity of peat, straw, sawdust and cutter shavings [J]. Ann. Agric. Fenn., 1987, 26: 89~94.
    [114] Al Kanani, T. Et al Organic and inorganic amendments to reduce ammonia losses form liquid hog manure [J]. J. Environ. Qual., 1992, 21: 709~715.
    [115] Raviv, M. Et al. Cocomposting a method to improve results of poultry manure composting [J]. compost Sci. and Utilization, 1999, 7(2): 70~73.
    [116] 吴钦孝.森林水文生态和水土保持林效益研究[M].西安:陕西科技出版社,1991.
    [117] 彭舜磊,赵迎春.为什么我国森林覆盖率逐年提高而水土流失和荒漠化却日益严重[M].环境保护,2001.10:26~27.
    [118] Joint research centerin statute for the environment, guideline for the characterization of volatile organic compounds emitted from indoor materials and products using small test chambers, Report No.8 of Environment and Quality of Life [S],EUR 13593 EN,1992
    [119] US—EPA, Indoor air sources: Using small environmental test chambers to characterize organic emissions from indoor materialsan products [S], EPA—600/8—89—074, Research Triangle Park NC, USA, August 1989
    [120] American society for testing and materials, standard guide for smalls cale environmental chamber determination of organic emissions from indoor materials Pproducts, American Society for Testing and Materials(D5116—90)[S],Philadelphia, PA,USA, 1990
    [121] Joint research center institute for the environment, For maldehy deemissions from wood based materials: guideline for the establishment of steady state concentration in test chambers, Report No. 2 of Environment and Quality of Life[S], EUR 12196 EN, 1990
    [122] Joint research centerin statute for the environment, indoor air pollutant by formaldehyde in european countries, Report No.7 of Environment and Quality of Life[S], EUR 13216 EN, 1990
    [123] 王建和.国内外对锯木屑的利用和研究概述[J].广东林业科技,1991,(03)23~27
    [124] 颜涌捷,袁传敏,任铮伟,等.由生物质水解残渣制备生物油的方法[P].中国:CN 02111779.9,2002.
    [125] 郭晓亚,颜涌捷,李庭琛,等.生物质裂解油催化裂解精制[J]过程工程学报,2003,3(1):91~95.
    [126] 张素平,颜涌捷,任铮伟.生物质油精制的研究进展[J].新能源,2000,20(10):12~17.
    [127] Orfao J J M, Antunes F J A, Figueiredo J L. Pyrolysiskinetics of lignocellulosic materials: Three independent reactions model [J]. Fuel,1999,78:349~358
    [128] 孔晓英,武书彬,唐爱民等.农林废弃物热解液化机理及其主要影响因素[J].造纸科学与技术,2001,20(5):22-26.
    [129] 李庆康,吴雷,刘海琴等.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护.2000,19(4):251~254.
    [130] 张瑞强,王红宁,黄勇.耗牛肠道与粪便乳酸菌的分离鉴定及PCR-16 SrDNA鉴定[J].中国兽医科学.2006,36(05):381~385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700