用户名: 密码: 验证码:
多酸及功能化离子液体绿色脱硫体系性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化氢(H2S)是天然气、炼厂气、合成气等工业气体中的一种有害物质,它的存在不仅会腐蚀生产设备和管路,导致催化剂中毒,而且还是引起大气污染、温室效应、破坏臭氧层以及形成酸雨的主要物质之一,是必须消除或控制的环境污染物。在工业脱除H2S的众多方法之中,绿色湿法脱硫工艺因脱硫剂可循环使用,并且能够从废气中回收硫磺、无二次污染等优点,已成为当今研究的热点。而杂多酸化合物用于脱除硫化氢是一种面向天然气净化与硫磺回收的新方法。长期以来杂多化合物一直被用作特定反应的催化剂,无直接利用其氧化还原性能进行污染物治理研究的先例。鉴于钼钨为我国丰产元素,本文合成了Dawson结构钒取代的磷钼酸以及掺杂过渡金属的Keggin结构磷钼钒酸,进行湿法氧化脱除H2S的研究,并且将脱硫扩展到了作为绿色溶剂的离子液体的领域,构建了多酸及功能化离子液体绿色脱硫体系,主要研究内容为以下五个方面:
     一、采用乙醚萃取法制备了一系列Dawson结构磷钼钒酸H6+n[P2Mo18-nVnO62](n=1~4),考察了不同钒原子取代数目、吸收温度、H2S浓度、杂多酸浓度条件下,Dawson结构磷钼钒酸水溶液对H2S的吸收效率。吸收H2S后采用微波辐照下携带水汽的空气对脱硫剂进行再生,与单纯空气再生进行了比较,并进一步分析了再生性能。结果表明,脱硫性能随着钒原子的增加而降低,随着温度的升高而降低,随着气速的增大而降低,并且随着杂多酸浓度的减小而降低。微波辅助空气再生温度越高,微波辐照时间越长,微波功率越大,吸收剂再生效果越好,微波辅助空气再生条件推荐为:再生温度55℃,微波辐照时间为60min,微波功率695W。吸收前、吸收后以及微波辅助空气再生后H7[P2Mo17VO62]的红外谱图表明,吸收H2S后Mo元素有价态降低的趋势,而再生后Mo元素有价态升高的趋势。对微波再生前后H7[P2Mo17VO62]中Mo和V元素的XPS表征中,未监测到Mo元素吸收前后价态的变化,而V元素由于含量很少也未监测到。通过氧化还原电位以及溶液化学需氧量的测定,定量揭示了整个过程的氧化还原情况,比较了微波辅助空气再生与单纯空气再生的效果。结果表明,随着脱硫的进行,H7[P2Mo17VO62]水溶液的氧化还原电位逐渐降低,当通入空气进行再生时,氧化还原电位逐渐升高,而微波辅助空气再生过程,杂多酸水溶液的氧化还原电位要高于单纯空气再生。对吸收后、微波辅助空气再生和单纯空气再生后的COD值分别为187.2mg O2/L、120.1mg O2/L和136.8mg O2/L,表明微波辅助空气再生的程度要大,微波能够活化空气中氧气从而促进脱硫后吸收剂的再生,是优于单纯空气再生的一种新的再生方法。
     二、采用水热合成法制备了H4PMo11VO40(M11PV1)以及五种过渡金属Cu, Fe, Zn, Mn和Cr掺杂的H4PMo11VO40(M11PV1Cu, M11PV1Fe, M11PV1Zn, M11PVIMn和M11PVlCr),并且通过FT-IR、XRD和TGA-DSC表征确认了其Keggin杂多酸结构和热稳定性,同时比较了五种过渡金属掺杂的杂多化合物与M11PV1的循环伏安曲线,得到M11PV1Cu和M11PV1Fe能够明显的观察到Cu(0)到Cu(Ⅱ)以及Fe(0)到Fe(Ⅲ)的还原峰,说明掺杂Cu2+和Fe3+的杂多化合物中,Cu2+/Fe3+与PMo11VO404-存在一种特殊的连接。首次研究了六种杂多化合物水溶液对H2S的吸收性能,并进一步分析了氧化脱硫机理。实验结果表明,M11PVlCu水溶液脱硫效率最高(>87%),并且最高时可达到98%,与其他吸收剂不同的是其效率曲线呈现“桥形”,即脱硫效率先升高并保持一段时间后降低,M11PV1Fe, M11PV1Zn, M11PVIMn和M11PV1Cr水溶液脱硫效率在85%-50%之内逐渐降低,而M11PV1水溶液的脱硫效率相对稳定,即保持在70%-65%之间。在吸收前、吸收90min和吸收300min后,分别对M11PV1Cu中元素Mo、 Cu和V进行XPS表征,结果表明,在吸收300min后,Cu2+全部被还原成Cu+,而Mo6+和Vs+分别被部分还原成Mo5+和V4+,此时Cu元素已无法提供氧化能力的情况下,脱硫效率仍然非常高(达到85%以上),显然高于M11PV1的脱硫效率(70%~65%),由此推断Cu2+或Cu+能够以物理吸附或化学结合形式储存H2S,然而在高价态Mo和V存在的情况下,其储存形式则极有可能为CuS和Cu2S化学性的结合,而高价态Mo和V有能力氧化S2-时,最终会将CuS和Cu2S氧化为硫磺。而M11PV1Cu水溶液呈现“桥形”脱硫效率则进一步证明Cu+存在储存H2S的能力或者能力比Cu2+更强。
     三、通过沉淀法制备了杂多酸离子液体[Bmim]3PMo12O40(简写为[Bmim]3PM),通过红外和XRD表征确定了其仍然具有Keggin杂多酸结构,TGA-DSC表征则说明[Bmim]3PM具有良好的热稳定性。将[Bmim]3PM溶解于四种离子液体[Bmim]Cl,[Bmim]BF4,[Bmim]PF6和[Bmim]NTf2中得到[Bmim]3PM-IL脱硫剂,首次研究了其吸收H2S的性能。结果表明,80℃下,0.005mol/L的脱硫剂吸收H2S的效率为:[Bmim]3PM-[Bmim]Cl>[Bmim]3PM-[Bmim]BF4>H3PM012O40-H2O>[Bmim]3PM-[Bmim]PF6>[Bmim]3PM-[Bmim]NTf2>[Bmim]3PM-H2O>H2O,并且研究了80℃不同[Bmim]3PM浓度(0,0.001,0.005和0.01nol/L)[Bmim]3PM-[Bmim]Cl和[Bmim]3PM-[Bmim]BF4脱硫剂吸收H2S的效率,结果表明,当[Bmim]3PM浓度为0nol/L时,两种脱硫剂吸收H2S的效率都很低,但是当[Bmim]3PM浓度为0.001mol/L时,[Bmim]3PM-[Bmim]Cl在60min内的脱硫效率接近100%,而此时[Bmim]3PM-[Bmim]BF4的脱硫效率在60min时只有40%左右,当[Bmim]3PM浓度增大为0.01mol/L时,[Bmim]3PM-[Bmim]BF4的脱硫效率才能基本达到100%。在45~180℃之间,脱硫效率基本不受温度变化影响,但是温度过低,离子液体粘度越大,影响脱硫剂对气体的吸收,因此该脱硫剂更适用于高温脱硫。[Bmim]3PM-[Bmim]Cl的硫容为230.9g·L-1,高于[Bmim]3PM-[Bmim]BF4(62.2g·L-1)和H3PMo12O40-H2O(59.0g·L-1)的硫容,说明[Bmim]Cl离子液体作为溶剂,能够有效地促进[Bmim]3PM氧化H2S。[Bmim]3PM-[Bmim]Cl优异的脱硫性能与[Bmim]3PM在[Bmim]Cl中的溶解、H2S与[Bmim]Cl的相互作用有着极其重要的关系。浊度测试,显微镜测试均表明[Bmim]3PM在[Bmim]Cl中的溶解最好,并且H2S与Cl之间的相互作用最强。氧化产物不易物理性分离,因此用CS2萃取出来,通过与标准硫磺的紫外光谱作对比得到氧化产物为硫磺。[Bmim]3PM-[Bmim]Cl可以通入空气24h得到再生并能够循环使用六次以上,但是再吸收保持100%脱硫效率的时间减半。
     四、合成并通过FT-IR和TG-DSC表征了有机胺型铁基离子液体1.6Et3NHCl·FeCl3,确定了其结构和良好的热稳定性,与现有的水相铁法吸收剂相比,脱硫剂体系无蒸发损失。研究了H2S浓度为832mg/m3,温度为40-180℃,气速分别为100、300、400和500mL/min的条件下,H2S的去除率,并计算了硫容。结果表明,有机胺型铁基离子液体适用于气速小于300nl/min、温度大于80℃的高温脱硫,其硫容为6.36g/L,远高于氯化咪唑铁基离子液体。通过XRD分析,确定了脱硫产物为斜方晶体硫磺(α),与传统水相湿法氧化脱硫得到的产物相同,但是不同于氯化咪唑铁基离子液体的脱硫产物,产物硫磺易于分离。采用密度泛函理论从分子水平上研究了H2S与1.6Et3NHCl·FeCl3、[Bmim]FeCl4两种铁基离子液体以及Fe3+水溶液的相互作用,从理论上比较了脱硫剂中的基质对H2S吸收的影响,确定了胺基对H2S吸收的促进作用。通入空气可以快速有效地对脱硫剂进行再生。
     五、合成并通过FT-IR和TGA-DSC表征了3种功能化离子液体[Bmim]HCO3,[TMG]L和[MEA]L,确定了其结构和良好的热稳定性,并将其与包括传统离子液体([Bmim]Cl和[Bmim]BF4)在内的5种离子液体分别与N-甲基二乙醇胺(MDEA)水溶液混合,得到新型复配脱硫剂,考察了离子液体的消泡性能,以及复配脱硫剂吸收H2S和再生性能。实验结果表明,低温有利于复配脱硫剂对H2S的吸收;室温下,10mL相同质量配比(IL:MDEA=1:3)的复配脱硫剂吸收H2S的效率为[Bmim]Cl-MDEA-H2O>[Bmim]HCO3-MDEA-H2O>[Bmim]BF4-MDEA-H2O>MDEA-H2O>[TMG]L-MDEA-H2O>[MEA]L-MDEA-H2O。单一MDEA水溶液60min后的脱硫效率为87%,添加[Bmim]Cl、[Bmim]HCO3和[Bmim]BF4离子液体的脱硫效率可高达97%,优于单—MDEA水溶液;添加[MEA]L和[TMG]L离子液体的复配体系,其脱硫效率反而下降。除了[TMG]L,其他离子液体均起到不同程度的消泡作用,其中[Bmim]HC03离子液体消泡效率最高,为46.4%,并且随着[Bmim]HCO3在脱硫剂中比例的增加而提高。采用密度泛函理论计算了离子液体、MDEA和H2S两者之间结合后释放的热量,通过与实验结果比较,结果表明,在H2S的吸收效率方面,离子液体和MDEA结合的稳定性为主要因素。在60℃下,向吸收H2S饱和的复配脱硫剂[Bmim]BF4-MDEA-H2O,[Bmim]HCO3-MDEA-H2O和[Bmim]Cl-MDEA-H2O中通入空气可基本再生,但是H2S并无法完全被吹除,再生效率分别为94.89%,94.74%和94.66%,这与H2S和离子液体的结合能大小有关,结合能越大说明结合越稳定,越有利于吸收,但是不利于H2S与离子液体的分离,使得再生程度降低。
Hydrogen sulfide (H2S) is a hazardous substance of industrial gas such as natural gas, refinery gas, synthesis gas and so on. H2S cannot only cause catalyst poisoning and corrosion to pipelines in the process of transport, but also it is considered as one of the main contaminants leading to air pollution, greenhouse effect and ozone depletion. Therefore, H2S is one of the environmental pollutants that should be removed and controlled. Refer to the removal of H2S, green wet desulfurization has now become a hot research with some advantages, such as recycle of desulfutization agent, recovery of sulfur from the exhanst gas and no secondary pollution. H2S removal by heteropolycompounds (HPCs) is a new method faced on natural gas purification and recovery of sulfur. HPCs have been used as a catalyst in some certain reactions for a long period, but not been applied to contaminants treatment for their oxidation-reduction. Based on the abundance of Mo and W element, V-substitued phosphomolybdic acid and transition metal doped HPC solutions were developed as the desulfurizers, and it is also extended to the field of ionic liquid (IL) which is used as a green solvent. HPC and functionalized ionic liquid green desulfurization were constructed. The content of this thesis contains the following five parts:
     Ⅰ) Synthesis, Desulfuration and Air Regeneration of Dawson-type Molybdovanadophosphoric Heteropolyacid
     Dawson-type molybdovanadophosphoric heteropolyacids H6+n[P2Mo18-nVnO62](n=1~4) were prepared using the method of ethyl ether extraction, and the absorption efficiency of H2S by their solutions was measured under different conditions reflecting the effects of the number of vanadium, absorption temperature, concentrations of H2S gas and heteropolyacid. Then, desulfurizer was regenerated by air with steam under microwave irradiation, and the regenerability was investigated, compared with single air regeneration. As a result, H2S removal efficiency decreases with the number of V atom, temperature and gas flow increasing, and with the concentration of HPA decreasing. Microwave-assisted air regeneration improves with the temperature, irradiation time and power increasing, therefore, the conditions of microwave-assisted air regeneration were proposed that the temperature, irradiation time and power was intended to be55℃,2h and695W, respectively. Characterized by FT-IR, the characteristic peak of desulfurizer H7[P2Mo17VO62] was found to be changed after H2S absorption and microwave-assisted air regeneration, which indicates that the valence state of Mo decreases and increases, respectively. The changes of the valence state for Mo and V during absorption and regeneration did not be detected by XPS. The absorbents were tested by redox potentiometry and chemical oxygen demand (COD), which revealed that the redox in absorption and regeneration, and microwave-assisted air regeneration was further compared with single air regeneration. The result shows that the redox potential of HPA solution decreases in the process of absorption, and increases in the process of regeneration, and the redox potential for microwave-assisted air regeneration is higher than that for single air regeneration. The COD value after absorption, microwave-assisted air regeneration and single air regeneration is187.2,120.1and136.8mg O2/L, respectively, and this indicates that the regeneration of heteropolyacid is promoted by foregoing microwave assisted air regeneration method which can activate O2. In summary, microwave assisted air regeneration is proved to be a new method superior to single air regeneration and recyclable forever without any change in the structure of this absorbent.
     II) Effects of Fe-, Cu-, Zn-, Mn-and Cr-doped H4PMo11VO40for the removal of H2S in wet oxidation
     A series of new transition metal (Cu, Fe, Zn, Mn and Cr)-doped H4PMo11VO40(M11PV1) were prepared by the method of hydrothermal synthesis and the synthetic heteropolycompounds were abbreviated as M11PV1Cu, M11PV1Fe, M11PV1Zn, M11PV1Mn and M11PV1Cr. Their structures and thermostability were confirmed by FT-IR, XRD and TGA-DSC techniques. The CV curves of M11PV1Cu, M11PV1Fe, M11PV1Zn, M11PV1Mn and M11PV1Cr were compared with M11PV1, and the deoxidization peaks of Cu (0) to Cu (Ⅱ) and Fe (0) to Fe (Ⅲ) were only observed, and the result shows that a special connection is set up between Cu2+/Fe3+and PMo11VO404-. H2S removal efficiency of M11PVlCu, M11PVlFe, M11PV1Zn, M11PV1Mn, M11PV1Cr and M11PV1was studied, and the mechnism of oxidation desulfurization was analyzed. The experimental results demonstrates that M11PV1Cu has the best H2S absorption efficiency (>87%, and the top efficiency is nearly100%) which presents in 'bridge type', and it shows that the efficiency increases firstly and then keeps one value for some time and at last decreases. The H2S absorption efficiency of M11PVlFe, M11PV1Zn, M11PV1Mn and M11PV1Cr decreases between85%~50%, while that of M11PV1is stable between70%~65%. The XPS spectra of elements Mo, Cu and V shows that after300-min absorption, all of Cu2+ions have already been reduced to Cu+, whilst Mo6+and V5+have been partly reduced to Mo5+and V4+, and the H2S absorption efficiency of M11PV1Cu is still very high (>85%), and higher than that of M11PV1, even Cu+did not have oxidizability with H2S, and it indicates that Cu2+/Cu+can adsorb or store H2S. The XPS spectra of S yielded indicates that H2S can be oxidized to sulfur, and no S2-suggests that there is no Cu2S, and all of H2S are oxidated to S by Mo and V elements. The'bridge type' also suggests that Cu+can adsorb or store H2S, or its capacity is better than Cu2+.
     Ⅲ) An excellent recycling strategy for highly efficient removal of H2S by [Bmim]3PMo12O40dissolved in [Bmim]Cl
     A kind of functionalized ionic liquid [Bmim]3PMo12O40([Bmim]3PM) was prepared by the method of precipitation. The structure and thermostability of [Bmim]3PM was confirmed by FT-IR, XRD and TGA-DSC. An environmentally benign approach has been proposed for the removal of H2S using a Keggin-type heteropolyanion-based ionic liquid [Bmim]3PM dissolved in a green solvent-ionic liquid (IL). The results show that80℃, H2S removal efficiency by [Bmim]3PM-IL of0.005mol/L is in the following sequence:[Bmim]3PM-[Bmim]Cl>[Bmim]3PM-[Bmim]BF4>H3PM012O40-H2O>[Bmim]3PM-[Bmim]PF6>[Bmim]3PM-[Bmim]NTf2>[Bmim]3PM-H2O>H2O. In the condition of80℃, different concentration of [Bmim]3PM (0,0.001,0.005and0.01mol/L), H2S removal efficiency by [Bmim]3PM-[Bmim]Cl and [Bmim]3PM-[Bmim]BF4was investigated, and the result shows that when the concentration of [Bmim]3PM is0mol/L, the H2S removal efficiency of the two desulfurizers is very low; when the concentration is0.001mol/L, H2S removal efficiency of [Bmim]3PM-[Bmim]Cl is nearly100%, but that of [Bmim]3PM-[Bmim]BF4is only40%; when the concentration is0.01mol/L, that of [Bmim]3PM-[Bmim]BF4reaches100%. The temperature (45~180℃) does not affect the H2S removal efficiency, but the viscosity of ionic liquids at low temperature affects the removal of H2S. Therefore,[Bmim]3PM-ILs are suitable to desulfurization at high temperature. The sulfur capacity of [Bmim]3PM-[Bmim]Cl (230.9g·L-1) is higher than that of [Bmim]3PM-[Bmim]BF4(62.2g·L-1) or H3PMo12O40-H2O (59.0g·L-1), which indicates that [Bmim]Cl as a solvent can improve the oxidation of H2S by [Bmim]3PM. Microscopic observation, turbidity measurement and quantum chemical calculations were used to analyse the factors (solubility of [Bmim]3PM in ILs and stabilization energy for H2S-Anion) that influence H2S removal efficiency, the results suggest that [Bmim]3PM is well dissolved in [Bmim]Cl and high stabilization energy for H2S-Cl-increases the residence time of H2S in [Bmim]Cl, which makes the reaction between H2S and [Bmim]3PM more sufficient. H2S is oxidated to elemental S and Mo6+is reduced to lower valence state in the absorption stage according to UV-vis and FTIR data, respectively. Using air,[Bmim]3PM-[Bmim]Cl can be recycled for more than six times without any obvious decrease in the removal efficiency of H2S, but the time for keeping100%reduces to the half.
     IV) H2S Absorption Capacity and Regeneration Performance of Amine Fe-based Ionic Liquid
     Amine Fe-based ionic liquid1.6Et3NHCl·FeCl3was synthetized with ideal H2S absorption capacity and good thermostability. H2S removal efficiency was tested under the condition with concentration of H2S being832mg/m3, temperature ranging from40to180℃, and gas flow of100,300,400or500mL/min. The results show that when the gas flow is less than400mL/min, H2S removal efficiency can reach100%; H2S removal efficiency increases with the increasing in temperature and tends to approach an asymptotic value. Under the optimal conditions, the sulfur capacity of1.6Et3NHCl·FeCl3is6.36g/L, higher than that of [Bmim]FeCl4. Comparing the FT-IR spectra before and after H2S absorption, redox reaction between1.6Et3NHCl·FeCl3and H2S is confirmed. The interaction between H2S and1.6Et3NHCl·FeCl3/[Bmim]FeCl4/H2O has been studied at the molecular level using density functional theory, and the influence of the substrate on H2S absorption was illustrated to be responsible for the enhancement of H2S absorption by aminal group. The product after H2S absorption is orthorhombic crystal sulfur (α), which is the same as the product from traditional aqueous phase oxidation desulfurization.1.6Et3NHCl·FeCl3ionic liquid can be reused efficiently after quick regeneration by air flow.
     V) H2S Absorption Capacity Studies of Ionic Liquid-MDEA-H2O Combined Desulfurizers
     Three kinds of functionalized ionic liquids [Bmim]HC03,[TMG]L and [MEA]L were synthetized which was referred to previous methods. The structure and thermostability of the synthetic ionic liquids (ILs) was confirmed by FT-IR spectrum and thermogravimetry characterization, respectively. The new combined deoxidizer was prepared by mixing ionic liquid ([Bmim]HC03,[TMG]L,[MEA]L,[Bmim]Cl or [Bmim]BF4) with methyldiethanolamine (MDEA) aqueous solution according to certain proportion. In the conditions of different ionic liquids, absorption temperature and combined proportion, H2S absorption and bubble eliminated capacity by deoxidizers and ILs were measured, and regeneration performance of optimized deoxidizer was studied. The concentration of SO42-in regenerated deoxidizer was analyzed by ion chromatography after deeply oxidation by O3, and the mechanism of absorption was analyzed by density functional theory. The results show that absorption capacity is in the sequence that [Bmim]Cl-MDEA-H2O>[Bmim]HCO3-MDEA-H2O>[Bmim]BF4-MDEA-H2O>MDEA-H2O>[TMG]L-MDEA-H2O>[MEA]L-MDEA-H2O, and the major factor is attributed to the the stability of IL-MDEA;[Bmim]HCO3performs the best capacity of bubble eliminated;[Bmim]Cl-MDEA-H2O,[Bmim]HCO3-MDEA-H2O and [Bmim]BF4-MDEA-H2O can be regenerated by air basicly, and high stability of IL-H2S brings higher the absorption efficiency, but smaller regeneration.
引文
[I]World Health Organization. Regional Office for Europe. Air quality guidelines for Europe[M]. WHO Regional Office Europe,2000.
    [2]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [3]童志权,陈焕钦.工业废气污染控制与利用.北京:化学工业出版社,1989.
    [4]何运昭.硫化氢尾气的净化[J].环境导报,1997,(1):16-19.
    [5]陈赓良.从硫化氢中回收硫化氢[J].硫酸工业,1992,(5):60-61.
    [6]周琪.大气污染的生物控制技术[J].上海环境科学,1997,16(12):7-10.
    [7]GB 14554-93.恶臭污染物排放标准[S].1993.
    [8]TJ36-79.工业企业设计卫生标准[S].1979.
    [9]C.S.K.Achoundong, N.Bhuwania, S.K.Burgess, O.Karvan, J.R.Johnson, W.J.Koros. Silane modification of cellulose acetate dense films as materials for acid gas removal[J]. Macromolecules,2013,46(14):5584-5594.
    [10]苏毅,胡亮,刘谋盛.气体膜分离技术及应用[J].石油与天然气化工,2001,30(3):113-116.
    [11]S.H.Lee, B.S.Kim, E.W.Lee, Y.I.Park, J.M.Lee. The removal of acid gases from crude natural gas by using novel supported liquid membranes[J]. Desalination,2006,200(1):21-22.
    [12]X.Wang, X.Ma, L.Sun, C.Song. A nanoporous polymeric sorbent for deep removal of H2S from gas mixtures for hydrogen purification[J]. Green Chem., 2007,9:695-702.
    [13]X.Ma, X.Wang, C.Song. "Molecular Basket" sorbents for separation of CO2 and H2S from various gas streams[J]. Journal of the American Chemical Society,2009,131(16):5777-5783.
    [14]郭正军,李辉,王树立.膜分离-变压吸附集成工艺脱除天然气中酸性气体[J].过滤与分离,2008,18(1):34-35.
    [15]卢琴芳,郭兵兵.固定床活性炭吸附法治理炼厂表曝池恶臭污染的工艺[J]. 环境工程,2006,24(2):37-40.
    [16]E.Sasaoka, T.Ichio, S.Kasaoka. High-temperature hydrogen sulfide removal from coal-derived gas by iron ore[J]. Energy & fuels,1992,6(5):603-608.
    [17]王睿,石冈,魏伟胜,鲍晓军.工业气体中H2S的脱除方法——发展状况与展望[J].天然气工业,1999,19(3):84-90.
    [18]崔成民,吴政,田树盛,周绍箕.弱碱性阴离子交换纤维吸附H2S和C02混合气体的研究[J].石油化工环境保护,2000,1(5):54-57.
    [19]郭峰,张丽丽.尾气中H2S的脱除方法之氧化法[J].气体净化,2011,11(2):10-15.
    [20]褚淑祎,陈建孟,沙昊雷,姜理英.生物法处理高浓度H2S废气的现场试[J].环境科学,2006,27(3):431-436.
    [21]武显春,刘路加,董群.H2S选择性催化氧化技术进展[J].天然气工业,1993,13(3):86-91.
    [22]魏林生,章亚芳,胡兆吉,王智化.臭氧氧化脱除硫化氢的动力学[J].环境化学,2009,28(5):744-746.
    [23]王学谦,宁平.硫化氢废气治理研究进展[J].环境污染治理技术与设备,2001,4(2):77-85.
    [24]A.H.Nielsen, T.Hvitved-Jacoben, J.Vollertsen. Recent findings on sinks for sulfide in gravity sewer networks[J]. Water Sci. Technol.,2006,54(6-7): 127-134.
    [25]杨艳,童仕唐.常温氧化铁脱硫剂研究进展[J].煤气与热力,2002,22(4):326-328.
    [26]呼德龙,马凤美.关于氧化铁脱硫剂活性问题的探讨[J].煤气与热力,2000,(3):126-127.
    [27]李芬,姜安玺,余敏,邵纯红,闰波.氧化锌脱硫技术研究进展[J].化工环保,2006,26(2):115-118.
    [28]祝方,李春虎,樊惠玲,李彦旭.国外高温煤气脱硫剂开发进展[J].煤炭转化,2000,23(2):17-22.
    [29]H.Wang, D.M.Wang, K.T.Chuang. A sulfur removal and disposal process through H2S adsorption and regeneration:Breakthrough behaviour investigation[J]. Process Safety and Environmental Protection,2011,89: 53-60.
    [30]卫小芳,黄戒介,赵建涛,王洋,郭亮,步学鹏.钛酸锌脱硫剂硫化过程的动力学分析[J].燃料化学学报,2005,33(3):278-282.
    [31]卢朝阳,少兴中,鲁军.高温煤气脱硫——铁锌基脱硫剂脱硫工艺条件及硫化动力学[J].燃料化学学报,1996,24(6):492-497.
    [32]马建平,庞菊玲,邓春玲.高温煤气脱硫剂的研究[J].工业催化,2010,18(4):61-65.
    [33]S.Lew, K.Joth imurreasn, M.Flytzani-Stepanopulos. High-temperature H2S removal from fuel gases by regenerable zinc oxide-titanium dioxide sorbents. Ind. Eng. Chem. Res.,1989,28(5):535-541.
    [34]刘世斌,李存儒.工业锅炉烟气干法脱硫,太原工业大学学报,1995,26(3):8-13.
    [35]T.Sera, M.Suzaki, S.Mojima. Dry desulfurizating agents for high-temperature reductive gases derived from such as coal or petroleum gasification. 1998-09-22.
    [36]郑子文.硫回收尾气处理技术及超级克劳斯工艺[J].硫酸工业,1993,2:41-44.
    [37]B.M.Wilson, R.D.Nawell. H2S removal by stretford process[J].Chem. Eng. Prog.,1984,80(10):40-47.
    [38]肖永厚,王树东,袁权.浸渍活性炭脱除硫化氢研究进展[J].化工进展,2006,25(9):1025-1030.
    [39]肖永厚,王树东,袁权.浸渍活性炭脱除硫化氢研究进展[J].化工进展,2006,25(9):1025-1030.
    [40]于淼,周理.天然气中H2S的脱除方法—发展现状与展望[J].天津化工,2002(5):18-20.
    [41]郑国述,陈芮.湿法脱硫技术在单井天然气开发上的应用[J].天然气工业,2002,22(3):81-83.
    [42]杨婷婷,熊运涛,崔荣华,肖俊,韩淑怡.天然气湿法脱硫技术研究进展 [J].天然气与石油,2013,(4):40-42.
    [43]Z.Qian, L.B.Xu, Z.H.Li, H.Li, K.Guo. Selective absorption of H2S from a gas mixture with CO2 by aqueous N-methyldiethanolamine in a rotating packed bed[J]. Ind. Eng. Chem. Res.,2010,49(13):6196-6203.
    [44]L.Zhou, L.Zhong, M. Yu, Y.Zhou. Sorption and desorption of a minor amount of H2S on silica gel covered with a film of triethanolamine[J]. Ind. Eng. Chem. Res.,2004,43(7):1765-1767.
    [45]H.J.Xu, C.F.Zhang, Z.S.Zheng. Selective H2S removal by nonaqueous methyldiethanolamine solutions in an experimental apparatus[J]. Ind. Eng. Chem. Res.,2002,41(12):2953-2956.
    [46]Y.Li, A.E.Mather. Correlation and prediction of the solubility of CO2 and H2S in aqueous solutions of methyldiethanolamine[J]. Ind. Eng. Chem. Res.,1997, 36(7):2760-2765.
    [47]R.Eustaquio-Rincon, M.E.Rebolledo-Libreros, A.Trejo, R.Molnar. Corrosion in aqueous solution of two alkanolamines with CO2 and H2S: N-methyldiethanolamine+diethanolamine at 393 K[J]. Ind. Eng. Chem. Res., 2008,47(14):4726-4735.
    [48]杨复俊.MDEA用于炼厂气体脱硫综述[J].气体净化,2006,6:74-78.
    [49]F.Pani, A.Gaunand, D.Richon, R.Cadours, C.Bouallou. Absorption of H2S by an aqueous methyldiethanolamine solution at 296 and 343 K[J]. J. Chem. Eng. Data,1997,42(5):865-870.
    [50]A.Vrachnos, E.Voutsas, K.Magoulas, A.Lygeros. Thermodynamics of Acid Gas-MDEA-Water Systems[J]. Ind. Eng. Chem. Res.,2004,43(11): 2798-2804.
    [51]A.Vrachnos, GKontogeorgis, E.Voutsas. Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA-MDEA blends[J]. Ind. Eng. Chem. Res.,2006,45(14):5148-5154
    [52]杨林森.炼厂气选择性溶剂脱硫技术进展[J].炼油.1998,3(2):60-64.
    [53]刘江红.硫化氢脱除技术的研究进展[J].辽宁化工,2010,39(3):292-294.
    [54]D.A.Dalrymple, T.W.Trofe, J.M.Evans. An overview of liquid redox sulfur recovery[J]. Chem. Eng. Prog.,1989,85(3):43.
    [55]B.M.Wilson, R.D.Ncwell. H2S removal by stretford proeess-further development by british gas corporation. Presented at National AICHE Meeting Ailanta, GA.
    [56]张剑锋.液相氧化法脱硫工艺的现状与发展[J].石油与天然气化工,1992,21(3):142-149.
    [57]张剑锋.液相氧化法脱硫工艺的现状与发展[J].石油与天然气化工,1992,21(3):142-149.
    [58]唐晓龙,易红宏,宁平.低浓度硫化氢废气的液相催化氧化法净化实验研究[J].环境污染治理技术与设备,2005,6(9):33-36.
    [59]王睿,石冈,魏伟胜,鲍晓军.杂多酸脱除硫化氢过程的理论分析与实验研究.见:第九届全国化学工程科技报告会论文集,青岛,1998:424.
    [60]鲍晓军,魏伟胜,王贤清.天然气脱硫制硫新工艺.见:第七届全国化学工程报告会论文集,北京,1994:596.
    [61]R.Wang, G.Shi, W.S.Wei, X.J.Bao. Applicability and effectiveness of hydrogen sulfide removal using heteropoly acids as absorbent. Proceedings of the 2th China-Korea Conference on Separation Science and Technology, Qingdao, 1998:180.
    [62]赵由才,鲍晓军.钼硅酸化学吸收脱除H2S气体回收硫磺的确究[J].环境科学学报,1996,16(1):82-89.
    [63]王睿,鲍晓军.磷钼杂多酸钠盐脱硫制硫反应机理研究[J].石油学报,2000,16(6):70-73.
    [64]W. Wu, B.Han, H. Gao, Z.Liu, T.Jiang, J.Huang. Desulfurization of flue gas: SO2 absorption by an ionic liquid[J]. Angewandte Chemie International Edition,2004,43(18):2415-2417.
    [65]C.Hardacre, J.D.Holbrey, M.Nieuwenhuyzen, T.G.A.Youngs. Structure and solvation in ionic liquid[J]. Aoc. Chem. Res.,2007,40(11):1146-1155.
    [66]J.L.Anthony, E.J.Maginn, J.F.Brennecke. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. J. Phys. Chem. B,2002,106(29):7315-7320.
    [67]J.Jacquemin, M.F.C.Gomes, P.Husson, V.Majer. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperature 283 K and 343 K and at pressures close to atmospheric[J]. J. Chem. Thermodynamics, 2006,38(4):490-502.
    [68]S.Aparicio, M.Atilhan, Computational study of hexamethylguanidinium lactate ionic liquid:a candidate for natural gas sweetening[J]. Energy Fuels, 2010,24(9):4989-5001.
    [69]B.Guo, E.Duan, Y.Zhong, L.Gao, X.Zhang, D.Zhao. Absorption and oxidation of H2S in caprolactam tetrabutyl ammonium bromide ionic liquid[J]. Energy Fuels,2011,25(1):159-161.
    [70]M.T.Pope, A.Muller. Polyoxometalate chemistry from topology via self-assembly to applications. dordrecht:Kluwer Academic Publishers,2001.
    [71]M.T.Pope, A.Muller. Polyoxometalate chemistry:An old field with new dimensions in several disciplines[J]. Angewandte Chemie International Edition in English,1991,30(1):34-48.
    [72]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998,4.
    [73]I.V.Kozhevnikov. Catalysis by polyoxometalates:catalysis for fine chemical synthesis[M]. UK:John Wiley & Sons Ltd,2002.
    [74]I.V.Kozhevnikov. Heteropoly acids and related compounds as catalysts for fine chemical synthesis[J]. Catalysis Reviews,1995,37(2):311-352.
    [75]马荣华,刘春涛.杂多配合物异构体[M].哈尔滨:哈尔滨工程大学出版社,2007,9.
    [76]伊万·科热夫尼科夫(作者),唐培垫(译者),李祥高(译者),王世荣(译者).精细化学品的催化合成:杂多酸化合物及其催化[M],北京:化学工业出版社,2005,11.
    [77]王新平,辛勤,任铁力,张文郁,金恒芳.杂多酸的硫化作用[J].物理化学学报,1996,12(2):124-129.
    [78]王睿.磷钼杂多化合物脱硫体系脱硫特性与再生规律[J].中国环境科学,2000,20(6):552-556.
    [79]王睿,鲍晓军.杂多化合物脱硫化氢动力学研究[J].环境科学学报,2000,20(6):767-771.
    [80]王睿.磷钼杂多化合物脱除H2S回收硫磺反应机理研究[J].环境化学,2001,20(1):76-80.
    [81]王睿,鲍晓军.杂多化合物脱硫体系与螯合铁体系脱硫产物的对比研究[J].环境工程,2000,18(5):30-32.
    [82]王睿,鲍晓军.磷钼杂多酸钠盐脱硫制硫反应机理研究[J].石油学报(石油加工),2000,16(6):70-73.
    [83]王睿.磷钼杂多化合物脱硫热力学可行性与硫磺生成机理研究[J].高等学校化学学报,2002,23(2):303-305.
    [84]王睿,邱鸿恩,吴丹,包南,赵海霞.稀有金属杂多化合物的脱硫脱硝性能研究[J].稀有金属材料与工程,2006,35(2):402-405.
    [85]李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社,2004,3.
    [86]E.D.Bates, R.D.Mayton, I.Ntai, J.H.Davis. CO2 capture by a task-specific ionic liquid[J]. J Am Chem Soc,2002,124(6):926-927.
    [87]H.Gao, B.Han, J.Li, T.Jiang, Z.Liu, W.Wu, Y.Chang, J.Zhang. Preparation of room-temperature ionic liquids by neutralization of 1,1,3,3-tetramethylguanidine with acids and their use as media for mannich reation[J]. Synth Common,2004,34(17):3083-3089.
    [88]张庆国,关伟,佟静,金振兴.过渡金属离子液体EMIFeCl3的性质研究[J].高等学校化学学报,2006,27(5):925-928.
    [89]A.P.Abbott, GCapper, D.L.Davies, R.Rasheed. Ionic liquids based upon metal halide/substitutes quaternary ammonium salt mixtures[J]. Inorg. Chem.,2004, 43(11):3447-3452.
    [90]K.R.Seddon. Ionic liquids for clean technology [J]. Journal of Chemical Technology and Biotechnology,1997,68(4):351-356
    [91]P.Wasserscheid, W.Keim. Ionic liquids-new "solution" for transition metal catalysis[J]. Angew. Chem. Int. Ed.,2000,39:3772-3789.
    [92]王建宏,朱玲.[bmim]FeCl4离子液体催化氧化硫化氢的研究[J].天然气化工,2012,37(6):29-32.
    [93]安莹,陆亮,李才猛,程时富,高国华.磷钼杂多酸离子液体催化氧化脱硫[J].催化学报,2009,30(12):1222-1226.
    [94]W.Huang, W.Zhu, H.Li, H.Shi, GZhu, H.Liu, GChen. Heteropolyanion-based ionic liquid for deep desulfurization of fuels in ionic liquids[J]. Ind. Eng. Chem. Res.2010,49(19):8998-9003.
    [95]W.Zhu, W.Huang, H.Li, M.Zhang, W.Jiang, GChen, C.Han. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels[J]. Fuel Processing Technology,2011,92(10):1842-1848.
    [96]W.Zhu, GZhu, H.Li, Y.Chao, Y.Chang, G.Chen, C.Han. Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids[J]. Journal of Molecular Catalysis A:Chemical,2011,347(1):8-14.
    [97]D. Camper, P. Scovazzo, C. Koval, R. Noble. Gas Solubilities in room-temperature ionic liquids[J]. Ind. Eng. Chem. Res.,2004,43: 3049-3054.
    [98]M.Jin, Y.Hou, W.Wu, S.Ren, S.Tian, L.Xiao, Z.Lei. Solubilities and thermodynamic properties of SO2 in ionic liquids[J]. J. Phys. Chem. B,2011, 115:6585-6591.
    [99]S.Zhang, X.Yuan, Y.Chen, X.Zhang. Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures [J]. J. Chem. Eng. Data,2005,50:1582-1585.
    [100]X.Yuan, S.Zhang, Y.Chen, X.Lu, W.Dai, R. Mori. Solubilities of gases in 1,1,3,3-tetramethylguanidium lactate at elevated pressures[J]. J. Chem. Eng. Data,2006,51:645-647.
    [101]A.H. Jalili, A. Mehdizadeh, M. Shokouhi, A.N. Ahmadi, M. Hosseini-Jenab, F. Fateminassab. Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate[J]. J. Chem. Thermodynamics,2010, 42:1298-1303.
    [102]B.Guo, E.Duan, A.Ren, Y.Wang, H.Liu. Solubility of SO2 in caprolactam tetrabutyl ammonium bromide ionic liquids[J]. J. Chem. Eng. Data,2010,55: 1398-1401.
    [103]A.F. Ghobadi, V. Taghikhani, J.R. Elliott. Investigation on the solubility of SO2 and CO2 in imidazolium-based ionic liquids using NPT monte carlo simulation[J]. J. Phys. Chem. B,2011,115:13599-13607.
    [104]C.S.Pomelli, C.Chiappe, A.Vidis, GLaurenczy, P.J. Dyson. Influence of the interaction between hydrogen sulfide and ionic liquids on solubility: experimental and theoretical investigation[J]. J. Phys. Chem. B.,2007,111(45): 13014-13019.
    [105]A.H.Jalili, M.Rahmati-Rostami, C.Ghotbi, M.Hosseini-Jenab, A.N.Ahmadi. Solubility of H2S in ionic liquids [BMIM][PF6], [BMIM][BF4], and [BMIM][Tf2N][J]. J. Chem. Eng. Data,2009,54(6):1844-1849.
    [106]M.Shokouhi, M.Adibi, A.H.Jalili, M.Hosseini-Jenab, A.Mehdizadeh. Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate[J]. J. Chem. Eng. Data,2010,55(4):1663-1668.
    [107]H.Sakhaeinia, A.H.Jalili, V.Taghikhani, A.A.Safekordi. Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethyl) sulfonylimide ([emim][Tf2N])[J]. J. Chem. Eng. Data,2010,55(12):5839-5845.
    [108]H.Sakhaeinia, V.Taghikhani, A.H.Jalili, A. Mehdizadehc, A.A.Safekordib. Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions[J]. Fluid Phase Equilibria,2010,298(2):303-309.
    [109]J.L. Anthony, J.L. Anderson, E.J. Maginn, J.F. Brennecke. Anion effects on gas solubility in ionic liquids[J]. J. Phys. Chem. B,2005,109:6366-6374.
    [110]Y. Shang, H. Li, S. Zhang, H. Xu, Z. Wang, L. Zhang, J. Zhang. Guanidinium-based ionic liquids for sulfur dioxide sorption[J]. Chemical Engineering Journal,2011,175:324-329.
    [111]J. Huang, A. Riisager, R.W. Berg, R. Fehrmann. Tuning ionic liquids for high gas solubility and reversible gas sorption[J]. Journal of Molecular Catalysis A: Chemical,2008,279:170-176.
    [112]C. Wang, G Cui, X. Luo, Y. Xu, H. Li, S. Dai. Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption[J]. J.Am. Chem. Soc.,2011,133:11916-11919.
    [113]K.E. Gutowski, E.J. Maginn. Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation[J]. J. Am. Chem. Soc., 2008,130:14690-14704.
    [114]X.L.Yuan, S.J.Zhang, X.M.Lu. Hydroxyl ammonium ionic liquids:synthesis, properties, and solubility of SO2[J]. J Chem Eng Data,2007,52 (2):596-599.
    [115]D.An, L.Wu, B.Li, S.Zhu. Synthesis and SO2 absorption/desorption properties of poly(1,1,3,3-tetra methylguanidine acrylate)[J]. Macromolecules,2007, 40(9):3388-3393.
    [116]J.L.Anthony, J.L.Anderson, E.J.Maginn, J.F.Brennecke. Anion effects on gas solubility in ionic liquids[J]. J. Phys. Chem. B,2005,109(13):6366-6374.
    [117]许世森,李春虎,郜时旺.煤气净化技术[M].北京:化学工业出版社,2007.
    [118]姚润生,李沛沛,孙磊磊,何义,陈灵波,于洋,木仁,余江.氯化咪唑铁基离子液体的物化性能及脱硫机理[J].煤炭学报,2011,36(1):135-139.
    [119]何义,余江,陈灵波.铁基离子液体湿法氧化硫化氢的反应性能[J].化工学报,2010,61(4):963-968.
    [120]张恒彬,吴通好,阎晓斌,冷玉春,李树家.磷钼酸和磷钼钒酸及其盐的氧化还原特性[J].高等学校化学学报,1990,11(10):1096-1101.
    [121]D.R.Park, S.H.Song, U.G.Hong, J.GSeo, J.C.Jung, I.K.Song. Redox properties and catalytic oxidation activities of polyatom-substituted HnPW11M1O40 (M=V, Nb, Ta, and W) Keggin heteropolyacid catalysts[J]. Catal Lett,2009,132: 363-369.
    [122]A.Kuhn, F.C.Anson. Adsorption of monolayers of P2Mo18O626- and deposition of multiple layers of Os(bpy)32+-P2Mo18O626- on electrode surfaces[J]. Langmuir,1996,12(22):5481-5488.
    [123]D.R.Park, J.H.Song, S.H.Lee, S.H.Song, H.Kim, J.C.Jung, I.K.Song. Redox properties of H3PMoxW12-xO40 and H6P2MoxW18-xO62 heteropolyacid catalysts and their catalytic activity for benzyl alcohol oxidation[J]. Applied Catalysis A: General,2008,349(1):222-228.
    [124]M.Sadakane, E.Steckhan. Electrochemical properties of polyoxometalates as electrocatalysts[J]. Chem. Rev.,1998,98(1):219-237.
    [125]于克生,冯豫川,周永恒,苗计生.Dawson型磷钼酸及钒修饰Dawson型磷钼酸的制备及其活性研究[J].西南民族大学学报(自然科学版),2011,37(2):257-262.
    [126]张进,唐英,罗茜,简敏,胡常伟.钼钒磷杂多酸的合成及催化性能研究[J].无机化学学报,2004,20(8):935-940.
    [127]马荣华,王福平.钴镍取代杂多酸盐甘氨酸超分子化合物的合成及性质[J].无机化学学报,2006,22(6):1137-1142.
    [128]尹强,廖菊芳,李玉光.不同方法制备的磷钨杂多酸功能化3DOM-SiO2材料性能研究.无机化学学报,2007,23(7):1194-1200.
    [129]王凤春,吕莹,徐敏,高雨.杂多酸掺杂聚苯胺微米棒、微米球的合成、表征及气敏性能研究[J].无机化学学报,2009,25(3):465-468.
    [130]A.de.Angelis, GBellussi, P.Pollesel, C.Perego. New method for H2S removal in acid solutions[J]. ChemSusChem,2010,3(7):829-833.
    [131]井淑波,张恒彬,朱万春,王振旅,王国甲.Keggin结构和Dawson结构磷钼酸及磷钼钒酸的氧化还原特性[J].吉林大学学报,2003,41(4):534-537.
    [132]王静,姜凤超.微波有机合成反应的新进展[J].有机化学,2002,22(3):212-219.
    [133]杨有清,蓝伟侦,邓克俭,王夺元.活化分子氧降解水中有机污染物的COD (Cr)值测定[J].中南民族大学学报:自然科学版,2004,23(2):1-4.
    [134]X.Wang, A.Wang, X.Wang, T.Zhang. Microwave plasma enhanced reduction of SO2 to sulfur with carbon[J]. Energy Fuels,2007,21(2):867-869.
    [135]E.J.Daniels, A.J.Gorski, J.B.L.Harkness. Hydrogen and sulfur recovery from hydrogen sulfide wastes:U.S. Patent,5211923[P].1993-5-18.
    [136]M.A.Wojtowicz, F.P.Miknis, R.W.Grimes, W.W.Smith, M.A.Serio. Control of nitric oxide, nitrous oxide, and ammonia emissions using microwave plasmas[J]. Journal of Hazardous Materials,2000,74(1):81-89.
    [137]A.GChmiclewski, J.Licki, A.Dobrowolski, B.Tyminski, E.Iller, Z.Zimek. Optimization of energy consumption for NOx removal in multistage gas irradiation process[J]. Radiat. Phys. Chem.,1995,45(6):1077-1079.
    [138]M.T.Radoiu, D.I.Martin, I.Calinescu. Emission control of SO2 and NOx by irradiation methods[J]. Journal of Hazardous Materials,2003,97:145-158.
    [139]王恩波,高丽华,刘景福.具有Dawson结构的钼钒磷杂多酸的制备和性质研究[J].化学学报,1988,46:757-762.
    [140]王恩波,许林,黄如丹,胡长文,詹瑞云,刘雅言.Keggin结构钼系杂多蓝的离析和性质研究[J].中国科学B,1991,(11):1121-1129.
    [141]王恩波,张澜萃,沈恩洪,王作屏,林永华,金松春.a-Keggin结构钼硅酸钾杂多蓝的合成与结构[J].中国科学B,1992,(7):673-682.
    [142]王恩波,任群翔,王作屏,陆新红,张淑霞,詹瑞云,刘桂珍.镧系元素钼系双11系列杂多蓝的离析和性质研究[J].无机化学学报,1993,9(1):65-70.
    [143]P.Villabrille, G.Romanelli, L.Gassa, P.Vazquez, C.Caceres. Synthesis and characterization of Fe- and Cu-doped molybdovanadophosphoric acids and their application in catalytic oxidation[J]. Applied Catalysis A:General,2007, 324:69-76.
    [144]J. Xu, Z. Zhao, Z. Li, X.Yang. Characterization and catalytic properties of transition metal molybdovanadophosphoric heteropoly compounds [J]. Acta Petrolei Sinica (Petroleum processing Section),2008,24(5):526-532.
    [145]P.Villabrille, G.Romanelli, P.Vazquez, C.Caceres. Vanadium-substituted Keggin heteropolycompounds as catalysts for ecofriendly liquid phase oxidation of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone[J]. Applied Catalysis A:General,2004,270:101-111.
    [146]徐静,赵振波,李正,杨向光.过渡金属磷钼钒杂多化合物的表征及催化性能[J].石油学报(石油加工),2008,24(5):526-532.
    [147]郭晓俊,黄崇品.反荷离子及制备方法对Keggin型杂多化合物结构和性质的影响[J].石油化工,2008,37(3):216-221.
    [148]H.Zhang, R.Yan, L.Yang, Y.Diao, L.Wang, S.Zhang. Investigation of Cu- and Fe-doped CsH3PMo11VO40 heteropoly compounds for the selective oxidation of methacrolein to methacrylic acid[J]. Ind. Eng. Chem. Res.,2013,52(12): 4484-4490.
    [149]C.Zhou, J.Wang, Y.Leng, H.Ge. Hydroxylation of benzene to phenol by molecular oxygen over an organic-inorganic hybrid catalyst:schiff base manganese complex attached to molybdovanadophosphoric heteropolyacid[J]. Catal. Lett.,2010,135:120-125.
    [150]A.Predoeva, S.Damyanova, E.M.Gaigneaux, L.Petrov. The surface and catalytic properties of titania-supported mixed PMoV heteropoly compounds for total oxidation of chlorobenzene[J]. Applied Catalysis A:General,2007, 319:14-24.
    [151]D.Qin, J.Li, GWang, Y.Wu. Studies on the redox properties of heteropolymolybdates with transition metals[J]. Chem.J.Chinese Universities, 1992,13(8):1118-1121.
    [152]P.A.Nikulshin, A.V.Mozhaev, A.A.Pimerzin, V.V.Konovalov, A.A.Pimerzin. CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate:Effect of Co/Mo ratio[J]. Fuel,2012,100:24-33.
    [153]J.Gong, Z.M.Su, R.S.Wang, L.Y.Qu. H4PM11VO40-doped (M=W, Mo) polyaniline-synthesis, characterization and catalytic conversion of isopropanol[J]. Synthetic Metals,1999,101(1-3):750.
    [154]J.P.Espinos, J.Morales, A.Barranco, A.Caballero, J.P.Holgado, A.R.Gonzalez-Elipe. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO and Cu/ZrO catalysts[J]. J. Phys. Chem. B,2002,106:6921-6929.
    [155]M.C.Patterson, X.Nie, F.Wang, R.L.Kurtz, S.B.Sinnott, A.Asthagiri, P.T.Sprunger. Growth and structure of Cu and Au on the nonpolar ZnO (1010) surface:STM, XPS, and DFT studies[J]. J. Phys. Chem. C,2013,117: 18386-18397.
    [156]W.Suprun, M.Lutecki, R.Glaser, H.Papp. Catalytic activity of bifunctional transition metal oxide containing phosphated alumina catalysts in the dehydration of glycerol[J]. Journal of Molecular Catalysis A:Chemical,2011, (342-343):91-100.
    [157]Y.Bu, Q.Zhong, D.Xu, W.Tan. Redox stability and sulfur resistance of Sm0.9Sr0.1CrxFe1-xO3-δ perovskite materials[J]. Journal of Alloys and Compounds,2013,578:60-66.
    [158]C.Calderon, J.S.Oyola, P.B.Perez, GGordillo. Studies in CuInS2 based solar cells, including ZnS and In2S3 buffer layers[J]. Materials Science in Semiconductor Processing,2013,16:1382-1387.
    [159]E.B.L.Bouhelec, P.Mougin, A.Barreau, R.Solimando. Rigorous modeling of the acid gas heat of absorption in alkanolamine solutions[J]. Energy Fuels, 2007,21(4):2044-2055.
    [160]A.H.Zare, S.Mirzaei. Removal of CO2 and H2S using aqueous alkanolamine solusions[J]. World Academy of Science, Engineering and Technology,2009, 25,194-203.
    [161]F.Pani, A.Gaunand, D.Richon, R.Cadours, C.Bouallou. Absorption of H2S by an aqueous methyldiethanolamine solution at 296 and 343 K[J]. J. Chem. Eng. Data.,1997,42(5),865-870.
    [162]P.J.GHuttenhuis, N.J.Agrawal, J.A.Hogendoorn, GF.Versteeg. Gas solubility of H2S and CO2 in aqueous solutions of N-methyldiethanolamine[J]. Journal of Petroleum Science and Engineering,2007,55:122-134.
    [163]R.Cadours, D.Roquet, G.Perdu. Competitive absorption-desorption of acid gas into water-DEA solutions[J]. Ind. Eng. Chem. Res.,2007,46:233-241.
    [164]M.Kaminski, D.Jastrzebski, A.Przyjazny, R.Kartanowicz. Determination of the amount of wash amines and ammonium ion in desulfurization products of process gases and results of related studies[J]. Journal of Chromatography A, 2002,947:217-225.
    [165]C.H.Huang, T.W.Xu, X.F.Yang. Regenerating fuel-gas desulfurizing agents by using bipolar membrane electrodialysis (BMED):effect of molecular structure of alkanolamines on the regeneration performance[J]. Environ. Sci. Technol., 2007,41:984-989.
    [166]J.M.Zhang, S.J.Zhang, K.Dong, Y.Zhang, Y.Shen, X.Lv. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chemistry-A European Journal,2006,12(15):4021-4026.
    [167]K.Yoo, V.V.Naboodiri, R.S.Varma. Ionic liquid-catalyzed alkylaton of isobutane with 2-butene[J]. J Catal,2004,222(2):511-519.
    [168]P.Wasserscheid, W.Keim. Ionic liquids-new "solution" for transition metal catalysis[J]. Angew Chem Int Ed,2000,39:3772-3789/M.L.Dietz. Ionic liquids as extration solvents:where do we stand[J]. Sep Sci Tech,2006,41(10): 2047-2063.
    [169]D.N.Dybtsev, H.Chun, K.Kim. Three-dimensional metal-organic framework with (3,4)-connected net, synthesized from an ionic liquid medium[J]. Chem. Commun.,2004, (14):1594-1595.
    [170]S.Aparicio, M.Atilhan. Computational study of hexamethylguanidinium lactate ionic liquid:a candidate for natural gas sweetening[J]. Energy Fuels, 2010,24:4989-5001.
    [171]H.Shekaari, F.Jebali. Densities, viscosities, electrical conductances, and refractive indices of amino acid+ionic liquid ([BMIm]Br)+water mixtures at 298.15 K[J]. J. Chem. Eng. Data,2010,55(7):2517-2523.
    [172]J.Zhang, A.Wang, X.Li, X.Ma. Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12O40[J]. Journal of Catalysis,2011,279(2): 269-275.
    [173]林深,郑瑛,许利闽,王世铭.Keggin结构稀土钼钒磷四元杂多配合物的合成、表征及苯酚羟化制苯二酚的催化活性[J].高等学校化学学报,2000,21(8):1248-1251.
    [174]施介华,潘高.1-丁基-3-甲基咪唑磷钨酸盐的制备及其对酯化反应的催化性能[J].催化学报,2008,29(7):629-632.
    [175]P.Painter, N.Pulati, R.Cetiner, M.Sobkowiak, GMitchell, J.Mathews. Dissolution and dispersion of coal in ionic liquids[J]. Energy Fuels,2010,24, 1848-1853.
    [176]Y.Gao, N.Li, X.Li, S.Zhang, L.Zheng, X.Bai, L.Yu. Microstructures of micellar aggregations formed within 1-butyl-3-methylimidazolium type ionic liquids[J]. J. Phys. Chem. B,2009,113(1):123-130.
    [177]N.Li, S.Zhang, L.Zheng, B.Dong, X.Li, L.Yu. Aggregation behavior of long-chain ionic liquids in an ionic liquid[J]. Phys. Chem. Chem. Phys.,2008, 10(30):4375-4377.
    [178]N.Li, S.Zhang, L.Zheng, J.Wu, X.Li, L.Yu. Aggregation behavior of a fluorinated surfactant in 1-butyl-3-methylimidazolium ionic liquids[J]. J. Phys. Chem. B,2008,112(39):12453-12460.
    [179]R.Hagiwara, Y.Ito. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions[J]. Journal of Fluorine Chemistry,2000,105(2): 221-227.
    [180]F.YJou, A.E.Mather. Solubility of hydrogen sulfide in [bmim][PF6][J]. International journal of thermophysics,2007,28(2):490-495.
    [181]马云倩,杨烽,王睿.Dawson磷钼钒酸的合成、脱硫与微波辅助空气再生[J].无机化学学报,2012,28(10):2179-2185.
    [182]戴金星,胡见义,贾承造,方义生,孙志道,魏伶华,袁进平,杨威.科学安全勘探开发高硫化氢天然气田的建议[J].石油勘探与开发,2004,31(2):1-4.
    [183]汪云华,彭金辉,关晓伟,刘时杰,顾华祥.氧化吸收硫化氢的新工艺研究[J].无机盐工业,2006,38(7):49-53.
    [184]宋华,王雪芹,赵贤俊,张文超,吕宝航,柳艳修.湿法烟气脱硫技术研究现状及进展[J].化学工业与工程,2009,26(5):455-459.
    [185]刘效峰,李玉平.用液相克劳斯反应从烟气中回收硫磺[J].化工环保,2005,25(4):301-304.
    [186]朱菊华,黄妍,童志权.Fe2(SO4)3溶液吸收H2S废气工艺研究[J].化工进展,2004,23(3):277-281.
    [187]徐海升,刘永毅,薛岗林,李谦定.天然气脱硫化氢技术进展[J].石油技术与应用,2012,30(4):365-369.
    [188]李学新,魏雄辉.铁离子湿式氧化法脱除硫化氢技术进展[J].化工环保,2004,24(2):107-110.
    [189]张俊丰,童志权.Fe/Cu体系湿式催化氧化一步高效脱除H2S新方法研究[J].环境科学学报,2005,25(4):497-501.
    [190]高志华,阴丽华,李春虎,谢克昌.纳米a-FeOOH催化剂一段法脱除COS和H2S性能的研究[J].燃料化学学报,2003,31(3):249-253.
    [191]张俊丰,童志权.筛板塔Fe/Cu湿式催化氧化脱除H2S气体制硫磺的实验[J].化工进展,2006,25(6):687-690.
    [192]V. K.Sharma, J.O.Smith, F.J.Millero. Ferrate(VI) oxidation of hydrogen sulfide[J]. Environ. Sci. Technol.,1997,31(9):2486-2491.
    [193]W.S.YAO, F.J.Millero, Oxidation of hydrogen sulfide by hydrous Fe(Ⅲ) oxides in seawater[J]. Marine Chemistry,1996,52(1):1-16.
    [194]徐宏建,张成芳,刘金盾,方文骥.Fe(III)-EDTA吸收H2S反应动力学的实验研究[J].高校化学工程学报,2001,15(6):532-537.
    [195]杨建平,李海涛,肖九高,冯亚平,龚建琴.络合铁法脱除酸氟中硫化物的试验研究[J].化学工业与工程技术,2002,23(2):23-24.
    [196]胡雪生,余江,夏寒松,刘庆芬,刘会洲.离子液体的绿色合成及环境性质[J].化学通报,2005,12:906-934.
    [197]刘丹,桂建舟,王利,张晓彤,宋丽娟,孙兆林.功能化酸性离子液体催化柴油氧化脱硫的研究[J].燃料化学学报,2008,36(5):601-605.
    [198]J S.Wilkes. Properties of ionic liquid solvents for catalysis[J]. Journal of Molecular Catalysis A:Chemical,2004,214(1):11-17.
    [199]H.Tokuda, K.Hayamizu, K.Ishii, M.A.B.H.Susan, M.Watanabe. Physicochemical properties and structures of room temperature ionic liquids.2. variation of alkyl chain length in imidazolium cation[J]. J. Phys. Chem. B, 2005,109(13):6103-6110.
    [200]刘勇,张有明,华茂堂,刘明霞,魏太保.苯并咪唑类离子液体及其铅(Ⅲ)配位聚合物的合成、晶体结构及电学性质研究[J].无机化学学报,2011,27(8):1569-1573.
    [201]张僳,黄崇品,陈标华,李英霞,乔聪震.用[BMIM][Cu2Cl3]离子液体萃取脱除汽油中的硫化物[J].燃料化学学报,2005,33(4):431-434.
    [202]T.Dong, Y.Xu, F.Chen, Y.Chi, C.Hu. 1-Methyl-3-octylimidazolium polyoxomolybdate ionic liquid with low melting point and high stability: preparation and photocatalytic activity[J]. Chem. Res. Chinese Universities, 2011,27(2):177-180.
    [203]张庆国,关伟,佟静,金振兴.过渡金属离子液体EMIFeCl3的性质研究[J].高等学校化学学报,2006,27(5):925-928.
    [204]王建宏,朱玲.[bmim]FeCl4离子液体催化氧化硫化氢的研究[J].天然气化工,2012,37(6):29-32.
    [205]F.T.Li, Y.Liu, Z.M.Sun, L.J.Chen, D.S.Zhao, R.H.Liu, C.G.Kou. Deep extractive desulfurization of gasoline with xEt3NHCl3FeCl3 ionic liquids [J]. Energy Fuels,2010,24:4285-4289.
    [206]H.YHuang, R.T.Yang, D.Chinn, C.L.Munson. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas[J]. Ind. Eng. Chem. Res.,2003,42(12):2427-2433.
    [207]朱光有,戴金星,张水昌,李剑,史斗,文志刚.含硫化氢天然气的形成机制及分布规律研究[J].天然气地球科学,2004,15(2):166-170.
    [208]R.Schmid, J.B.Cross, E.GLatimer. Tail-gas cleanup by simultaneous SO2 and H2S removal[J]. Energy Fuels,2009,23(7):3612-3616.
    [209]R.Cadours, D.Roquet, G.Perdu. Competitive absorption-desorption of acid gas into water-DEA solutions[J]. Ind. Eng. Chem. Res.,2007,46(1):233-241.
    [210]张静娇,宋华,白冰,王璐.有机醇胺溶液中H2S气体溶解性能评价[J].化工进展,2012,31(7):1432-1436.
    [211]P.J.GHuttenhuis, N.J.Agrawal, J.A.Hogendoorn, G.F.Versteeg. Gas solubility of H2S and CO2 in aqueous solutions of N-methyldiethanolamine[J]. Journal of Petroleum Science and Engineering,2007,55(1):122-134.
    [212]S.H.Mazloumi, A.Haghtalab, A. H.Jalili, M.Shokouhi. Solubility of H2S in aqueous disopropanolamine+piperazine solutions:new experimental data and modeling with the electrolyte cubic square-well equation of state[J]. J. Chem. Eng. Data,2012,57(10):2625-2631.
    [213]W.A.Fouad, A.S.Berrouk. Prediction of H2S and CO2 solubilities in aqueous triethanolamine solutions using a simple model of Kent-Eisenberg type[J]. Ind. Eng. Chem. Res.,2012,51(18):6591-6597.
    [214]H.Tokuda, K.Hayamizu, K.Ishii, M.A.B.H.Susan, M.Watanabe. Physicochemical properties and structures of room temperature ionic liquids.1. variation of anionic species[J]. J. Phys. Chem. B,2004,108(42): 16593-16600.
    [215]郭立颖,史铁钧,李忠,段衍鹏,王于刚.新型功能化离子液体[HeEIM]Cl的合成及其对棉纤维的溶解性能[J].高等学校化学学报,2008,29(9):1901-1907.
    [216]D.Liang, X.Xin, H.Duan, Y.Yin, H.Gao, Y.Lin, J.Xu. Guanidinium lactate ionic liquid:an efficient and recycling catalyst for michael addition reaction[J]. Chem. Res. Chinese Universities,2008,24(1):36-41.
    [217]Y.J.Heintz, L.Sehabiague, B. I.Morsi, K.L.Jones, D.R.Luebke, H.W.Pennline. Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent[J]. Energy Fuels,2009,23(10): 4822-4830.
    [218]E.Duan, B.Guo, M.Zhang, Y.Guan, H.Sun, J.Han. Efficient capture of SO2 by a binary mixture of caprolactam tetrabutyl ammonium bromide ionic liquid and water[J]. Journal of Hazardous Materials,2011,194:48-52.
    [219]R.Yusoff, M.K.Aroua, A.Shamiri, A.Ahmady, N.S.Jusoh, N.F.Asmuni, L.C.Bong, S.H.Thee. Density and viscosity of aqueous mixtures of N-methyldiethanolamines (MDEA) and ionic liquids[J]. J. Chem. Eng. Data, 2013,58(2):240-247.
    [220]王占丽,徐凡,邢小林,任增保.功能化离子液体-MDEA复配体系吸收 C02[J].化工进展,2013,32(2):394-399.
    [221]J.Huang, A.Riisager, P.Wasserscheid, R.Fehrmann. Reversible physical absorption of SO2 by ionic liquids[J]. Chem. Commun.,2006, (38): 4027-4029.
    [222]Z.Deng, J.Guo, L.Qiu, Y.Zhou, L.Xia, F.Yan. Basic ionic liquids:a new type of ligand and catalyst for the AGET ATRP of methyl methacrylate[J]. Polym. Chem.,2012,3(9):2436-2443.
    [223]王晓丹,吴文远,涂赣峰,蒋开喜.绿色电解质[BMIM]HCO3室温离子液体的合成及其物化性能[J].科学通报,2009,54(1):21-26.
    [224]GYu, S.Zhang. Insight into the cation-anion interaction in 1,1,3,3-tetramethylguanidinium lactate ionic liquid[J]. Fluid Phase Equilibria, 2007,255(1):86-92.
    [225]翟林智,钟秦,杜红彩,何川,王娟.醇胺类离子液体合成及其烟气脱硫特性[J].化工学报,2009,60(2):450-454.
    [226]唐典勇,胡建平,吕申壮,孙国峰,张元勤.CO在M55(M=Cu,Ag,Au)团簇上吸附的密度泛函研究[J].化学学报,2012,70(8):943-948.
    [227]Y.Wang, H.Li, S.Han. A theoretical investigation of the interactions between water molecules and ionic liquids[J]. J. Phys. Chem. B,2006,110(48): 24646-24651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700