用户名: 密码: 验证码:
改性活性焦烟气脱硫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是以煤炭为主要能源的大国,煤炭资源丰富而石油和天然气短缺。我国资源赋存的特点,决定了解决中国的能源问题必须以煤为主,但是在开发利用煤炭资源的同时,燃煤产生的环境污染问题已经日益恶化,严重制约了我国经济社会的可持续发展。活性焦烟气脱硫是一种先进的干法脱硫技术,它既克服了目前广泛应用的石灰石/石膏湿法脱硫技术存在的耗水量大、二次污染等缺陷,同时又可回收硫资源并脱除多种污染物,对于我国煤炭资源丰富但水资源匮乏的西部地区有很好的适用性。
     本论文在固定床装置上考察不同煤种活性焦的脱硫性能并与商业活性焦进行脱硫和再生性能对比实验;同时考察工艺参数和改性方法对乌拉山活性焦脱硫性能的影响并进行脱硫动力学研究。通过酸碱滴定、N2吸附、X射线表面光电子能谱、傅里叶红外光谱等方法对活性焦的表面物理和化学性质进行表征和分析。结果如下:
     1.四种不同煤种活性焦的脱硫优劣顺序为:乌拉山活性焦>内蒙活性焦>神木活性焦>彬县活性焦。乌拉山活性焦脱硫和再生性能均优于商业活性焦,在考虑成本的情况下,优先选用直接加热再生法。实验发现孔隙结构对活性焦脱硫性能有一定影响,但不是决定性因素,对活性焦脱硫性能影响较大的是活性焦的表面化学性质;碱性基团C=O与活性焦的脱硫性能有重要关系。
     2.确定适宜脱硫的工艺参数为:活性焦粒径40-60目,空速1000-2000h-1,反应温度100℃,模拟烟气组成SO2500-1000ppm,026%,H2010%。
     3.改性研究结果:(1)脱灰处理后,活性焦的脱硫性能明显提高,酸洗脱灰的脱硫效果优于酸碱脱灰。(2)硝酸改性后活性焦的碘值和表面碱性基团含量增加,脱硫性能提高,适宜的硝酸改性条件:硝酸浓度15%-30%,活化时间90min,活化温度100℃,煅烧温度500℃。(3)浸渍硝酸铝和硝酸铜改性活性焦脱硫效果最好,与原样相比硫容提高40%以上。
     4.根据对吸附反应减速阶段的拟合,得到了活性焦的吸附速率表达式和有关参数值。拟合结果表明:在温度60-140℃之间,吸附速率常数K随温度的增加先增大后减小,这说明温度过高不利于活性焦对SO2的吸附转化。
China is one of the largest countries using coal as the chief energy sources, whose energy resources are rich in coal but lacking in petroleum and natural gas. The characteristics of the country's energy sources result that the energy problem must be solved based on coal. In the process of exploitation and utilization of coal resources, the problem of environmental pollution from burning coal has been deteriorating, which severely restricts the sustainable development of our country's economic and society. Flue gas desulfurization by activated coke is a kind of advanced dry desulfurization technology. It can overcome the shortcomings of large water consumption, secondary pollution and so on, which exist widely in limestone/gypsum flue gas desulphurization. Meanwhile, it can recover the sulfur resources and effectively reduce other pollutants. The kind of dry desulfurization technology is more applicable for the west regions where coal is rich but water is lacking.
     The desulfurization by activated coke was investigated on a fixed bed reactor. Comparation was made between the commercial and experiment activated cokes in the performance of desulfurization and regeneration. Research was made on the influence of processing parameters and modification methods on the desulphurization performance of WLS-AC. The desulfurization kinetics was also investigated. The physical and chemical properties of activated coke were characterized by acid-base titration, N2adsorption, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and so on. The results are as follows:
     1. The comparison of four raw materials of activated cokes on SO2removal efficiency shows that:WLS-AC>IM-AC>SM-AC>BX-AC. The desulfurization and regeneration performance of WLS-AC were better than commercial XH-AC. On the consideration of the cost, the direct heating regeneration method was preferred. The pore structure of activated coke influenced desulphurization performance, but was not the decisive factor. The desulfurization of activated coke was strongly influenced by its surface chemical properties and associated with basic C=O groups.
     2. The optimum process parameters were:particle size of activated coke40-60meshes, GHSV=1000-2000h-1, T=100℃, simulated flue gas composition SO2500-1000ppm, O26%, H2O10%.
     3. The modification of WLS-AC:(1)The desulfurization perform-ance of activated coke was increased after deashing. The activated coke from acid deashing was better than acid&alkali deashing.(2)The iodine adsorption value and surface basic group were increased as well as the desulfurization performance after HNO3modification. The proper HNO3modification conditions were:concentration of nitric acid15%-30%, activation time90min, activation temperature100℃, calcining temperature500℃.(3)Modification by impregnating aluminum nitrate and copper nitrate showed the best sulfur capacity effect and sulfur capacity was increased by>40%.
     4. According to the deceleration phase fitting of adsorptive reactions, adsorption rate equation and the parameters were obtained. The results of experiment show that the adsorption rate constant increased first and then decreased with temperature from60℃to140℃. Higher temperature was unfavorable to SO2removal efficiency.
引文
[1]胡予红,孙欣.煤炭对环境的影响[J].中国能源,2004,26(1):32-35.
    [2]仲大军.我国发展战略和产业结构的新调整[J].中国远洋航务,2007,(6):16-18.
    [3]陈梅倩,何伯述,陈广华,等.氨法脱硫反应特性的化学动力学分析[J].环境科学学报,2005,25(7):886-890.
    [4]刘孜.我国二氧化硫和酸雨污染防治工作取得阶段性成果[J].电力需求侧管理,2001,3(3):5-6.
    [5]国家环境保护总局.国家环境保护“十一五”规划[EB/OL].[2008-01-18] http: //www.sepa.gov.cn/plan/hjgh/sywgh/gjsywgh/200801/t20080118_116458.htm.
    [6]中国环境规划院.国家环境保护“十五”计划指标完成情况分析[EB/OL]. [2006-04-12]http://www.sepa.gov.cn/xcjy/zwhb/00604/t20060412_75714.htm
    [7]中国行业研究网.2008年中国电力环保行业研究咨询报告[R/OL].[2007-12-20]http://www.chinairn.com/doc/50150/204487.htm.
    [8]郝吉明,王书恩,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001
    [9]邢连中.应用国家政策推动火电厂烟气脱硫工作的全面实施[J].华东电力,2004,(6):11-13.
    [10]刘利,程养学,喻文熙,等.火电厂烟气脱硫工艺概述及脱硫国产化[J].能源环境保护,2006,(4):1-5.
    [11]董佩杰.火电厂烟气脱硫技术的探讨[J].山西电力,2006,(4):63-65.
    [12]江爱伟,范家峰.锅炉燃煤脱硫技术概述[J].山东煤炭科技,2003,(3):15-17.
    [13]周玉新,刘建章.烟气脱硫技术现状与发展趋势[J].化学工程师,2007,(10):38.
    [14]Knoblauch K, Richter E, Juntgen H. Application of active coke in processes of SO2 and NOX removal from flue gases [J]. Fuel,1981,60(9):832-838
    [15]张方,马彦涛,胡将军.国内外火电厂烟气脱硫石膏的特点利用及处置[J].粉煤灰综合利用,2003,(4):50-51.
    [16]谭鑫,钟儒刚,甄岩,等.钙法烟气脱硫技术研究进展[J].化工环保,2003,23(6): 322-328.
    [17]丁正元.大型火电厂烟气氨法脱硫与回收[J].贵州化工,2005,(2):33-36.
    [18]孙雁伯.辽河油田稠油热采燃油改燃煤技术研究[D].北京:中国石油大学,2007.
    [19]薛建明,马果骏.炉内喷钙炉后活化脱硫工艺对电除尘器性能的影响[J].电力环境保护,2001,17(1):9-11.
    [20]饶苏波,胡敏.干法脱硫工艺技术分析[J].广东电力,2004,17(3):21-25.
    [21]王雪芹,吕宝航,刘江玲.干法烟气脱硫技术研究现状及进展[J].天津化工,2008,22(6):4-6.
    [22]李红英,周长丽,王海英.干法烟气脱硫技术的进展及其应用分析[J].辽宁化工,2007,36(8):540-542.
    [23]李文,陈银飞,刘化章.烟气干法脱硫技术[J].浙江化工,2001,32(1):42-44.
    [24]张大欣,徐光,罗经宇.电子束半干法烟气净化技术[J].环境污染治理技术与设备,2001,2(3):69-72.
    [25]杜建敏.干法与半干法烟气脱硫技术综述[J].工业安全与环保,2002,28(6):13-15.
    [26]邱炜,周刚,付英杰.干法烟气脱硫综述[J].电站系统工程,2005,21(3):19-20.
    [27]张红彩,姜学东,胡小吐.CAN总线在流光放电等离子体烟气脱硫监控系统中的应用[EB/OL].[2011-03-23]http://www.go-gddq.com/html/s588/2011-03/58 0488.htm
    [28]李忠华.火电厂应用海水脱硫技术的试验研究[D].南京:东南大学,2006.
    [29]赖庆柯,张永奎.气升式反应器中微生物烟气脱硫研究[J].环境工程学报,2007,5:80-83.
    [30]王英刚,高丹,林静文,等.烟气脱硫微生物培养操作条件及反应器启动工艺特性研究[J].现代化工,2005,25(5):40-43.
    [31]王英刚,张秀君.生化法烟气脱硫技术综述[J].四川环境,2009,28(3):61-65.
    [32]沈益平.天然磁铁矿直接分解二氧化硫的应用研究[D].北京:北京化工大学,2009.
    [33]王柏林,袁纪文,李崇.超重力技术在硫酸装置尾气脱硫中的应用效果[J].硫酸设计与粉体工程,2011,(4):31-34.
    [34]贾立军,刘炳光.我国烟气脱硫技术综述[J].盐业与化工,2006,35(5):35-39.
    [35]赵军辉,王平,张建红.工业生产中的脱硫技术及其应用[J].河南化工,2008,25:4-5.
    [36]吴丹,郝久清,马学良.烟气脱硫技术的发展及其应用前景[J].抚顺石油学院学报,2003,23(1):37-41.
    [37]张文辉,刘春兰,刘静,等.国内外活性焦烟气脱硫技术发展概况[J].第10界全国电除尘学术会议/第2界全国脱硫学术会议论文集,2003,465-468.
    [38]李晓芸,邹炎.活性炭/焦干法烟气净化技术的应用与发展[J].电力建设,2009,30(5):47-51.
    [39]张方炜.烟气活性焦干法脱硫工艺及其在电厂中的应用[J].电力勘测设计,2009,6(3):34-41.
    [40]梁大明.活性焦干法烟气脱硫技术[J].煤质技术,2008,6:48-51.
    [41]张文辉,刘静,孙淑君.活性焦烟气脱硫技术研究[J].洁净煤技术,2004,10(4):55-59.
    [42]Mesisel G M. Sulfur recovery [J]. J. Metal,1972(5):31-39.
    [43]Maurin P G, Jonakin J. Removing sulfur oxides from stacks [J]. Chemical Eingneering. 1970,27(4):173-180.
    [44]张力,刘伟.活性炭吸附烟气脱硫展望[J].辽宁化工,1996(5):16-18.
    [45]Graf R, Riley J D. Dry/Semidry flue gas desulfurization using the Lurgi circulating fluidized bed adsorption process [C]. Lecture at the EPA/EPRI fourth symposium on flue gas desulfurization in Atlanta. Georgia from 18th to 21th, November,1986
    [46]吴琳琳.煤粉炉脱硫改造分析[J].中国科技博览,2011,17:46.
    [47]王爱军,祈海鹰,由长福,等.循环流化床烟气脱硫技术实验研究[J].燃烧科学与技术,2000,6(4):351-355.
    [48]单晓梅,朱书全,张文辉,等.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报,2003,32(6):729-733.
    [49]张建策,毛立新.表面改性对活性炭吸附重金属性能的影响[J].化工时刊,2005,19(12):28-29.
    [50]厉悦,李湘洲,刘敏.改性活性炭的表面特性及其对苯酚的吸附性能[J].林产化 工通讯,2004,38(5):14-17.
    [51]李湘洲,肖建军.活性炭表面改性及其对Cr(Ⅵ)吸附性能的研究[J].化工进展,2004,23(3):295-296.
    [52]刘守新,王岩,郑文超.活性炭再生技术研究进展[J].东北林业大学学报,2001,29(3):61-63.
    [53]林冠烽,牟大庆,程捷,等.活性炭再生技术研究进展[J].林业科学,2008,44(2):150-154.
    [54]吴奕,活性炭的再生方法[J].化工生产与技术,2005,12(1):20-22.
    [55]张会平,钟辉,叶李艺.不同化学方法再生活性炭的对比研究[J].化工进展,1999,(5):31-35.
    [56]秦玉春,王海涛,朱海哲.活性炭的再生方法[J].炭素技术,2001,117(6):29-31.
    [57]陈皓,向阳,赵建夫.超临界二氧化碳萃取再生活性炭技术研究进展[J].上海环境科学,1997,16(12):26-28.
    [58]傅大放,邹宗柏,曹鹏.活性炭的微波辐照再生试验[J].中国给水排水,1997,13(5):7-9.
    [59]张会平,叶李艺,傅志鸿,等.活性炭的电化学再生技术研究[J].化工进展,2001,20(10):17-20.
    [60]Doniat D, Corajoud J M, Porta A. Process of regenerating contaminated activated carbon:US,4217191 [P].1980-08-12.
    [61]Leng C C, Pinto N G. An investigation of the mechanisms of chemical regeneration of activated carbon [J]. Industry Engineering Chemical Research,1996,35(6):2024-2031.
    [62]Bercic G. Desorption of phenol from activated carobn by hot water regeneration desorption isotherms [J]. Industry Engineering Chemical Research,1996,35(12): 4619-4625.
    [63]Narbai R M. Electro chemical regeneration of granular activated carobn [J]. Water Research,1994,28(8):1771-1778.
    [64]郭声波.烟气脱硫及硫资源化新工艺[J].环境工程学报,2007,(3):97-102.
    [65]刘静.活性焦烟气脱硫技术与硫资源综合利用[C].第二界中国国际脱硫脱销技术与设备展览会暨技术研讨会,37-42.
    [66]张守玉.煤制活性焦脱除烟气中S02的研究[D].太原:中科院山西煤化所,2001.
    [67]张永奇.煤制烟气脱硫活性焦的研究[D].太原:中国科学院山西煤化所,2004.
    [68]王建祺,谢先月.活性炭表面含氧基团的研究-用XPS法研究活性炭的表面含氧基团[J].活性炭,1987(2):33-41.
    [69]段旭琴,王祖讷.煤显微组分表面含氧官能团的XPS分析[J].辽宁工程技术大学学报,2010,29(3):498-501.
    [70]John F, Moulder W F, Stickle P E. Handbook of x-ray photoelectron spectroscopy:A reference book of standerd spectra for idetification and interpretation of XPS data [C]. Perkin-Elmer Corporation Physical Electronic Division,2000.
    [71]陈先明,胡宝妹.含氧活性炭催化氧化法消除烟道气中二氧化硫[J].催化学报,1982,3(3):192-197.
    [72]Carrasco-Marin F, Ultrera-Hidalgo E, Rivera-Utrilla J, et al. Adsorption of SO2 in flowing air onto activated carbons from olive stones [J]. Fuel,1992,71:575-578.
    [73]Davini P. Investigation on the adsorption and desorption of SO2 on active carbon in the temperature range between 130℃ and 170℃ [J]. Carbon,1991,29(3):321.
    [74]Davini P. Adsorption and desorption of sulfur dioxide from simulated flue gas on active carbon:the effect of the ash content [J]. Carbon,1993,31(1):47.
    [75]张守玉,吕俊复,岳光溪,等.煤种及炭化条件对活性焦表面化学性质的影响[J].化学工程,2004,32(5):39-43.
    [76]张守玉,朱廷钰,王洋等.煤种及活化条件对活性焦脱硫性能的影响[J].过程工程学报,2002,2(6):491-496.
    [77]张守玉,吕俊复,岳光溪,等.煤质活性焦表面性质对其脱硫性能的影响[J].湘潭矿业学院学报,2003,18(2):84-88.
    [78]Rubio B, Izquierdo M T, Mastral M. Influence of low-rank coal char propertieson pacity from flue gases [J]. Carbon,1998,36(3):263-268.
    [79]Liu G, Benyon P, Benfell K E, et al. The porous structure of bituminous coal chars and its influence on combustion and gasification under chemically controlled conditions [J]. Fuel,2000,79(6):617-626.
    [80]Rubio B, Izquierdo M T. Low cost adsorbents for low temperature cleaning of flue gases [J]. Fuel,1998,77(6):631-637.
    [81]Juntgen H. Mechanisms and physical roperties of carbon catalysts for flue gas cleaning [J]. Chemistry and Physics of Carbon,1989,22:145-255.
    [82]Raymudo P E, Cazorla A D, Salinas-Martinezde L C, et al. Factors controlling the SO2 removal by porous carbon:Relevance of the SO2 oxidation step [J]. Carbon,2000, 38(3):335-344.
    [83]Linares-Solano A, Martin-Gullon I, Salinas-Martinezde L C, et al. Activated carbons from bituminuous coal:Effect of mineral matter content [J]. Fuel,2000,79(6):635-643.
    [84]Lizzio A A, Debarr J A. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char [J]. Fuel,1996,75(13):1515-1522.
    [85]Davini P. Adsorption of sulphur dioxide on thermally treated active carbon [J]. Fuel, 1989,68:145-148.
    [86]刘昌见,李荫重,李文华.改性半焦烟气脱硫的机理研究[J].环境化学,1999,18(4):309-314.
    [87]张守玉,朱廷钰,杨之媛,等.煤制活性焦用于脱除烟道气中的SO2[J].燃烧科学与技术,2002,8(1):38-43.
    [88]Wigmans T. Industrial aspects of production and use of activated carbons [J]. Carbon, 1989,27(1):13-22.
    [89]Davini P. Adsorption and desorption of SO2 on active carbon:the effect of surface basic groups [J]. Carbon,1990,28(4):565-571.
    [90]Zhao X S, Cai G Y, Wang Z Z. Influences of surface functional groups on catalytic activity over activated carbon catalysts for sulfur dioxide removal from flue gases [J]. Applied Catalysis B:Environmental,1994,3(4):229-238.
    [91]赵修松,蔡光宇,王作周,等.活性炭催化剂上SO2转化活性中心的研究[J].环境化学,1993,12(3):194-199.
    [92]史丽红.丙酮回收用活性炭吸附性能研究[D].南京:南京工业大学,2004.
    [93]程振民,蒋正兴,袁渭康.活性炭表面S02的催化氧化三相反应动力学[J].华东理工大学学报,1997,23(1):7-13.
    [94]霍玉龙.水溶液液滴吸收二氧化硫之研究[D].台湾:国立台湾大学,1991.
    [95]孙金栋,陈欣,鲁国丽.烟气冷凝中SO2行为过程分析及实验研究[J].北京建筑 工程学院学报,2003,19(3):12-15.
    [96]齐翠翠,刘桂建,陈怡伟,高连芬.煤中硫矿物及其在酸洗前后的变化[J].环境化学,2007,26(4):547-548.
    [97]Lisovakii A, Semiat R, Aharoni C. Adsorption of sulfur dioxide by active carbon treated by nitric acid:I. Effect of the treatment on adsorption of SO2 and extractability of the acid formed [J]. Carbon,1997,35(10-11):1639-1643.
    [98]Lisovakii A, Shter G, Semiat R, et al. Adsorption of sulfur dioxide by active carbon treated by nitric acid:II. Effect of preheating on the adsorption properties [J]. Carbon, 1997,35(10-11):1645-1648.
    [99]Vinke P, Van Der Eijk M, Verbree E. Modification of the surfaces of a gas activated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia [J]. Carbon,1994,32(4):675-686.
    [100]Muniz J, Herrero J, Fuertes A. Treatments to enhance the SO2 capture by activated carbon fibers [J]. Applied Catalysis B:Environmental,1998,18(1-2):171-179.
    [101]Brazhnyk D V, Zaitsev Y P, Bacherikova I V, et al. Oxidation of H2S on activated carbon KAU and influence of the surface state [J]. Applied Catalysis B: Environmental,2007,70(1-4):557-566.
    [102]上官炬,杨直,苗茂谦.硝酸改性褐煤半焦制备烟气脱硫剂[J].太原理工大学学报,2007,38(3):229-232.
    [103]黄伟,孙盛凯,李玉杰,等.硝酸改性处理对活性炭性能的影响[J].生物质化学工程,2006,40(6):17-21.
    [104]吴开金,官新宇,官九红,等.硝酸改性对活性炭吸附性能的影响[J].福建林业科技,2009,36(5):35-37.
    [105]宋建刚,岳东北,聂永丰.硝酸改性活性炭对渗滤液中小分子有机物的吸附性能[J].环境化学,2009,28(6):788-791.
    [106]张永奇,房倚天,黄戒介,等.活性焦孔结构及表面性质对脱除烟气中S02的影响[J].燃烧科学与技术,2004,10(2):160-164.
    [107]贾建国,李闯,朱春来,等.活性炭的硝酸表面改性及其吸附性能[J].炭素技术,2009,28(6):11-15.
    [108]廖欣峰.负载添加剂型活性炭脱有机硫的评价[J].环境污染与防治,1999,21:34-35.
    [109]陈军辉.新型炭法烟气脱硫过程动力学研究[D].成都:四川大学,2004.
    [110]赵修松,蔡光宇,王作周,等.消除烟道气中二氧化硫的活性炭催化剂-802在催化剂上动态吸附研究[J].环境科学,1992,13(5):67-70.
    [111]程振民,蒋正兴.袁渭康.活性炭脱硫研究(Ⅰ)S02-N2-02体系中SO2的氧化反应动力学[J].环境科学学报,1997,17(3):268-272.
    [112]程振民,蒋正兴,袁渭康.活性炭脱硫研究(Ⅱ)水蒸气存在下802的氧化反应机理[J].环境科学学报,1997,17(3):273-277.
    [113]高继贤,王铁峰,王金福.S02体积分数对ZL50活性炭吸附脱硫行为的影响和动力学分析[J].环境科学,2010,31(5):1152-1159.
    [114]高继贤,王铁峰,王光润,等.烟气水蒸气含量对变温吸附烟气脱硫过程的影响[J].过程工程学报,2009,9(1):18-22.
    [115]Lisovskii A, Semiat R, Aharoni C. Adsorption of sulfur dioxide by active carbon treated by nitric acid:Effect of the treatment on adsorption of SO2 and extractability of the acid formed [J]. Carbon,1997,35(11):1639-1643.
    [116]Lizzio A A. DeBarr J A. Mechanism of SO2 removal by carbon [J]. Energy and Fuels, 1997,11(2):284-291.
    [117]Mochida I, Korai Y, Shirahama M, et al. Removal of SOX and NOx over activated carbon fibres [J]. Carbon,2000,38(2):227-239.
    [118]Mochida I, Kuroda K, Kawano S, et al. Kinetic study of the continuous removal of SOx on polyacry lonitrile-based ACF [J]. Fuel,1997,76(6):533-541.
    [119]Zawadzki J. Infrared studies of SO2 on carbon-Ⅱ:The SO2 species adsorbed on carbon films [J]. Carbon,1987,25(4):495-502.
    [120]张俊.活性焦烟气脱硫的实验研究[D].南京:南京理工大学,2008.
    [121]张斌.活性焦联合脱除802和Hg的实验研究[D].南京:南京师范大学,2011.
    [122]艾小冬1stOpt在结构优化设计中的应用[J].建筑技术开发,2007,(5):4-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700