用户名: 密码: 验证码:
用于水中微量污染物清除的非均相Fenton反应体系:催化剂与作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文提出了基于羟基自由基(HO·)生成速率和生成效率的非均相Fenton催化体系构筑思路,结合先进的材料可控制备技术与数值建模方法,对催化剂结构、反应性能、动力学及反应机理进行了研究。开发的体系可应用于水中微量污染物的高效降解清除。
     采用部分分解法和化学气相迁移法制备了层状氧基氯化铁(FeOC1)。结合降解活性与反应稳定性,对制备工艺和参数进行了优化。采用化学气相迁移法制备的FeOCl对10余种有机污染物进行了Fenton氧化降解,30min氧化降解率可达100%。采用5,5-二甲基毗咯啉氮氧化物(DMPO)捕捉电子顺磁共振(EPR)和苯甲酸分子探针动力学对FeOCl催化剂的HO·生成进行了定性和定量的研究,证明FeOCl催化剂的HO·生成速率高于传统含铁非负载型催化剂1-3个数量级。在此基础上采用熔融-浸润法成功将FeOCl固载于多种无机多孔载体,初步实现了催化剂工程化。制备工艺具有较高的可重复性和较好的规模性;同时简化了FeOCl催化剂的制备工艺,提高了FeOCl分散度和利用率。通过工程参数和数学拟合对HO·生成基元反应过程进行了详细分析,发现FeOCl可与H202形成活性络合中间体,从而控制产物的生成路径。
     针对H202分解中HO·的生成效率,设计了活性炭负载纳米金(Au/SRAC)催化体系。以双酚A为靶分子,对催化剂制备工艺参数、反应操作参数,分别包括载体处理方式、前驱体pH值、还原温度;反应pH值、温度、H202加入量等进行了单因素考察。结合多种表征技术建立了催化剂的构-效关系,认为纳米Au与碳上悬键的相互作用是催化活性的起源,进而产生金属与载体间电子极化或转移,改变了纳米Au与H202的作用路径,导致HO·的产生。针对H202催化分解,以拟一级速率模型为基础,研究了反应条件对表观动力学常数的影响。提出了基于双中间体的拟酶动力学模型,解释反应过程中HO.,以及自由基生成效率与反应条件之间的依赖关系。
The development of solid Fenton-like catalysts and its application on the remediation of low-level organic compounds in water have been studied. With the combination of the new study strategy and experimental methods, the structure of the catalysts and its relationship with the performance on the remedy of wastewater were established. FeOCl with layer structure and the supported Au/C catalyst were prepared and used for the creation of hydroxyl radicals (HO) by the decomposition of hydrogen peroxide (H2O2).
     Various persistent organic compounds, which usually contaminated surface water even at ppm levels, was degraded in the developed Fenton-like FeOCl systems. Most of compounds can be degraded completely within30min. The HO-radicals were attributed to the Fenton activity, being verified by the DMPO-trapped EPR spectrum and themolecular probe methodThe generation rate of HO-over FeOCl was evaluated to be1-3orders of magnitude higher than that over other solid iron-containing minerals. Moreover, by a melt-infiltration method, the preparation route of supported FeOCl-based Fenton-like catalyst was prepared in a large scale. A kinetic modeling was built in the case of FeOCl/SiO2. The surface reaction rather than the diffusion process was dominated the decomposition process of H2O2. While the generation of HO-was demonstrated to be controlled by the decay of active complex formatted by FeOCl and H2O2.
     Moreover, a Au/C catalyst was also prepared and showed high HO-generation efficiency. Over a styrene-based activated carbon, uniformAu nanoparticles (NPs) wasdeposited by a modified ion-exchange method. The catalyst exhibited excellent activity for the Fenton degradation of bisphenol A. The affection of key factors, such as initial pH, reaction temperature, the loading amount of H2O2on the degradation of BPA and the decay of H2O2, were studied systematically. The structure-performance relationship of the catalyst was investigated by various techniques.The decay pathway was converted from double electron process to single electron process. The process of H2O2was further described by a set of elemental reaction network, namely a dual intermediates mechanism.
引文
[1]Shannon MA, Bohn PW, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature,2008,452(7185):301-310.
    [2]Haber F, Weiss J. Uber die Katalyse des Hydroperoxydes[J]. Naturwissens chaften,1932,20(51):948-950.
    [3]Haber F, Weiss J. The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,1934,147(861):332-351.
    [4]Neuman EW. Potassium Superoxide and the Three-Electron Bond[J]. The Journal of Chemical Physics,1934,2(1):31-33.
    [5]Pauling L. The discovery of the superoxide radical[J]. Trends in Biochemical Sciences,1979,4(11):N270-N271.
    [6]George P. Some experiments on the reactions of potassium superoxide in aqueous solutions[J]. Discussions of the Faraday Society,1947,2:196-205.
    [7]Barb WG, Baxendale JH, George P, et al. Reactions of Ferrous and Ferric Ions with Hydrogen Peroxide[J]. Nature,1949,163(4148):692-694.
    [8]Weiss J, Humphrey CW. Reaction between Hydrogen Peroxide and Iron Salts[J]. Nature,1949,163(4148):691.
    [9]Baxendale JH, Evans MG, Park CS. The mechanism and kinetics of the initiation of polymerisation by systems containing hydrogen peroxide[J]. Transactions of the Faraday Society,1946,42:155-169.
    [10]Barb WG, Baxendale JH, George P, et al. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.-The ferrous ion reaction[J]. Transactions of the Faraday Society,1951,47(0):462-500.
    [11]Barb WG, Baxendale JH, George P, et al. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II.-The ferric ion reaction[J]. Transactions of the Faraday Society,1951,47:591-616.
    [12]Rigg T, Taylor W, Weiss J. The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions[J]. The Journal of Chemical Physics,1954,22(4):575-577.
    [13]Wells CF, Salam MA. Hydrolysis of Ferrous Ions:a Kinetic Method for the Determination of the Fe(II) Species[J]. Nature,1965,205(4972):690-692.
    [14]Wells CF, Salam MA. The effect of pH on the kinetics of the reaction of iron(II) with hydrogen peroxide in perchlorate media[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical,1968:24-29.
    [15]Rabinowitch E, Stockmayer WH. Association of Ferric Ions with Chloride, Bromide and Hydroxyl Ions (A Spectroscopic Study)[J]. Journal of the American Chemical Society,1942,64(2):335-347.
    [16]Jones P, Kitching R, Tobe ML, et al. Hydrogen peroxide+water mixtures. Part 4.-Catalytic decomposition of hydrogen peroxide[J]. Transactions of the Faraday Society,1959,55(0):79-90.
    [17]Schroder D, Barsch S, Schwarz H. Second Ionization Energies of Gaseous Iron Oxides and Hydroxides:The FeOmHn2+Dications (m= 1,2; n≤4)[J]. The Journal of Physical Chemistry A,2000,104(21):5101-5110.
    [18]Goldstein S, Meyerstein D, Czapski G. The Fenton reagents[J]. Free Radical Biology and Medicine,1993,15(4):435-445.
    [19]Masarwa M, Cohen H, Meyerstein D, et al. Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they Fenton-like or not. 1. The case of Cu+and Cr2+[J]. Journal of the American Chemical Society,1988,110(13): 4293-4297.
    [20]Goldstein S, Meyerstein D. Comments on the mechanism of the "Fenton-like" reaction[J]. Accounts of chemical research,1999,32(7):547-550.
    [21]Gallard H, de Laat J, Legube B. Influence du pH sur la vitesse d'oxydation de compose[prime or minute]s organiques par FeⅡ/H2O2. Me[prime or minute]canismes re[prime or minute]actionnels et mode[prime or minute]lisation[J]. New Journal of Chemistry,1998,22(3):263-268.
    [22]Gallard H, De Laat J. Kinetics of oxidation of chlorobenzenes and phenyl-ureas by Fe(II)/H2O2 and Fe(III)/H2O2. Evidence of reduction and oxidation reactions of intermediates by Fe(II) or Fe(III)[J]. Chemosphere,2001,42(4):405-413.
    [23]Kremer ML, Stein G. The catalytic decomposition of hydrogen peroxide by ferric perchlorate[J]. Transactions of the Faraday Society,1959,55:959-973.
    [24]Kremer ML. Nature of intermediates in the catalytic decomposition of hydrogen peroxide by ferric ions[J]. Transactions of the Faraday Society,1962,58(0):702-707.
    [25]Kremer ML. Oxidation reduction step in catalytic decomposition of hydrogen peroxide by ferric ions[J]. Transactions of the Faraday Society,1963,59(0): 2535-2542.
    [26]Kremer ML, Stein G. Kinetics of the Fe3+ion-H2O2 reaction:Steady-state and terminal-state analysis[J]. International Journal of Chemical Kinetics,1977,9(2): 179-184.
    [27]Walling C, Goosen A. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates[J]. Journal of the American Chemical Society,1973,95(9):2987-2991.
    [28]Walling C, Weil T. The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acid solution[J]. International Journal of Chemical Kinetics,1974,6(4): 507-516.
    [29]Walling C, Cleary M. Oxygen evolution as a critical test of mechanism in the ferric-ion catalyzed decomposition of hydrogen peroxide[J]. International Journal of Chemical Kinetics,1977,9(4):595-601.
    [30]Lewis T, Richards D, Salter D.450. Peroxy-complexes of inorganic ions in hydrogen peroxide-water mixtures. Part I. Decomposition by ferric ions[J]. Journal of the Chemical Society,1963:2434-2446.
    [31]Eisenhauer HR. Oxidation of phenolic wastes[J]. Journal (Water Pollution Control Federation),1964,36(9):1116-1128.
    [32]Bishop DF, Stern G, Fleischman M, et al. Hydrogen Peroxide Catalytic Oxidation of Refractory Organics in Municipal Waste Waters[J]. Industrial &Engineering Chemistry Process Design and Development,1968,7(1):110-117.
    [33]2013年石油化工行业发展规划和水处理需求趋势:智研数据研究中心,2013.
    [34]刘韦韦,吕涯Fenton试剂在石油化工中的应用[J].精细石油化工进展,2010,11(11):22-26.
    [35]王嘉麟,邰强,闫光绪等.Fenton试剂氧化处理聚丙烯酰胺污水[J].石油化工安全环保技术,2007,23(2):60-64.
    [36]张铁锴,吴红军,王宝辉等Fenton试剂氧化降解聚丙烯酰胺的机理研究[J].化学工程师,2004,18(9):6-8.
    [37]邵强,闫光绪,郭绍辉Fenton试剂处理油田含聚污水中聚丙烯酰胺的试验研究[J].能源环境保护,2007,21(3):37-42.
    [38]邵强,闫光绪,王嘉麟等Fenton试剂氧化降解聚丙烯酰胺污水及其反应动力学研究[J].环境污染与防治,2007,29(10):754-758,762.
    [39]徐向荣,顾继东.石油添加剂甲基叔丁基醚的污染治理技术研究进展[J].生态科学,2003,22(2):177-182.
    [40]Burbano AA, Dionysiou DD, Suidan MT. Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent[J]. Water Research,2008,42(12): 3225-3239.
    [41]Burbano A, Dionysiou D, Suidan M, et al. Chemical destruction of MTBE using Fenton's reagent:effect of ferrous iron/hydrogen peroxide ratio[J]. Water Sci Technol, 2003,47(9):165-171.
    [42]程学文,栾金义,王宜军等.pH调节-Fenton试剂氧化法预处理间甲酚生产氧化废水[J].化工环保,2005,25(4):291-294.
    [43]杨润昌,周书天Fenton试剂加硫酸处理高浓度含酚废水的研究[J].石油化工环境保护,1997,2:18-21.
    [44]石忠涛,吴昌永,张欣等Fenton氧化处理酚类废水及其动力学研究[J].工业水处理,2012,32(7):25-28.
    [45]丛俏曲.高级氧化技术处理含酚炼油废水的研究[J].石油炼制与化工,2011,42,103-107.
    [46]何丹凤,周付江,刘金泉Fenton试剂对水体中多环芳烃(PAHs)污染物的去 除效果研究[J].化学工程师,2008,22(3):42-45.
    [47]唐婧,刘媚,王耀等Fenton试剂降解水中的菲和芘[J].化学研究与应用,2009,21(5):715-717.
    [48]Nam K, Rodriguez W, Kukor JJ. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction[J]. Chemosphere,2001,45(1):11-20.
    [49]李凡修,陆晓华,梅平等.Fenton试剂去除钻井污水CODCr技术研究[J].环境保护科学,2006,32(5):17-19.
    [50]蒋学彬,陈立荣,李新民等Fenton试剂氧化结合活性炭吸附处理聚磺钻井液体系钻井废水[J].钻采工艺,2009,32(3):100-102.
    [51]张现斌,邱正松,陶瑞东等.深度处理钻井废水的混凝-催化氧化技术[J].钻井液与完井液,2009,26(6):33-36.
    [52]马文臣,刘宜利,徐世杰等.催化氧化法在钻井废水处理中的应用[J].油气田环境保护,2004,14(1):15-16.
    [53]Rolke D.煤加压气化厂煤气水的处理[J].煤炭转化,1982,1982(2):22-24.
    [54]侯素霞,刘新铭,许佩瑶.煤加压气化废水混凝-Fenton氧化法预处理与谱图分析[J].生态环境,2007,16(3):855-859.
    [55]解庆范,陈延民,陈楷翰.煤气化高浓度含酚废水处理工艺的研究[J].广东化工,2011,38(10):1-2.
    [56]范树军,张焕彬,付建军.铁炭微电解-Fenton氧化预处理高浓度煤化工废水的研究[J].工业水处理,2010,30(8):93-95.
    [57]田楠,张晓,李俊利等.铁炭微电解-Fenton法深度处理煤制气废水的研究[J].高新技术,2011,7:23-24.
    [58]张秋民,冯利波,关珺等.焦渣吸附-催化氧化法处理鲁奇炉煤气废水研究[J].化学工程,2007,35(5):56-58.
    [59]钟萍,杨曦,赵贵来等.光助Fenton试剂法氧化处理煤油废水溶液[J].中国环境科学,2002,22(5):460-463.
    [60]马可为,王凯,王成丽.Fenton法处理煤气废水的动态实验研究[J].工业安全与环保,2007,33(12):16-17.
    [61]武强,谷启源,陈凯华等.Fenton试剂-混凝沉淀深度处理煤气化废水的实验研究[J].煤化工,2011,6(45-48):45.
    [62]Lim B-R, Hu H-Y, Fujie K. Biological Degradation and Chemical Oxidation Characteristics of Coke-Oven Wastewater[J]. Water, Air, and Soil Pollution,2003,146 (1-4):23-33.
    [63]许海燕,李义久,刘亚菲Fenton-混凝催化氧化法处理焦化废水的影响因素[J].复旦学报(自然科学版),2003,42(3):440-444.
    [64]赖鹏,赵华章.Fenton氧化深度处理焦化废水的研究[J].当代化工,2012,41(1):11-14.
    [65]王春敏,李亚峰,周红星等Fenton-混凝法处理焦化废水的试验研究[J].环境污染治理技术与设备,2006,7(3):88-91.
    [66]左晨燕,何苗,张彭义等Fenton氧化/混凝协同处理焦化废水生物出水的研究[J].环境科学,2006,27(11):2201-2205.
    [67]张乃东,郑威,彭永臻.铁屑-Fenton法处理焦化含酚废水的研究[J].哈尔滨建筑大学学报,2002,35(2):57-60.
    [68]巩峰,单明军,公彦欣等.煤焦油加工废水的酸化-芬顿法预处理[J].绿色科技,2012,(2):105-107.
    [69]李茂,韩永忠,丁太文等.树脂吸附-Fenton氧化法处理高浓度焦化废水[J].工业水处理,2006,26(10):23-26.
    [70]任宁梅,周集体,项学敏等.焦化废水的粉煤灰吸附及Fenton法再生研究[J].辽宁化工,2011,40(5):443-448.
    [71]典平鸽,张乐观,朱泮民等Fenton试剂与微波酸活化粉煤灰联合处理焦化废水研究[J].无机盐工业,2012,44(8):49-51,59.
    [72]Mudder TI, Botz M, Smith A. Chemistry and treatment of cyanidation wastes[J]. Mining Journal Books Ltd, London, UK,2001.
    [73]Wild SR, Rudd T, Neller A. Fate and effects of cyanide during wastewater treatment processes[J]. Science of The Total Environment,1994,156(2):93-107.
    [74]Vickell GA, Norcross R, Chattopadhyay J. Process for the detoxification of effluents containing fress or complexed cyanides:US[P].
    [75]Vuong DC, von Klock B. Cyanide and formate destruction with ultra violet light[P].
    [76]Monteagudo JM, Rodriguez L, Villasenor J. Advanced oxidation processes for destruction of cyanide from thermoelectric power station waste waters [J]. Journal of Chemical Technology & Biotechnology,2004,79(2):117-125.
    [77]Aronstein BN, Lawal RA, Maka A. Chemical degradation of cyanides by fenton's reagent in aqueous and soil-containing systems[J]. Environmental toxicology and chemistry,1994,13(11):1719-1726.
    [78]Lipczynska-Kochany E, Kochany J. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH[J]. Chemosphere,2008,73(5): 745-750.
    [79]丁世敏.有机酸性含氰废水处理技术研究[J].精细与专用化学品,2010,18(8):43-47.
    [80]阮洋.低浓度含氰电镀废水的Fenton处理研究及工程实例[D]:浙江大学,2012.
    [81]阮洋,邹有良,沈卓贤等.Fenton法处理低浓度含氰电镀废水的研究[J].水处理技术,2012,38(1):114-117.
    [82]Hao OJ, Kim H, Chiang P-C. Decolorization of Wastewater[J]. Critical Reviews in Environmental Science and Technology,2000,30(4):449-505.
    [83]Yang Y, Wyatt DT, Bahorsky M. Decolorization of Dyes Using UV/H2O2 Photochemical Oxidation[J]. Textile Chemist & Colorist,1998,30(4):27-35.
    [84]徐向荣;王文华;李华斌.Fenton试剂处理酸性染料废水的研究[J].环境导报,1997,6:23-24.
    [85]Kuo WG. Decolorizing dye wastewater with Fenton's reagent[J]. Water Research, 1992,26(7):881-886.
    [86]徐向荣;王文华;李华斌.Fenton试剂与染料溶液的反应[J].环境科学,1999,20(3):72-74.
    [87]Kang S-F, Liao C-H, Hung H-P. Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions[J]. Journal of Hazardous Materials,1999,65(3):317-333.
    [88]Shu H-Y, Chang M-C, Hsieh W-P. Remedy of dye manufacturing process effluent by UV7H2O2 process[J]. Journal of Hazardous Materials,2006,128(1):60-66.
    [89]Tsui SM, Chu W. Photocatalytic degradation of dye pollutants in the presence of acetone[J]. Water Science & Technology,2001,44:173-180.
    [90]Feng F, Xu Z, Li X, et al. Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process[J]. Journal of Environmental Sciences,2010,22(11):1657-1665.
    [91]施帆君,孙世群,杨阳等.微电解+Fenton试剂预处理染料废水工程实例研究[J].环境科学与管理,2009,34(11):93-96.
    [92]兰善红,焦伟丽,袁伟光.高效低成本电生化膜深度处理印染废水示范工程[J].中国给排水,2011,27(6):62-65.
    [93]Perez M, Torrades F, Domenech X, et al. Fenton and photo-Fenton oxidation of textile effluents[J]. Water Research,2002,36(11):2703-2710.
    [94]Kang SF, Liao CH, Chen MC. Pre-oxidation and coagulation of textile wastewater by the Fenton process[J]. Chemosphere,2002,46(6):923-928.
    [95]雷乐成.光助Fenton氧化处理PVA退浆废水的研究[J].环境科学学报,2000,20(2):1 39-144.
    [96]Zhu W, Yang Z, Wang L. Application of ferrous hydrogen peroxide for treatment of DSD-acid manufacturing process wastewater[J]. Water Research,2001,35(8): 2087-2091.
    [97]Zhu W, Yang Z, Wang L. Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater[J]. Water Research, 1996,30(12):2949-2954.
    [98]彭书传,魏凤玉,崔康平,et al.β-萘磺酸钠生产废水的处理[J].中国环境科学,1998,18(5):455-457.
    [99]Wang R, Chen C-L, Gratzl JS. Dechlorination and decolorization of chloro-organics in pulp bleach plant E-1 effluents by advanced oxidation processes[J]. Bioresource Technology,2004,94(3):267-274.
    [100]Chiron S, Fernandez-Alba A, Rodriguez A, et al. Pesticide chemical oxidation:state-of-the-art[J]. Water Research,2000,34(2):366-377.
    [101]Rodgers JD, Bunce NJ. Treatment methods for the remediation of nitroaromatic explosives[J]. Water Research,2001,35(9):2101-2111.
    [102]Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual Pharmaceuticals from aqueous systems by advanced oxidation processes[J]. Environment international,2009,35(2):402-417.
    [103]Martinez NSS, Fernandez JF, Segura XF, et al. Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent[J]. Journal of Hazardous Materials,2003,101(3):315-322.
    [104]Kulik N, Trapido M, Goi A, et al. Combined chemical treatment of pharmaceutical effluents from medical ointment production[J]. Chemosphere, 2008,70(8):1525-1531.
    [105]陈爱因,孙红文,李克勋.臭氧/双氧水联合处理含农药废水的装置及工艺[P].
    [106]王进,李克勋,于洁,et al. Fenton试剂氧化-SBR工艺处理阿莫西林制药 废水生化处理出水[J].化工环保,2012,32(3):242-246.
    [107]曹国民,李栋,迟峰等Fenton/SBR深度处理化学合成药厂二级生化出水[J].中国给排水,2011,27(19):88-90.
    [108]王贞.Fenton-厌氧工艺处理合成制药废水的研究[D]:西南交通大学,2010.
    [109]王方园,叶群峰,郭婷等Fenton-UASB-A/O工艺处理医药化工中间体生产废水实例[J].给水排水,2010,36(4):64-66.
    [110]刘俊,梅荣武,李军等.流化床/Fenton法处理制药废水研究[J].中国给水排水,2013,29(3):70-73.
    [111]陈胜,杜大恒,孙德智等.高级氧化工艺与生物移动床耦合处理农药废水研究[J].哈尔滨工业大学学报,2006,2006(1):26-30.
    [112]李振兴,刘有智,焦纬洲等.酸析—撞击流旋转填料床强化Fenton试剂氧化法预处理二硝基甲苯生产废水[J].化工环保,2012,32(2):152-155.
    [113]李振兴,刘有智,焦纬洲等.旋转填料床强化Fenton试剂处理DNT废水实验研究[J].火工品,2012,(1):48-52.
    [114]李芳军.有机硅废水综合处理的试验研究[J].清洗世界,2010,26(4):23-27.
    [115]顾晓扬,汪晓军,陈思莉等Fenton试剂处理含有机硅废水的研究[J].印染助剂,2007,24(7):29-30.
    [116]李娟,安鹏,王云波等Fenton氧化处理高浓度有机硅废水影响因素研究[J].水科学与工程技术,2009,(6):21-23.
    [117]王云波,谭万春,郑思鑫等.二级Fenton氧化高浓度有机硅废水研究[J].环境工程学报,2010,4(4):776-780.
    [118]Justino CI, Pereira R, Freitas AC, et al. Olive oil mill wastewaters before and after treatment:a critical review from the ecotoxicological point of view[J]. Ecotoxicology,2012,21(2):615-629.
    [119]Rivas FJ, Beltran FJ, Gimeno O, et al. Treatment of Olive Oil Mill Wastewater by Fenton's Reagent[J]. Journal of Agricultural and Food Chemistry, 2001,49(4):1873-1880.
    [120]de Heredia JB, Dominguez JR, Partido E. Physico-chemical treatment for the depuration of wine distillery wastewaters [J]. Water Sci Technol,2005,51(1): 159-166.
    [121]Gomec CY, Erdim E, Turan I, et al. Advanced oxidation treatment of physico-chemically pre-treated olive mill industry effluent[J]. Journal of Environmental Science and Healthy:B, 2007,42(6):741-747.
    [122]Nawghare P, Rao NN, Bejankiwar R, et al. Treatment of phosphoric acid plant wastewater using Fenton's reagent and coagulants[J]. Journal of EnvironmentalScience and Healthy:A,2001,36(10):2011-2026.
    [123]许金花,汪晓军,陈志伟Fenton试剂氧化深度处理食品添加剂废水[J].食品工业科技,2008,(9):126-128.
    [124]Bettazzi E, Caretti C, Caffaz S, et al. Oxidative processes for olive mill wastewater treatment[J]. Water Science Technology,2007,55(10):79-87.
    [125]Ugurlu M, Kula I. Decolourization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment[J]. Environmental Science Pollutant Research International,2007,14(5):319-325.
    [126]高金龙,翟朋达,谷娜等.萃取—Fenton—次氯酸钠氧化联合处理咖啡因废水[J].工业水处理,2012,32(9):66-68.
    [127]周宏春.核电与核废物管理[J].中国人口资源与环境,1994,4(4):23-28.
    [128]Osaki S, Sugihara S, Kaji T, et al. Treatment of radioactive waste phenol with Fenton's oxidation[J]. Radioisotopes,1990,39(4):174-177.
    [129]Combined methods for liquid radioactive waste treatment:Final report of a co-ordinated research project 1997-2001 [R]. Vienna, Austria International Atomic Energy 2003.
    [130]New developments and improvements in processing of "problematic" radioacitive waste:Results of a coordinated research project 2003-2007[R]. Vienna, Austria:International Atomic Energy Agency 2007.
    [131]Taylor PA, Destruction of ion-exchange resin in waste from the HFIR, T1 and T2 tanks using Fenton's reagent Oak Ridge National Laboratory,2002.
    [132]Gupta KK, Singh S, Inamdar GA, et al. Studies on decontamination of spent ion exchange resin used for plutonium purification in PUREX stream [J]. Journal of Radioanalytical and Nuclear Chemistry,2009,281(3):609-614.
    [133]梁志荣,吴玉生,刘学军.芬顿氧化法预处理放射性废离子交换树脂[J].核化学与放射化学,2007,29(2):71-74.
    [134]Vilve M, Hirvonen A, Sillanpaa M. Effects of reaction conditions on nuclear laundry water treatment in Fenton process[J]. Journal of Hazardous Materials, 2009,164(2):1468-1473.
    [135]陈玉成,李章平.城市生活垃圾渗沥水的污染及其全过程控制[J].环境科学动态,1995,4:15-18.
    [136]Renou S, Givaudan JG, Poulain S, et al. Landfill leachate treatment:Review and opportunity[J]. Journal of Hazardous Materials,2008,150(3):468-493.
    [137]王琪,刘晶昊,田书磊等,生活垃圾填埋场渗滤液污染防治技术政策45.1.3:中国环境科学研究院2012.
    [138]Deng Y, Englehardt JD. Treatment of landfill leachate by the Fenton process[J]. Water Research,2006,40(20):3683-3694.
    [139]Gau SH, Chang FS. Improved Fenton method to remove recalcitrant organics in landfill leachate[J]. Water Science and Technology,1996,34(7-8): 455-462.
    [140]Bae J-H, Kim S-K, Chang H-S. Treatment of landfill leachates:Ammonia removal via nitrification and denitrification and further COD reduction via Fenton's treatment followed by activated sludge[J]. Water Science and Technology, 1997,36(12):341-348.
    [141]Choi HJ. Evaluation of Fenton's Process for the Treatment of Landfill Leachate[M]. University of Delaware,1998.
    [142]张晖,Huang CP. Fenton法处理垃圾渗滤液[J].中国给水排水,2001,17(3):1-3.
    [143]张晖,Huang CP. Fenton法处理垃圾渗滤液的影响因素分析[J].中国给水排水,2002,18(3):14-17.
    [144]Zhang H, Choi HJ, Huang C-P. Treatment of landfill leachate by Fenton's reagent in a continuous stirred tank reactor[J]. Journal of Hazardous Materials, 2006,136(3):618-623.
    [145]Zhang H, Zhang D, Zhou J. Removal of COD from landfill leachate by electro-Fenton method[J]. Journal of Hazardous Materials,2006,135(1):106-111.
    [146]王鹏.垃圾渗沥液中难降解有机污染物的Fenton混凝处理[J].应用化学,2001,18(5):408-411.
    [147]Lopez A, Pagano M, Volpe A, et al. Fenton's pre-treatment of mature landfill leachate[J]. Chemosphere,2004,54(7):1005-1010.
    [148]王喜全,胡筱敏,刘学文Fenton法处理垃圾渗滤液的研究[J].环保科技,2008,14(1):11-12,15.
    [149]Primo O, Rueda A, Rivero MJ, et al. An Integrated Process, Fenton Reaction-Ultrafiltration, for the Treatment of Landfill Leachate:Pilot Plant Operation and Analysis[J]. Industrial & Engineering Chemistry Research,2008,47(3): 946-952.
    [150]Kim S-M, Geissen S-U, Vogelpohl A. Landfill leachate treatment by a photoassisted fenton reaction[J]. Water Science and Technology,1997,35(4): 239-248.
    [151]Hu X, Wang X, Ban Y, et al. A comparative study of UV-Fenton, UV-H2O2 and Fenton reaction treatment of landfill leachate [J]. Environmental Technology, 2011,32(9):945-951.
    [152]潘云霞,郑怀礼,潘云峰.太阳光Fenton法处理垃圾渗滤液中有机污染物[J].环境工程学报,2009,3(12):2159-2162.
    [153]Ahmadian M, Reshadat S, Yousefi N, et al. Municipal Leachate Treatment by Fenton Process:Effect of Some Variable and Kinetics[J]. Journal of Environmental and Public Health,2013,2013:6.
    [154]Lin SH, Chang CC. Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method[J]. Water Research, 2000,34(17):4243-4249.
    [155]石岩,王启山,岳琳.三维电极-电Fenton法去除垃圾渗滤液中有机物[J].北京化工大学学报(自然科学版),2008,35(6):84-89.
    [156]石岩,王启山,岳琳等.三维电极-电Fenton法处理垃圾渗滤液[J].天津大学学报,2009,42(3):248-252.
    [157]Lu D, Anthony EJ, Tan Y, et al. Mercury removal from coal combustion by Fenton reactions-Part A:Bench-scale tests[J]. Fuel,2007,86(17-18):2789-2797.
    [158]Tan Y, Lu D, Anthony EJ, et al. Mercury removal from coal combustion by Fenton reactions. Paper B:Pilot-scale tests[J]. Fuel,2007,86(17-18):2798-2805.
    [159]Jia L, Dureau R, Ko V, et al. Oxidation of Mercury under Ultraviolet (UV) Irradiation[J]. Energy & Fuels,2010,24(8):4351-4356.
    [160]Guo R-t, Pan W-g, Zhang X-b, et al. Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor[J]. Fuel, 2011,90(11):3295-3298.
    [161]郭瑞堂,潘卫国,张晓波等.一种电厂烟气脱硝的方法及其所用的吸收液[P].
    [162]潘卫国,丁承刚,郭瑞堂等.一种非均相Fenton试剂及其制备方法和应用[P].
    [163]刘大华,戴永阳,裴磊等.一种烟气中NO的高级氧化方法及装置:中国[P].
    [164]Liu Y, Zhang J, Sheng C, et al. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chemical Engineering Journal,2010,162(3):1006-1011.
    [165]Liu Yx, Zhang J. Photochemical Oxidation Removal of NO and SO2 from Simulated Flue Gas of Coal-Fired Power Plants by Wet Scrubbing Using UV/H2O2 Advanced Oxidation Process[J]. Industrial & Engineering Chemistry Research, 2011,50(7):3836-3841.
    [166]Liu Y, Zhang J, Sheng C, et al. Preliminary Study on a New Technique for Wet Removal of Nitric Oxide from Simulated Flue Gas with an Ultraviolet (UV)/H2O2 Process[J]. Energy & Fuels,2010,24(9):4925-4930.
    [167]张军,刘杨先,盛昌栋等.一种基于非均相photo-Fenton的一体化烟气净化装置[P].
    [168]范春贞,李彩亭,路培等.类芬顿试剂液相氧化法脱硝的实验研究[J].中国环境科学,2012,32(6):988-993.
    [169]陶长元,丁小红,刘作华,杜军,刘仁Fenton类氧化技术处理有机废水的研究进展[J].化学研究与应用,2007,19:1177-1180.
    [170]Hartmann M, Kullmann S, Keller H. Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials[J]. Journal of Materials Chemistry,2010,20(41):9002-9017.
    [171]Dhakshinamoorthy A, Navalon S, Alvaro M, et al. Metal Nanoparticles as Heterogeneous Fenton Catalysts[J]. ChemSusChem,2012,5(1):46-64.
    [172]Taguchi A, Schiith F. Ordered mesoporous materials in catalysis [J]. Microporous and Mesoporous Materials,2005,77(1):1-45.
    [173]Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials[J]. ChemSusChem, 2011,4(12):1712-1730.
    [174]Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B:Environmental,2010,99(1-2): 1-26.
    [175]Garrido-Ramirez EG, Theng BKG, Mora ML. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions -- A review[J]. Applied Clay Science,2010,47(3-4):182-192.
    [176]Rusevova K, Kopinke F-D, Georgi A. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions--Influence of Fe (II)/Fe (III) ratio on catalytic performance[J]. Journal of Hazardous Materials,2012,241:433-440.
    [177]Herney-Ramirez J, Vicente MA, Madeira LM. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment:A reviewfJ]. Applied Catalysis B:Environmental,2010,98(1):10-26.
    [178]Han Y-F, Phonthammachai N, Ramesh K, et al. Removing Organic Compounds from Aqueous Medium via Wet Peroxidation by Gold Catalysts[J]. Environmental Science & Technology,2007,42(3):908-912.
    [179]Navalon S, de Miguel M, Martin R, et al. Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by Light[J]. Journal of the American Chemical Society,2011,133(7):2218-2226.
    [180]Subbaramaiah V, Srivastava VC, Mall ID. Catalytic Activity of Cu/SBA-15 for Peroxidation of Pyridine Bearing Wastewater at Atmospheric Condition[J]. AIChE Journal,2013,59(7):2577-2586.
    [181]Pham AN, Xing G, Miller CJ, et al. Fenton-like copper redox chemistry revisited:Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant productio[J]. Journal of Catalysis,2013,301(0):54-64.
    [182]Hu L, Yang X, Dang S. An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water[J]. Applied Catalysis B:Environmental,2011,102(1-2):19-26.
    [183]Shukla P, Sun H, Wang S, et al. Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water[J]. Separation and Purification Technology,2011,77(2):230-236.
    [184]Georgi A, Kopinke F-D. Interaction of adsorption and catalytic reactions in water decontamination processes:Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon[J]. Applied Catalysis B: Environmental,2005,58(1-2):9-18.
    [1]Schafer H. Untersuchungen am System Fe2O3-FeCl3-H2O-HCl. V. Die praparative Darstellung von Eisenoxychlorid[J]. Zeitschrift fur anorganische Chemie, 1949,260(4-5):279-294.
    [2]North NA. Thermal decomposition of FeOCl and marine cast iron corrosion products[J]. Studies in conservation,1977,22(3):146-157.
    [3]North NA, Pearson C. Washing methods for chloride removal from marine iron artifacts[J]. Studies in conservation,1978:174-186.
    [4]Fujimori T, Takaoka M, Morisawa S. Chlorinated Aromatic Compounds in a Thermal Process Promoted by Oxychlorination of Ferric Chloride[J]. Environmental Science & Technology,2010,44(6):1974-1979.
    [5]Ryan SP, Altwicker ER. Understanding the Role of Iron Chlorides in the De Novo Synthesis of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans[J]. Environmental Science & Technology,2004,38(6):1708-1717.
    [6]Wei H, Kim S, Kim SN, et al. Patterned forest-assembly of single-wall carbon nanotubes on gold using a non-thiol functionalization technique [J]. Journal of Materials Chemistry, 2007,17(43):4577-4585.
    [7]Kauzlarich SM, Stanton JL, Faber J, et al. Neutron profile refinement of the structure of FeOCl and FeOCl(TTF)1/8 5[J]. Journal of the American Chemical Society, 1986,108(25):7946-7951.
    [8]Phillips J, Herber R. Organotin intercalation compounds of iron chloride oxide (FeOCl):synthesis, iron-57 and tin-119m Moessbauer and infrared spectroscopy, and powder x-ray diffraction studies[J]. Inorganic Chemistry,1986,25(17):3081-3088.
    [9]Pieczko ME, Breen JJ. Atomic Force Microscopy Studies of Iron Oxychloride[J]. Langmuir,1995,11(4):1412-1414.
    [10]Kanamaru F, Shimada M, Koizumi M, et al. Mossbauer effect of FeOCl-pyridine complex[JJ. Journal of Solid State Chemistry,1973,7(3):297-299.
    [11]Schafer-Stahl H, Abele R. Intercalation Complexes of Metallocenes in Iron Oxide Chloride[J]. Angewandte Chemie International Edition,1980,19(6):477-478.
    [12]Siu GG, Bai ZP, Yu Z, et al. A study of slow spin-spin relaxation in the intercalation compound FeOCl[FeCp2]0.16[J]-Materials Chemistry and Physics, 1999,59(2):168-170.
    [13]Hwang SR, Li WH, Lee KC, et al. Spiral magnetic structure of Fe in Van der Waals gapped FeOCl and polyaniline-intercalated FeOCl[J]. Physical Review B, 2000,62(21):14157.
    [14]Jarrige I, Cai YQ, Shieh SR, et al. Charge transfer in FeOCl intercalation compounds and its pressure dependence:An x-ray spectroscopic study [J]. Physical Review B,2010,82(16):165121.
    [15]Wu CG, DeGroot DC, Marcy HO, et al. Reaction of Aniline with FeOCl. Formation and Ordering of Conducting Polyaniline in a Crystalline Layered Host[J]. Journal of the American Chemical Society,1995,117(36):9229-9242.
    [16]Kauzlarich SM, Ellena JF, Stupik PD, et al. Spectroscopic and magnetic properties of FeOCl intercalated with organosulfur electron donors[J]. Journal of the American Chemical Society,1987,109(15):4561-4570.
    [17]Herber RH, Maeda Y. Synthesis, hyperfine interactions, and lattice dynamics of the intercalation compounds FeOCl [(CH3O)3P]1/6 and FeOCl [(CH3CH2)3P]1/6[J]. Inorganic Chemistry,1980,19(11):3411-3418.
    [18]Sakaebe H, Higuchi S, Kanamura K, et al. Preparation of a FeOCl derivative with pyrrole and its performance as a cathode material in a secondary lithium battery system[J]. Journal of Power Sources,1995,56(2):165-169.
    [19]Bringley JF, Averill BA. Aromatic hydrocarbon intercalates:synthesis and characterization of iron oxychloride intercalated with perylene and tetracene[J]. Chemistry of Materials,1990,2(2):180-186.
    [20]Bringley JF, Averill BA. An aromatic hydrocarbon intercalate: FeOCl(perylene)]/9[J]. Journal of the Chemical Society, Chemical Communications, 1987,15(6):399.
    [21]Herber RH, Cassell RA. Synthesis, hyperfine interactions, and lattice dynamics of the intercalation compound FeOCl(Kryptofix-21)1/18[J]. Inorganic Chemistry, 1982,21(10):3713-3716.
    [22]Choy J-H, Kang J-K, Kwon Y-U. Formation of Layered Compounds of FeO(OCH3)o.7Cl0.3 and FeO(OC2H3)o.3Clo.7 by Topochemical ReactionfJ]. Bulletin of Korean Chemical Society,1985,6(6):251-253.
    [23]Sagua A, Moran E, Alario-Franco MA, et al. Lithium intercalation in FeOCl revisited[J]. International Journal of Inorganic Materials,2001,3(4-5):293-301.
    [24]Sagua A, Rivera A, Leon C, et al. High ionic conductivity of hydrated Li0.5FeOCl[J]. Solid State Ionics,2006,177(11-12):1099-1104.
    [25]Schollhorn R. Reversible Topotactic Redox Reactions of Solids by Electron/Ion Transfer[J]. Angewandte Chemie International Edition,1980,19(12):983-1003.
    [26]Dehnicke K. Syntheses of Oxide Halides[J]. Angewandte Chemie International Edition,1965,4(1):22-29.
    [27]Cohen IR, Purcell TC, Altshuller AP. Analysis of the oxidant in photooxidation reactions[J]. Environmental Science & Technology,1967,1(3):247-252.
    [28]GB1616-2003,工业过氧化氢[S].
    [29]Gozmen B, Oturan MA, Oturan N, et al. Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton's Reagent[J]. Environmental Science& Technology,2003,37(16):3716-3723.
    [30]Mishra SBKSK. Kinetics of thermal dehydration and decomposition of Fe(Ⅲ) chloride hydrate (FeCl3.xH2O)[J]. Journal of thermal analysis,1997,48(2):385-401.
    [31]Staples CA, Dome PB, Klecka GM, et al. A review of the environmental fate, effects, and exposures of bisphenol A[J]. Chemosphere,1998,36(10):2149-2173.
    [32]Zazo JA, Casas JA, Mohedano AF, et al. Chemical Pathway and Kinetics of Phenol Oxidation by Fenton's Reagent[J]. Environmental Science & Technology, 2005,39(23):9295-9302.
    [33]Guimaraes IR, Oliveira LCA, Queiroz PF, et al. Modified goethites as catalyst for oxidation of quinoline:Evidence of heterogeneous Fenton process[J]. Applied Catalysis A:General,2008,347(1):89-93.
    [34]Liu Y, Majetich SA, Tilton RD, et al. TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties[J]. Environmental Science & Technology,2005,39(5):1338-1345.
    [35]Grain DA, Eriksen M, Iguchi T, et al. An ecological assessment of bisphenol-A: Evidence from comparative biology[J]. Reproductive Toxicology,2007,24(2): 225-239.
    [36]Elmolla ES, Chaudhuri M, Eltoukhy MM. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process[J]. Journal of Hazardous Materials,2010,179(1-3):127-134.
    [37]Ay F, Kargi F. Advanced oxidation of amoxicillin by Fenton's reagent treatment[J]. Journal of Hazardous Materials,2010,179(1-3):622-627.
    [38]Trov6 AG, Pupo Nogueira RF, Aguera A, et al. Degradation of the antibiotic amoxicillin by photo-Fenton process-Chemical and toxicological assessment J]. Water Research,2011,45(3):1394-1402.
    [39]Pignatello JJ, Oliveros E, MacKay A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry [J]. Critical Reviews in Environmental Science and Technology,2006,36(1):1-84.
    [40]Pham AL-T, Lee C, Doyle FM, et al. A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values[J]. Environmental Science & Technology,2009,43(23):8930-8935.
    [1]Campos-Martin JM, Blanco-Brieva G, Fierro JLG. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process[J]. Angewandte Chemie International Edition,2006,45(42):6962-6984.
    [2]Lane BS, Burgess K. Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide[J]. Chemical Reviews,2003,103(7):2457-2474.
    [3]Hage R, Lienke A. Applications of Transition-Metal Catalysts to Textile and Wood-Pulp Bleaching[J]. Angewandte Chemie International Edition,2006,45(2): 206-222.
    [4]Jennings SR, Dollhopf DJ, Inskeep WP. Acid production from sulfide minerals using hydrogen peroxide weathering[J]. Applied Geochemistry,2000,15(2):235-243.
    [5]Arends I, Sheldon R. Recent developments in selective catalytic epoxidations with H2O2[J]. Topics in Catalysis,2002,19(1):133-141.
    [6]王永忠,Wang Y.过氧化氢催化剂床结构研究[J].火箭推进,2003,(5).
    [7]Shteinberg AS. High-Temperature Decomposition and Thermal Explosion of Liquid Propellant Components:Hydrogen Peroxide and Hydrazine[M]. Fast Reactions in Energetic Materials; Springer.2008:173-198.
    [8]Loveland WD, Morrissey DJ, Seaborg GT. Modern nuclear chemistry[M]. John Wiley & Sons,2005.
    [9]Jonsson M, Nielsen F, Roth O, et al. Radiation Induced Spent Nuclear Fuel Dissolution under Deep Repository Conditions [J]. Environmental Science and Technology,2007,41(20):7087-7093.
    [10]Pastina B, LaVerne JA. Hydrogen Peroxide Production in the Radiolysis of Water with Heavy Ions[J]. The Journal of Physical Chemistry A,1999,103(11):1592-1597.
    [ll]Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body[J]. FEBS Letters,2000,486(1):10-13.
    [12]Rhee SG. H2O2, a Necessary Evil for Cell Signaling[J]. Science,2006,312(5782): 1882-1883.
    [13]Uusitalo LM, Hempel N. Recent Advances in Intracellular and In Vivo ROS Sensing:Focus on Nanoparticle and Nanotube Applications [J]. International journal of molecular sciences,2012,13(9):10660-10679.
    [14]Shtamm E, Skurlatov YI. The role of hydrogen peroxide in natural aquatic media[J]. Russian Chemical Reviews,1991,60(11):1228.
    [15]Yuan J, Shiller AM. The variation of hydrogen peroxide in rainwater over the South and Central Atlantic Ocean[J]. Atmospheric Environment,2000,34(23): 3973-3980.
    [16]Chandler A, Choularton T, Dollard G, et al. Measurements of H2O2 and SO2 in clouds and estimates of their reaction rate[J].1988.
    [17]Pignatello JJ, Oliveros E, MacKay A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry [J]. Critical Reviews in Environmental Science and Technology,2006,36(1):1-84.
    [18]Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials,2003,98(1-3):33-50.
    [19]Hill CL. Homogeneous catalysis:Controlled green oxidation[J]. Nature, 1999,401(6752):436-437.
    [20]Collins T. Toward Sustainable Chemistry[J]. Science,2001,291(5501):48-49.
    [21]马万红,籍宏伟,李静,et al.活化H2O2和分子氧的光催化氧化反应[J].科学通报,2004,(18).
    [22]Haber F, Weiss J. The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,1934,147(861):332-351.
    [23]Walling C. Fenton's reagent revisited[J]. Accounts of Chemical Research, 1975,8(4):125-131.
    [24]Barb WG, Baxendale JH, George P, et al. Reactions of Ferrous and Ferric Ions with Hydrogen Peroxide[J]. Nature,1949,163(4148):692-694.
    [25]Bray WC, Gorin M. Ferryl ion, a compound of tetravalent iron[J]. Journal of the American Chemical Society,1932,54(5):2124-2125.
    [26]L. Kremer M. Mechanism of the Fenton reaction. Evidence for a new intermediate[J]. Physical Chemistry Chemical Physics,1999,1(15):3595-3605.
    [27]Lu M-C. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite[J]. Chemosphere,2000,40(2):125-130.
    [28]Lu M-C, Chen J-N, Huang H-H. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide[J]. Chemosphere,2002,46(1):131-136.
    [29]Andreozzi R, D'Apuzzo A, Marotta R. Oxidation of aromatic substrates in water/goethite slurry by means of hydrogen peroxide[J]. Water Research,2002,36(19): 4691-4698.
    [30]Ono Y, Matsumura T, Kitajima N, et al. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals[J]. The Journal of Physical Chemistry,1977,81(13):1307-1311.
    [31]Kitajima N, Fukuzumi S, Ono Y. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metal oxides[J]. The Journal of Physical Chemistry,1978,82(13):1505-1509.
    [32]Miller CM, Valentine RL. Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material[J]. Water Research,1995,29(10): 2353-2359.
    [33]Valentine RL, Wang HA. Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide[J]. Journal of Environmental Engineering,1998,124(1):31-38.
    [34]Miller CM, Valentine RL. Mechanistic studies of surface catalyzed H2O2 decomposition and contaminant degradation in the presence of sand[J]. Water Research,1999,33(12):2805-2816.
    [35]Lin S-S, Gurol MD. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide:Kinetics, Mechanism, and Implications[J]. Environmental Science and Technology,1998,32(10):1417-1423.
    [36]Chou S, Huang C. Decomposition of hydrogen peroxide in a catalytic fluidized-bed reactor[J]. Applied Catalysis A:General,1999,185(2):237-245.
    [37]Chou S, Huang C, Huang Y-H. Heterogeneous and Homogeneous Catalytic Oxidation by Supported γ-FeOOH in a Fluidized-Bed Reactor:Kinetic Approach^J]. Environmental Science and Technology,2001,35(6):1247-1251.
    [38]Huang H-H, Lu M-C, Chen J-N. Catalytic Decomposition of Hydrogen Peroxide and 2-chlorophenol with iron oxides[J]. Water Research,2001,35(9):2291-2299.
    [39]Kwan WP, Voelker BM. Decomposition of Hydrogen Peroxide and Organic Compounds in the Presence of Dissolved Iron and Ferrihydrite[J]. Environmental Science and Technology,2002,36(7):1467-1476.
    [40]Kwan WP, Voelker BM. Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems[J]. Environmental Science and Technology,2003,37(6):1150-1158.
    [41]Han SK, Hwang T-M, Yoon Y, et al. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR)[J]. Chemosphere,2011,84(8):1095-1101.
    [42]Voinov MA, Pagan JOS, Morrison E, et al. Surface-Mediated Production of Hydroxyl Radicals as a Mechanism of Iron Oxide Nanoparticle Biotoxicity[J]. Journal of the American Chemical Society,2010,133(1):35-41.
    [43]Wang B, Yin J-J, Zhou X, et al. Physicochemical Origin for Free Radical Generation of Iron Oxide Nanoparticles in Biomicroenvironment:Catalytic Activities Mediated by Surface Chemical States[J]. The Journal of Physical Chemistry C,2012.
    [44]Levenspiel O. Chemical reaction engineering[M]. Wiley New York etc.,1972.
    [45]Cohen IR, Purcell TC, Altshuller AP. Analysis of the oxidant in photooxidation reactions[J]. Environmental Science and Technology,1967,1(3):247-252.
    [46]Lindsey ME, Tarr MA. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide[J]. Chemosphere,2000,41(3): 409-417.
    [47]Buxton GV, Greenstock CL, Helman WP, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O2) in Aqueous Solution[J]. Journal of Physical and Chemical Reference Data,1988,17(2): 513-886.
    [48]Watts RJ, Foget MK, Kong S-H, et al. Hydrogen peroxide decomposition in model subsurface systems[J]. Journal of Hazardous Materials,1999,69(2):229-243.
    [49]Gallard H, De Laat J. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound[J]. Water Research,2000,34(12):3107-3116.
    [50]Kwan WP. Decomposition of hydrogen peroxide and orangic compounds in the presence of iron and iron oxides[D]. Massachusetts:Massachusetts Institute of Technology 2003.
    [51]Michele E. Lindsey MAT. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide[J]. Chemosphere,2000,41:409-417.
    [52]Mopper X, ZaK. Determination of photochemically produced hydroxyl radicals in seawater and freshwater[J]. Marine Chemistry,1990,30:71-88.
    [53]Klein GW, Bhatia K, Madhavan V, et al. Reaction of hydroxyl radicals with benzoic acid. Isomer distribution in the radical intermediates[J]. The Journal of Physical Chemistry,1975,79(17):1767-1774.
    [54]George W. Klein KB, V. Madhavan, and Robert H. Schuler. Reaction of-OH with Benzoic Acid. Isomer Distribution in the Radical Intermediates [J]. The Journal of Physical Chemistry B,1975,79:1774-1786.
    [55]Pieczko ME, Breen JJ. Atomic Force Microscopy Studies of Iron Oxychloride[J]. Langmuir,1995,11(4):1412-1414.
    [56]Kauzlarich SM, Stanton JL, Faber J, et al. Neutron profile refinement of the structure of FeOCl and FeOCl(TTF)1/8.5[J]. Journal of the American Chemical Society, 1986,108(25):7946-7951.
    [57]Wu CG, DeGroot DC, Marcy HO, et al. Reaction of Aniline with FeOCl. Formation and Ordering of Conducting Polyaniline in a Crystalline Layered Host[J]. Journal of the American Chemical Society,1995,117(36):9229-9242.
    [58]Fernandez J, Dhananjeyan MR, Kiwi J, et al. Evidence for Fenton Photoassisted Processes Mediated by Encapsulated Fe ions at Biocompatible pH Values[J]. The Journal of Physical Chemistry B,2000,104(22):5298-5301.
    [59]Fernandez J, Bandara J, Lopez A, et al. Photoassisted Fenton Degradation of Nonbiodegradable Azo Dye (Orange II) in Fe-Free Solutions Mediated by Cation Transfer Membranes[J]. Langmuir,1998,15(1):185-192.
    [60]Kiwi J, Denisov N, Gak Y, et al. Catalytic Fe3+ Clusters and Complexes in Nafion Active in Photo-Fenton Processes. High-Resolution Electron Microscopy and Femtosecond Studies[J]. Langmuir,2002,18(23):9054-9066.
    [61]Sabhi S, Kiwi J. Degradation of 2,4-dichlorophenol by immobilized iron catalysts[J]. Water Research,2001,35(8):1994-2002.
    [1]Hartmann M, Kullmann S, Keller H. Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials[J]. Journal of Materials Chemistry, 2010,20(41):9002-9017.
    [2]Dhakshinamoorthy A, Navalon S, Alvaro M, et al. Metal Nanoparticles as Heterogeneous Fenton Catalysts[J]. ChemSusChem,2012,5(1):46-64.
    [3]Taguchi A, Schiith F. Ordered mesoporous materials in catalysis[J]. Microporous and Mesoporous Materials,2005,77(1):1-45.
    [4]Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials[J]. ChemSusChem, 2011,4(12):1712-1730.
    [5]Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B:Environmental,2010,99(1-2):1-26.
    [6]Garrido-Ramirez EG, Theng BKG, Mora ML. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions -- A review[J]. Applied Clay Science,2010,47(3-4):182-192.
    [7]Rusevova K, Kopinke F-D, Georgi A. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe (II)/Fe (III) ratio on catalytic performance [J]. Journal of Hazardous Materials,2012,241:433-440.
    [8]Herney-Ramirez J, Vicente MA, Madeira LM. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment:A review[J]. Applied Catalysis B:Environmental,2010,98(1):10-26.
    [9]Fernandez J, Dhananjeyan MR, Kiwi J, et al. Evidence for Fenton Photoassisted Processes Mediated by Encapsulated Fe ions at Biocompatible pH Values[J]. The Journal of Physical Chemistry B,2000,104(22):5298-5301.
    [10]Parra S, Guasaquillo I, Enea O, et al. Abatement of an Azo Dye on Structured C-Nafion/Fe-Ion Surfaces by Photo-Fenton Reactions Leading to Carboxylate Intermediates with a Remarkable Biodegradability Increase of the Treated Solution[J]. The Journal of Physical Chemistry B,2003,107(29):7026-7035.
    [11]Parra S, Nadtotechenko V, Albers P, et al. Discoloration of Azo-Dyes at Biocompatible pH-Values through an Fe-Histidine Complex Immobilized on Nafion via Fenton-like Processes[J]. The Journal of Physical Chemistry B,2004,108(14): 4439-4448.
    [12]Fernandez J, Bandara J, Lopez A, et al. Photoassisted Fenton Degradation of Nonbiodegradable Azo Dye (Orange II) in Fe-Free Solutions Mediated by Cation Transfer Membranes[J]. Langmuir,1998,15(1):185-192.
    [13]Kiwi J, Denisov N, Gak Y, et al. Catalytic Fe3+Clusters and Complexes in Nafion Active in Photo-Fenton Processes. High-Resolution Electron Microscopy and Femtosecond Studies[J]. Langmuir,2002,18(23):9054-9066.
    [14]Parra S, Henao L, Mielczarski E, et al. Synthesis, Testing, and Characterization of a Novel Nafion Membrane with Superior Performance in Photoassisted Immobilized Fenton Catalysis[J]. Langmuir,2004,20(13):5621-5629.
    [15]Sabhi S, Kiwi J. Degradation of 2,4-dichlorophenol by immobilized iron catalysts[J]. Water Research,2001,35(8):1994-2002.
    [16]Ma W, Huang Y, Li J, et al. An efficient approach for the photodegradation of organic pollutants by immobilized iron ions at neutral pHs[J]. Chemical Communications,2003,(13):1582-1583.
    [17]Cheng M, Ma W, Li J, et al. Visible-Light-Assisted Degradation of Dye Pollutants over Fe(III)-Loaded Resin in the Presence of H2O2 at Neutral pH Values[J]. Environmental Science & Technology,2004,38(5):1569-1575.
    [18]Ma J, Ma W, Chen C, et al. An Efficient Anthraquinone-Resin Hybrid Co-Catalyst for Fenton-Like Reactions:Acceleration of the Iron Cycle Using a Quinone Cycle under Visible-Light Irradiation[J]. Chemistry-An Asian Journal, 2011,6(9):2264-2268.
    [19]Zeng X, Lemley AT. Fenton Degradation of 4,6-Dinitro-o-cresol with Fe2+ -Substituted Ion-Exchange Resin[J]. Journal of Agricultural and Food Chemistry, 2009,57(9):3689-3694.
    [20]Ishtchenko VV, Huddersman KD, Vitkovskaya RF. Part 1. Production of a modified PAN fibrous catalyst and its optimisation towards the decomposition of hydrogen peroxide[J]. Applied Catalysis A:General,2003,242(1):123-137.
    [21]Dong Y, Han Z, Dong S, et al. Enhanced catalytic activity of Fe bimetallic modified PAN fiber complexes prepared with different assisted metal ions for degradation of organic dye[J]. Catalysis Today,2011,175(1):299-309.
    [22]Ishtchenko VV, Vitkovskaya RF, Huddersman KD. Investigation of the mechanical and physico-chemical properties of a modified PAN fibrous catalyst[J]. Applied Catalysis A:General,2003,242(2):221-231.
    [23]Shin S, Yoon H, Jang J. Polymer-encapsulated iron oxide nanoparticles as highly efficient Fenton catalysts[J]. Catalysis Communications,2008,10(2):178-182.
    [24]Peebles B, Nagy A, Waldman WJ, et al. Fenton Activity and Cytotoxicity Studies of Iron-Loaded Carbon Particles[J]. Environmental Science & Technology, 2010,44(17):6887-6892.
    [25]Shtamm E, Skurlatov YI. The role of hydrogen peroxide in natural aquatic media[J]. Russian Chemical Reviews,1991,60(11):1228.
    [26]Kasiri MB, Aleboyeh H, Aleboyeh A. Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst[J]. Applied Catalysis B: Environmental,2008,84(1-2):9-15.
    [27]Phu NH, Hoa TTK, Tan NV, et al. Characterization and activity of Fe-ZSM-5 catalysts for the total oxidation of phenol in aqueous solutions[J]. Applied Catalysis B: Environmental,2001,34(4):267-275.
    [28]DukkancI M, Gunduz G, Yilmaz S, et al. Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis[J]. Journal of Hazardous Materials,2010,181(1-3):343-350.
    [29]Parkhomchuk EV, Vanina MP, Preis S. The activation of heterogeneous Fenton-type catalyst Fe-MFI[J]. Catalysis Communications, 2008,9(3):381-385.
    [30]Melero JA, Calleja G, Martinez F, et al. Crystallization mechanism of Fe-MFI from wetness impregnated Fe2O3-SiO2 amorphous xerogels:Role of iron species in Fenton-like processes[J]. Microporous and Mesoporous Materials,2004,74(1-3): 11-21.
    [31]Wang N, Zhu L, Wang D, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2[J]. Ultrasonics Sonochemistry,2010,17(3):526-533.
    [32]Centi G, Perathoner S, Torre T, et al. Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts[J]. Catalysis Today,2000,55(1-2):61-69.
    [33]Jaafar NF, Jalil AA, Triwahyono S, et al. Photodecolorization of methyl orange over alpha-Fe2O3-supported HY catalysts:The effects of catalyst preparation and dealumination[J]. Chemical Engineering Journal,2012,191:112-122.
    [34]Gonzalez-Olmos R, Kopinke F-D, Mackenzie K, et al. Hydrophobic Fe-Zeolites for Removal of MTBE from Water by Combination of Adsorption and Oxidation[J]. Environmental Science & Technology,2013.
    [35]Chen F, Li Y, Cai W, et al. Preparation and sono-Fenton performance of 4A-zeolite supported a-Fe2O3[J]. Journal of Hazardous Materials,2010,177(1-3): 743-749.
    [36]Martinez F, Calleja G, Melero JA, et al. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol [J]. Applied Catalysis B:Environmental,2007,70(1-4):452-460.
    [37]Lim H, Lee J, Jin S, et al. Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica[J]. Chemical Communications,2006,(4):463-465.
    [38]de Faria DLA, Venancio Silva S, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. Journal of Raman Spectroscopy,1997,28(11): 873-878.
    [39]Cesar I, Sivula K, Kay A, et al. Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting[J]. Journal of Physical Chemistry C,2009,113(2):772-782.
    [40]Jubb AM, Allen HC. Vibrational Spectroscopic Characterization of Hematite, Maghemite, and Magnetite Thin Films Produced by Vapor Deposition[J]. ACS Applied Materials & Interfaces,2010,2(10):2804-2812.
    [41]Avery JS, Burbridge CD, Goodgame DML. Raman spectra of tetrahalo-anions of Fe III, Mn II, Fe II, Cu Ⅱand Zn IⅡ[J]. Spectrochimica Acta,1968,24(11):1721-1726.
    [42]Oh S, Cook DC, Townsend HE. Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel[J]. Hyperfine Interactions,1998,112(1): 59-66.
    [43]Thibeau RJ, Brown CW, Heidersbach RH. Raman Spectra of Possible Corrosion Products of Iron[J]. Applied Spectroscopy,1978,32(6):532-535.
    [44]Thierry D, Persson D, Leygraf C, et al. Raman spectroscopy and XPS investigations of anodic corrosion films formed on FeMo alloys in alkaline solutions[J]. Corrosion Science,1991,32(3):273-284.
    [45]Cornell RM, Schwertmann U. The iron oxide[M], Weinheim:WILEY-VCH Verlag GmbH &Co., 2003.
    [46]Chernyshova IV, Hochella Jr MF, Madden AS. Size-dependent structural transformations of hematite nanoparticles.1. Phase transition[J]. Physical Chemistry Chemical Physics,2007,9(14):1736-1750.
    [47]Pradhan GK, Parida KM. Fabrication, Growth Mechanism, and Characterization of a-Fe2O3 Nanorods[J]. ACS Applied Materials & Interfaces,2011,3(2):317-323.
    [48]Ruan HD, Frost RL, Kloprogge JT. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2001,57(13):2575-2586.
    [49]Choy J-H, Kang J-W, Kwon Y-U. Formation of Layered Compounds of FeO(OCH3)0.7Cl0.3 and FeO(OC2H5)0.3Cl0.7 by Topochemical Reaction[J]. Bulletin of Korean Chemical Society,1983,6(4):251-253.
    [50]Perez-Ramirez J, Santhosh Kumar M, Bruckner A. Reduction of N2O with CO over FeMFI zeolites:influence of the preparation method on the iron species and catalytic behavior[J]. Journal of Catalysis,2004,223(1):13-27.
    [51]Kumar MS, Schwidder M, Grunert W, et al. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts:new insights by a combined EPR and UV/VIS spectroscopic approach[J]. Journal of Catalysis,2004,227(2): 384-397.
    [52]Li Y, Feng Z, Xin H, et al. Effect of Aluminum on the Nature of the Iron Species in Fe-SBA-15[J]. The Journal of Physical Chemistry B,2006,110(51):26114-26121.
    [53]Sherman DM, Waite TD. Electronic spectra of Fe3+oxides and oxide hydroxides in the near IR to near UV[J]. American Mineralogist,1985,70(11-12):1262-1269.
    [54]Zazo JA, Casas JA, Mohedano AF, et al. Chemical Pathway and Kinetics of Phenol Oxidation by Fenton's Reagent[J]. Environmental Science & Technology, 2005,39(23):9295-9302.
    [55]Zazo J, Casas J, Mohedano A, et al. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic srudy[J]. Water Research,2009,43(16):4063-4069.
    [56]Quintanilla A, Garcia-Rodriguez S, Dominguez CM, et al. Supported gold nanoparticle catalysts for wet peroxide oxidation[J]. Applied Catalysis B: Environmental,2012,111-112(0):81-89.
    [57]Han SK, Hwang T-M, Yoon Y, et al. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR)[J]. Chemosphere,2011,84(8):1095-1101.
    [58]Lin S-S, Gurol MD. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide:Kinetics, Mechanism, and Implications[J]. Environmental Science & Technology,1998,32(10):1417-1423.
    [59]Pham AL-T, Doyle FM, Sedlak DL. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials[J]. Water Research,2012,46(19): 6454-6462.
    [60]Kuzmic P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase[J]. Analysis Biochemistry,1996,237(2):260-273.
    [1]Haruta M, Kobayashi T, Sano H, et al. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 ℃ [J]. Chemistry Letters,1987,16(2): 405-408.
    [2]Fu Q, Weber A, Flytzani-Stephanopoulos M. Nanostructured Au-CeO2 Catalysts for Low-Temperature Water-Gas Shift[J]. Catalysis Letters,2001,77(1-3):87-95.
    [3]Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts[J]. Science,2003,301(5635): 935-938.
    [4]Si R, Flytzani-Stephanopoulos M. Shape and Crystal-Plane Effects of Nanoscale Ceria on the Activity of Au-CeO2 Catalysts for the Water-Gas Shift Reaction[J]. Angewandte Chemie,2008,120(15):2926-2929.
    [5]Hutchings G. Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts[J]. Journal of Catalysis,1985,96(1): 292-295.
    [6]Nkosi B, Coville NJ, Hutchings GJ. Reactivation of a supported gold catalyst for acetylene hydrochlorination[J]. Journal of the Chemical Society, Chemical Communications,1988,(1):71-72.
    [7]Hayashi T, Tanaka K, Haruta M. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen[J]. Journal of Catalysis,1998,178(2):566-575.
    [8]Hayashi T, Tanaka K, Haruta M. Selective Vapor-Phase Epoxidation of Propylene over AU/TiO2 Catalysts in the Presence of Oxygen and Hydrogen[J]. Journal of Catalysis,1998,178(2):566-575.
    [9]Bravo-Suarez JJ, Bando KK, Akita T, et al. Propane reacts with O2 and H2 on gold supported TS-1 to form oxygenates with high selectivity[J]. Chemical Communications,2008,(28):3272-3274.
    [10]Bravo-Suarez JJ, Bando KK, Fujitani T, et al. Mechanistic study of propane selective oxidation with H2 and O2 on Au/TS-l[J]. Journal of Catalysis,2008,257(1): 32-42.
    [11]Sermon PA, Bond GC, Wells PB. Hydrogenation of alkenes over supported gold[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1979,75(0):385-394.
    [12]Guzman J, Gates BC. Structure and Reactivity of a Mononuclear Gold-Complex Catalyst Supported on Magnesium Oxide [J]. Angewandte Chemie International Edition,2003,42(6):690-693.
    [13]Zhang X, Shi H, Xu B-Q. Catalysis by Gold:Isolated Surface Au3+Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts[J]. Angewandte Chemie,2005,117(43):7294-7297.
    [14]Liu Z-P, Wang C-M, Fan K-N. Single Gold Atoms in Heterogeneous Catalysis: Selective 1,3-Butadiene Hydrogenation over Au/ZrO2[J]. Angewandte Chemie International Edition,2006,45(41):6865-6868.
    [15]Hargreaves JSJ, Hutchings GJ, Joyner RW, et al. Relationship between morphology and catalytic performance of lithium and gold doped magnesium oxide catalysts for the oxidative coupling of methane[J]. Catalysis Today,1992,13(2-3): 401-407.
    [16]Blick K, Mitrelias T, Hargreaves JJ, et al. Methane oxidation using Au/MgO catalysts[J]. Catalysis Letters,1998,50(3-4):211-218.
    [17]Haruta M. Size-and support-dependency in the catalysis of gold[J]. Catalysis Today,1997,36(1):153-166.
    [18]Solsona BE, Garcia T, Jones C, et al. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide[J]. Applied Catalysis A:General,2006,312: 67-76.
    [19]Ilieva L, Pantaleo G, Ivanov I, et al. Gold catalysts supported on CeO2 and CeO2-Al2O3 for NOx reduction by CO[J]. Applied Catalysis B:Environmental, 2006,65(1-2):101-109.
    [20]Ilieva L, Pantaleo G, Sobczak J, et al. NO reduction by CO in the presence of water over gold supported catalysts on CeO2-Al2O3 mixed support, prepared by mechanochemical activation[J]. Applied Catalysis B, Environmental,2008,76(1):107.
    [21]Ueda A, Haruta M. Nitric Oxide Reduction with Hydrogen, Carbon Monoxide, and Hydrocarbons over Gold Catalysts[J]. Gold Bulletin,1999,32(1):3-11.
    [22]何林,倪吉,孙浩,et al.精细化学品绿色合成中的纳米Au催化:机遇与挑战[J].催化学报,2009,(9).
    [23]Abad A, Almela C, Corma A, et al. Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols[J]. Chemical Communications,2006,(30):3178-3180.
    [24]Zope BN, Hibbitts DD, Neurock M, et al. Reactivity of the gold/water interface during selective oxidation catalysis[J]. Science,2010,330(6000):74-78.
    [25]Lloyd R, Jenkins RL, et al. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator[J]. Journal of Catalysis,2011,283(2):161-167.
    [26]Lu G, Zhao R, Qian G, et al. A Highly Efficient Catalyst Au/MCM-41 for Selective Oxidation Cyclohexane Using Oxygen[J]. Catalysis Letters,2004,97(3-4): 115-118.
    [27]Kesavan L, Tiruvalam R, Rahim MHA, et al. Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles[J]. Science, 2011,331(6014):195-199.
    [28]Ab Rahim MH, Forde MM, Jenkins RL, et al. Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported Gold-Palladium Alloy Nanoparticles[J]. Angewandte Chemie International Edition,2013,52(4):1280-1284.
    [29]Hughes MD, Xu Y-J, Jenkins P, et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions[J]. Nature,2005,437(7062):1132-1135.
    [30]Aprile C, Corma A, Domine ME, et al. A cascade aerobic epoxidation of alkenes over Au/CeO2and Ti-mesoporous material by "in situ" formed peroxides[J]. Journal of Catalysis,2009,264(1):44-53.
    [31]Klitgaard SK, Egeblad K, Mentzel UV, et al. Oxidations of amines with molecular oxygen using bifunctional gold-titania catalysts[J]. Green Chemistry, 2008,10(4):419-423.
    [32]Mohr C, Hofmeister H, Radnik J, et al. Identification of Active Sites in Gold-Catalyzed Hydrogenation of Acrolein[J]. Journal of the American Chemical Society,2003,125(7):1905-1911.
    [33]Boronat M, Concepcion P, Corma A, et al. A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with Nanoparticles of Gold on TiO2 Catalysts:A Cooperative Effect between Gold and the Support[J]. Journal of the American Chemical Society,2007,129(51):16230-16237.
    [34]He L, Wang LC, Sun H, et al. Efficient and Selective Room-Temperature Gold-Catalyzed Reduction of Nitro Compounds with CO and H2O as the Hydrogen Source[J]. Angewandte Chemie International Edition,2009,48(50):9538-9541.
    [35]Cota HM, Katan T, Chin M, et al. Decomposition of Dilute Hydrogen Peroxide in Alkaline Solutions[J]. Nature,1964,203(4951):1281-1281.
    [36]Keating KB, Rozner AG, Youngblood JL. The effect of deformation on catalytic activity of platinum in the decomposition of hydrogen peroxide[J]. Journal of Catalysis,1965,4(5):608-619.
    [37]McKee DW. Catalytic decomposition of hydrogen peroxide by metals and alloys of the platinum group[J]. Journal of Catalysis,1969,14(4):355-364.
    [38]Druliner JD, Herron N, Jordan SP. Hydroperoxide decomposition process[P].
    [39]Radwan NRE, El-Sharkawy EA, Youssef AM. Influence of gold and manganese as promoters on surface and catalytic performance of Fe2O3/Al2O3 system[J]. Applied Catalysis A:General,2005,281(1-2):93-106.
    [40]Kiyonaga T, Jin Q, Kobayashi H, et al. Size-Dependence of Catalytic Activity of Gold Nanoparticles Loaded on Titanium (IV) Dioxide for Hydrogen Peroxide Decomposition[J]. ChemPhysChem,2009,10(17):2935-2938.
    [41]Naya S-i, Teranishi M, Kimura K, et al. A strong support-effect on the catalytic activity of gold nanoparticles for hydrogen peroxide decomposition[J]. Chemical Communications,2011,47(11):3230-3232.
    [42]Ni J, Yu W-J, He L, et al. A green and efficient oxidation of alcohols by supported gold catalysts using aqueous H2O2 under organic solvent-free conditions[J]. Green Chemistry,2009,11(6):756-759.
    [43]Thetford A, Hutchings GJ, Taylor SH, et al. The decomposition of H2O2 over the components of Au/TiO2 catalysts[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science,2011,467(2131):1885-1899.
    [44]Han Y-F, Phonthammachai N, Ramesh K, et al. Removing organic compounds from aqueous medium via wet peroxidation by gold catalysts[J]. Environmental science& technology,2007,42(3):908-912.
    [45]Chen GZ. A Golden Episode Continues Fenton's Colorful Story[J]. Angewandte Chemie International Edition,2010,49(32):5413-5415.
    [46]Navalon S, Martin R, Alvaro M, et al. Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst[J]. Angewandte Chemie International Edition, 2010,49(45):8403-8407.
    [47]Navalon S, de Miguel M, Martin R, et al. Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by LightfJ]. Journal of the American Chemical Society,2011,133(7):2218-2226.
    [48]Navalon S, Martin R, Alvaro M, et al. Sunlight-Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions[J]. ChemSusChem,2011,4(5): 650-657.
    [49]Martin R, Navalon S, Alvaro M, et al. Optimized water treatment by combining catalytic Fenton reaction using diamond supported gold and biological degradation[J]. Applied Catalysis B:Environmental,2011,103(1-2):246-252.
    [50]Ge L, Chen T, Liu Z, et al. The effect of gold loading on the catalytic oxidation performance of CeO2/H2O2 system[J]. Catalysis Today,2014,224(0):209-215.
    [51]Quintanilla A, Garcia-Rodriguez S, Dominguez CM, et al. Supported gold nanoparticle catalysts for wet peroxide oxidation[J]. Applied Catalysis B: Environmental,2012,111-112(0):81-89.
    [52]Wang S, Qian K, Bi X, et al. Influence of speciation of aqueous HAuC14 on the synthesis, structure, and property of Au colloids[J]. The Journal of Physical Chemistry C,2009,113(16):6505-6510.
    [53]Block B, Bailar Jr JC. The Reaction of Gold (III) with Some Bidentate Coordinating Groups1[J]. Journal of the American Chemical Society,1951,73(10): 4722-4725.
    [54]Cohen IR, Purcell TC, Altshuller AP. Analysis of the oxidant in photooxidation reactions[J]. Environmental Science & Technology,1967,1(3):247-252.
    [55]GB1616-2003,工业过氧化氢[S].
    [56]G6zmen B, Oturan MA, Oturan N, et al. Indirect Electrochemical Treatment of Bisphenol A in Water via Electrochemically Generated Fenton's Reagent[J]. Environmental Science & Technology,2003,37(16):3716-3723.
    [57]Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials[J]. ChemSusChem, 2011,4(12):1712-1730.
    [58]Staples CA, Dome PB, Klecka GM, et al. A review of the environmental fate, effects, and exposures of bisphenol A[J]. Chemosphere,1998,36(10):2149-2173.
    [59]Pignatello JJ, Oliveros E, MacKay A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry[J]. Critical Reviews in Environmental Science and Technology,2006,36(1):1-84.
    [60]Pham AL-T, Lee C, Doyle FM, et al. A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values [J]. Environmental Science & Technology,2009,43(23):8930-8935.
    [61]Wang J, Hammer B. Role of Au+in supporting and activating AU7 on TiO2 (110)[J]. Physical, review letters,2006,97(13):136107.
    [62]Chen M, Goodman D. Structure-activity relationships in supported Au catalysts[J]. Catalysis Today,2006,111(1):22-33.
    [63]Rodriguez JA, Feria L, Jirsak T, et al. Role of Au-C Interactions on the Catalytic Activity of Au Nanoparticles Supported on TiC (001) toward Molecular Oxygen Dissociation[J]. Journal of the American Chemical Society,2010,132(9):3177-3186.
    [64]Bond GC. Catalysis by metal[M]. New York:Acadimic Press,1962.
    [65]Akola J, Hakkinen H. Density functional study of gold atoms and clusters on a graphite (0001) surface with defects[J]. Physical Review B,2006,74(16):165404.
    [66]Wagoner G. Spin resonance of charge carriers in graphite[J]. Physical Review, 1960,118(3):647.
    [67]Singer L, Wagoner G. Electron spin resonance in polycrystalline graphite[J]. The Journal of Chemical Physics,2004,37(8):1812-1817.
    [68]Di Vittorio S, Nakayama A, Enoki T, et al. ESR study of activated carbon fibers: preliminary results[J]. Journal of materials research,1993,8(09):2282-2287.
    [69]Matthews M, Dresselhaus M, Kobayashi N, et al. Localized spins in partially carbonized polyparaphenylene[J]. Physical Review B,1999,60(7):4749.
    [70]Manivannan A, Chirila M, Giles N, et al. Microstructure, dangling bonds and impurities in activated carbons[J]. Carbon,1999,37(11):1741-1747.
    [71]Zhou X, Watkins G, Rutledge KM, et al. Hydrogen-related defects in polycrystalline CVD diamond[J]. Physical Review B,1996,54(11):7881.
    [72]Jia H, Shinar J, Lang D, et al. Nature of the native-defect ESR and hydrogen-dangling-bond centers in thin diamond films[J]. Physical Review B, 1993,48(23):17595.
    [73]Qu Z, Giurgiu L, Roduner E. ESR observation of the formation of an Au(ii) complex in zeolite Y[J]. Chemical Communications,2006,(23):2507-2509.
    [74]Rey A, Zazo JA, Casas JA, et al. Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide[J]. Applied Catalysis A:General,2011,402(1-2):146-155.
    [1]Shang C, Liu Z-P. Origin and Activity of Gold Nanoparticles as Aerobic Oxidation Catalysts in Aqueous Solution[J]. Journal of the American Chemical Society,2011,133(25):9938-9947.
    [2]Rankin RB, Greeley J. Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles[J]. ACS Catalysis,2012,2(12): 2664-2672.
    [3]Ramalho T, Carvalho H, Batista A, et al. Photocatalytic decomposition of methylene blue via Fenton mechanisms by silicon wafer doped with Au and Cu:a theoretical and experimental study[J]. Journal of Materials Science,2009,44(4): 1029-1034.
    [4]Navalon S, de Miguel M, Martin R, et al. Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by LightfJ]. Journal of the American Chemical Society,2011,133(7):2218-2226.
    [5]Zope BN, Hibbitts DD, Neurock M, et al. Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis[J]. Science,2010,330(6000):74-78.
    [6]Chang C-R, Yang X-F, Long B, et al. A water-promoted mechanism of alcohol oxidation on a Au (111) surface:Understanding the catalytic behavior of bulk gold[J]. ACS Catalysis,2013,3(8):1693-1699.
    [7]Yang H-f, Xie P-y, Yu H-y, et al. The effect of CNTs on structures and catalytic properties of AuPd clusters for H2O2 synthesis [J]. Physical Chemistry Chemical Physics,2012,14(48):16654-16659.
    [8]Ham HC, Hwang GS, Han J, et al. On the Role of Pd Ensembles in Selective H2O2 Formation on PdAu Alloys[J]. The Journal of Physical Chemistry C, 2009,113(30):12943-12945.
    [9]Thetford A, Hutchings GJ, Taylor SH, et al. The decomposition of H2O2 over the components of Au/TiO2 catalysts[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science,2011,467(2131):1885-1899.
    [10]De Laat J, Gallard H. Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution:Mechanism and Kinetic Modeling[J]. Environmental Science & Technology,1999,33(16):2726-2732.
    [11]Kwan WP, Voelker BM. Decomposition of Hydrogen Peroxide and Organic Compounds in the Presence of Dissolved Iron and Ferrihydrite[J]. Environ Sci Technol,2002,36(7):1467-1476.
    [12]Kitajima N, Fukuzumi S, Ono Y. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metal oxides [J]. The Journal of Physical Chemistry,1978,82(13):1505-1509.
    [13]Kiyonaga T, Jin Q, Kobayashi H, et al. Size-Dependence of Catalytic Activity of Gold Nanoparticles Loaded on Titanium (IV) Dioxide for Hydrogen Peroxide Decomposition[J]. ChemPhysChem,2009,10(17):2935-2938.
    [14]Naya S-I, Teranishi M, Kimura K, et al. A strong support-effect on the catalytic activity of gold nanoparticles for hydrogen peroxide decomposition[J]. Chemical Communications,2011,47(11):3230-3232.
    [15]Navalon S, Martin R, Alvaro M, et al. Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst[J]. Angewandte Chemie International Edition, 2010,49(45):8403-8407.
    [16]Radwan NRE, El-Sharkawy EA, Youssef AM. Influence of gold and manganese as promoters on surface and catalytic performance of Fe2O3/Al2O3 system[J]. Applied Catalysis A:General,2005,281(1-2):93-106.
    [17]Quintanilla A, Garcia-Rodriguez S, Dominguez CM, et al. Supported gold nanoparticle catalysts for wet peroxide oxidation[J]. Applied Catalysis B: Environmental,2012,111-112(0):81-89.
    [18]Lin SS, Gurol MD. Heterogeneous catalytic oxidation of organic compounds by hydrogen peroxide[J]. Water Science and Technology,1996,34(9):57-64.
    [19]Lin S-S, Gurol MD. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide:Kinetics, Mechanism, and Implications [J]. Environmental Science & Technology,1998,32(10):1417-1423.
    [20]Martin LR, Easton MP, Foster JW, et al. Oxidation of hydroxymethanesulfonic acid by Fenton's reagent[J]. Atmospheric Environment,1989,23(3):563-568.
    [21]Barb WG, Baxendale JH, George P, et al. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II.-The ferric ion reaction[J]. Transactions of the Faraday Society,1951,47:591-616.
    [22]Abbot J, Brown DG. Kinetics of Iron-catalyzed decomposition of hydrogen peroxide in alkaline solution[J]. International Journal of Chemical Kinetics, 1990,22(9):9.63-974.
    [23]Valentine RL, Wang HA. Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide[J]. Journal of Environmental Engineering,1998,124(1):31-38.
    [24]Jones AM, Garg S, He D, et al. Superoxide-mediated formation and charging of silver nanoparticles[J]. Environmental Science & Technology,2011,45(4):1428-1434.
    [25]Lousada CuM, Jonsson M. Kinetics, Mechanism, and Activation Energy of H2O2 Decomposition on the Surface of ZrO2[J]. The Journal of Physical Chemistry C, 2010,114(25):11202-11208.
    [26]Hiroki A, LaVerne JA. Decomposition of Hydrogen Peroxide at Water-Ceramic Oxide Interfaces[J]. The Journal of Physical Chemistry B,2005,109(8):3364-3370.
    [27]Lousada CM, Johansson AJ, Brinck T, et al. Reactivity of metal oxide clusters with hydrogen peroxide and water-a DFT study evaluating the performance of different exchange-correlation functionals[J]. Physical Chemistry Chemical Physics, 2013,15(15):5539-5552.
    [28]Huang W-F, Raghunath P, Lin MC. Computational study on the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces[J]. Journal of Computational Chemistry,2011,32(6):1065-1081.
    [29]Levenspiel O. Chemical reaction engineering[M]. Wiley New York etc.,1972.
    [30]Levenspiel O. Chemical Reaction Engineering,3rd Edition [M]. John Wiley& Sons. Inc.1999.
    [31]Stumm W, Morgan JJ. Aquatic chemistry:chemical equilibria and rates in natural waters[M]. John Wiley & Sons, Inc,1996.
    [32]Bond GC. Catalysis by metal[M]. New York:Acadimic Press,1962.
    [33]Baumgartner HJ, Hood GC, Monger JM, et al. Decomposition of concentrated hydrogen peroxide on silver I. Low temperature reaction and kinetics[J]. Journal of Catalysis,1963,2(5):405-414.
    [34]Cota HM, Katan T, Chin M, et al. Decomposition of Dilute Hydrogen Peroxide in Alkaline Solutions[J]. Nature,1964,203(4951):1281-1281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700