用户名: 密码: 验证码:
改性活性炭纤维脱除低浓度羰基硫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯的羰基硫(又称氧硫化碳,Carbonyl Sulfide,COS)是一种无色无味的气体,而且易燃易爆,它的存在容易腐蚀设备,污染空气,它还会生成硫化氢而产生具有臭鸡蛋气味的恶臭气体对人的身心健康造成威胁等。它普遍存在的浓度虽然很低,但却很难脱除,而且对它的脱除量也很有限,所以脱除低浓度羰基硫是很具有实际意义的。
     本论文根据本课题的背景用活性炭纤维(Activated Carbon Fibre,ACF)作为脱硫剂,从三个不同角度对活性炭纤维脱除低浓度的羰基硫进行了深入的研究,其主要内容如下:
     1.过渡金属改性ACF脱除低浓度COS的研究
     研究了Co~(2+)、Ni~(2+)、Fe~(3+)、Cu~(2+)、Zn~(2+)等过渡金属离子浸渍改性活性炭纤维脱除COS的性能。考察了改性离子的种类、含量、原料气的伴生组分、反应气氛、反应相对湿度和温度对脱硫性能的影响。结果表明:与空白ACF相比,过渡金属离子改性ACF可以有效地提高了活性炭纤维的硫容量。其中,用Co~(2+)改性ACF的脱硫效果优于其它金属离子改性的ACF。并根据实验结果推测了过渡金属离子在活性炭纤维上脱除COS的吸附反应机理。
     2.用ACF同时脱除二氧化碳中COS与H_2S的研究
     考察了用NaOH、KOH、Na_2CO_3、K_2CO_3和Fe~(3+)、Co~(2+)等对ACF进行改性,并分别对脱除COS和H_2S的性能进行了测试。考察的重点主要是以N_2和CO_2为稀释气,对改性离子的种类、含量、反应气氛和吸附温度等的脱硫性能进行研究,而且还考察了在COS和H_2S同时存在的情况下ACF脱除COS和H_2S性能。结果表明:碱改性ACF比空白ACF脱除效果好,过渡金属离子改性ACF与碱改性ACF相比可以有效地提高了活性炭纤维的硫容量。其中,用Co~(2+)改性ACF能同时提高脱除COS和H_2S的效果。
     3.用改性ACF脱除低浓度COS再生方法的研究
     分别用溶剂再生和气体热再生的方法对脱低浓度COS失活后的改性ACF进行再生。考察了再生后改性ACF的脱硫性能,主要研究再生时间、再生温度等因素对ACF再生效果的影响。实验结果表明:溶剂再生和气体热再生都是有效果。其中,溶剂法中用水再生效果较好;气体热再生中用N_2再生效果较好。
Pure carbonyl sulfide(COS) is a kind of gas without odor and color. It even combusts and explodes easily and experiment are likely to be eroded by it so that the pipelines are often blocked. Tail gas and other gases containing it would pollute the air terribly and it can transform a kind of mephitic gas hydrogen sulfide with rotten-eggs odor which is harm to humans. Although its concentration is lower, it can't be removed easily. Thus, to remove low concentration COS is an important issue.
     On the basis of background of this paper, three aspects about how to remove low concentration COS with ACF have been studied. The main contents were listed as follows:
     1. A study of removal of low concentration COS by using modified ACF containing transitional metals
     The activated carbon fibres were modified with some transitional metal ions such as Co~(2+), Ni~(2+), Fe~(3+), Cu~(2+), Zn~(2+) by the impregnation method. Some factors which maybe affect the performance of removing carbonyl sulfide such as the kinds and the concentration of transitional metal ions, the components of feed gas, condition of reaction, relative humidity and the temperature were investigated on the fixed-bed reactor. It was showed that the activated carbon fibres modified with Co~(2+) had a higher sulfur capacity than the others. And the mechanism of removal carbonyl sulfide with transitional metal ions was deduced.
     2. The research of simultaneous removing COS and H_2S using ACF in feedstock of CO_2
     The activated carbon fibres were modified with some alkali and ions such as NaOH、KOH、Na_2CO_3、K_2CO_3 and Co~(2+)、Fe~(3+) by the impregnation method and some factors which maybe affect the performance of removing COS and H_2S such as the kinds and the concentration of alkali and metal ions, the components of feed gas, and the temperature of reaction were investigated on the fixed-bed reactor. It was showed that the modified activated carbon fibres had a higher sulfur capacity than the activated carbon fibres modified with alkali and the activated carbon fibres modified with metal ion had a higher sulfur capacity than other modified activated carbon fibres. In addition, the activated carbon fibres modified with Co~(2+) had a better impact of simultaneous removal of COS and H_2S than the others.
     3. A study of regeneration method for ACF modified using removing low concentration COS
     Activated carbon fibre used by removing low concentration COS were regenerated with solvent method and gas method respectively. During the course of regeneration, the effects of some factors which include the regeneration time and temperature were studied through investigating the performance of desulfuration of regenerated ACF. It was showed that solvent regeneration method and gas regeneration method were all effective regeneration methods. The regeneration method of water has better effective in solvent regeneration method and the regeneration method of nitrogen gas has better effective in gas regeneration method.
引文
[1] R. Quinn, T. A. Dahl, B. A. Toseland. An evaluation of synthesis gas contanminants as methanol synthesis catalyst poisons[J]. Applied Catalysis A, 2004, 5: 61-68.
    [2] Andrew R. Bartholomaeus, Victoria S. Haritos. Review of the toxicology of carbonyl sulfide, a new grain fumigant[J]. Food and Chemical Toxicology, 2005, 6(43): 1687-1701.
    [3] Standard Oil(Indiana), Sugar Creek, Missouri. The chemistry of carbonyl sulfide[J]. Robert. J. Ferm, 1957. 2: 621-640.
    [4] 孙福楠,冯庆祥,吴江红.高纯羰基硫的生产[J].低温与特气,2004,22(3):32-34.
    [5] 卡尔L.约斯.Matheson气体数据手册[M].陶鹏万,黄建彬,朱大方等,译.北京:化学工业出版社,2001:155-157.
    [6] 中国科学技术情报研究所重庆分所.国内气体脱硫新技术[C].重庆:科学技术文献出版社重庆分社,1978。
    [7] Rhodes C, Riddel S A, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review [J]. Catalysis Today, 2000, 59: 443-464.
    [8] Yasuaki Okamoto, Keiji Ochiai, Masatoshi Kawano et al. Evaluation of the maximum potential activity of Co-Mo/Al_2O_3 catalysts for hydrodesulfurization[J]. J. Catalysis. 2004, (222): 143-151.
    [9] 杜彩霞.有机硫加氢转化催化剂的使用[J].工业催化.2003,9:13-17.
    [10] 李新学,刘迎新,魏雄辉.羰基硫脱除技术[J].现代化工.2004,8:19-22.
    [11] 刘润静,张成芳,钦淑均等.羰基硫在氢氧化钠水溶液中的水解动力学[J].化工学报,1992,43(2):165-171.
    [12] 梁美生,李春虎,郭汉贤等.低温条件下羰基硫催化水解反应本征动力学的研究[J].催化学报.2002.7:357-362.
    [13] 李建伟.γ-Al_2O_3催化剂上羰基硫水解反应本征及宏观动力学研究[J].化学反应工程与工艺,1993,9(1):108-113.
    [14] Rhodes C, Riddel S A, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review [J]. Catalysis Today. 2000, 59: 443-464.
    [15] John West, B. Peter Williams, Nicola Young et al. Ni-and Zn-promotion of γ-Al_2O_3 for the hydrolysis of COS under mild conditions[J]. Catelysis Communications. 2001, 5: 135-138.
    [16] 高志华,阴丽华,李春虎等.纳米α-FeOOH催化剂一段法脱除COS和H_2S性能的研究[J].燃料化学学报.2003,6:249-253.
    [17] 张青林,郭汉贤.羰基硫水解催化剂的中毒特征及其机理[J].催化学报,1988,9(2):131-137.
    [18] 梁美生,李春虎,郭汉贤等.红外光谱法COS水解催化剂氧中毒行为的研究[J].燃料化学学报.2002.7:357-362。
    [19] 梁美生,李春虎,郭汉贤等.低温条件下二氧化碳存在时羰基硫催化水解本征动力学[J].燃料化学学报.2003,4:149-155。
    [20] Gudmund Hinderaker, Orville C. SandalL. Absorption of carbonyl sulfide in aqueous diethanolamine[J]. Chemical Engineering Science. 2000, 8(55): 5813-5818.
    [21] 许辉宗.“两气”脱硫装置脱除有机硫的溶剂配方研究[J].广州化工.2001,29(3):22-23.
    [22] FATIHA AMARARENE, CHAKIB BOUALLOU. Kinetics of Carbonyl Sulfide (COS) Absorption with Aqueous Solutions of Diethanolamine and Methyldiethanolamine[J]. Ind. Eng. Res. 2004, 43: 6136-6141.
    [23] Lee S C, Snodgrass M J, Park M K, et al. Kinetics of Removal of Carbonyl Sulfide by Aqueous Monoethanolamine[J]. Environ. Sci. Technol. 2001, 35(11): 2352-2357.
    [24] 魏雄辉.生化铁—碱溶液催化法气体脱硫方法.中国专利:CN1398659[P].2004.
    [25] 王胜利,王淑兰,萧新彝.SDS系列高效脱硫剂脱总硫的机理与处理效果[J].石化技术与应用.2004.9:346-352.
    [26] 梁丽彤.改性氧化铝基高浓度羰基硫水解催化剂研究[C].山西:太原理工大学,2005.
    [27] 张金昌,李学令,王树东等.改性活性炭低温脱除COS的实验研究[J].辽宁化工.1998,3:102-104.
    [28] Kinya Sakanishi, Zhiheng Wu, Akimitsu Mstsumura et al. Simultaneous removal of H_2S and COS using activated carbons and their supported catalysts[J]. Catalysis Today. 2005, 4: 94-100.
    [29] G. R. Millward, H. E. Evans, I. P. Jones et al. The influence of carbonyl sulphide on the inhibition of filamentary carbon deposition on stainless steel[J]. Materials and Corrosion. 2003, 54: 864-869.
    [30] Molina L T, Lamb J J, Molina M J. Temperature dependent UV adsorption crossections for carbonyl sulfide[J]. Geophys Res. Lett., 1981, 8: 1008-1011,
    [31] Strauss C E, Mcbane G C, Houston P L. The 157nm photodissociation of OCS[J]. J. Chem. Plays., 1989, 90: 5364-6372.
    [32] G. Nan, I. Burak And P. L. Houston. Photodissociation of OCS at 222nm. The triplet channel[J]. Chemical Physics Letters, 1993, 209: 383-389.
    [33] Hideki Katayanagi, Yuxiang Mo And Toshinori Suzuki. 223nm photodissociation of OCS. Two components in S(~1D_2) and S (~3P_2) channels[J]. Chemical Physics Letters. 1995, 247: 571-576.
    [34] Daren J. Burke, Tomas Vondrak, Stephen R. Meech. Photodesorption and. photochemical dynamics on roughened silver: Sulphur dioxide and carbonyl sulphide[J]. Surface Science. 2005, 585:123-133.
    [35] 吴洪波,王晓,陈建民.紫外光与大气气溶胶典型氧化物对COS氧化反应性能研究[J].中国科学B辑化学.2004,34(2):127~132.
    [36] 张峰,吴洪波,薛华欣等.羰基硫的光氧化反应研究[J].复旦学报(自然科学版).2003,6:319-323.
    [37] 潘循皙,董文博,张仁熙等.大气中紫外光作用下CS_2及COS的转化反应[J].化学世界.2002,增刊:94-96.
    [38] 曹雅秀,刘振宇,郑经堂.活性炭纤维及其吸附特性[J].炭素,1999,(2):20-23.
    [39] 贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1997.
    [40] 高强,季涛,王春梅.活性炭纤维的表面功能设计和控制(Ⅰ)[J].南通工学院学报(自然科学版),2003,2(3):15-19.
    [41] 岛田将庆.活性炭素织维[M].冬树社,1990,(13).
    [42] 持田動.活性炭素织维构造环境保全应用[J].炭素,1998,184:206-207.
    [43] Merraoui M, Aoshima M, Kaneko K. Microporesized distribution of activated carbon fiber using the density functional theory and other method [J]. Langmiur, 2000, 16(9): 4300-4304.
    [44] Mochida I, Korai Y, ShirhamaM, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon. 2000. 38(1): 227-239.
    [45] 胡晓敏,刘化章.活性炭纤维及其在催化中的应用[J].工业催化,2005,13(1):1-4.
    [46] 李永贵,蹇超,葛明桥等.活性炭纤维电热再生新方法[J].纺织学报.2007,28(2):5-7.
    [47] 立日英机,安部郁夫.活性炭应用技术(日)[M].高尚愚 译.南京:东南大学出版社,2002.
    [48] 贺福,赵建国,王润娥.中孔活性碳纤维及其吸附特性[J].高科技纤维与应用,1999,24(3):1-5.
    [49] 金子克美.表面性固体.活性炭素纤维构造物性[J].固体物理(日),1992,27(6):1-12.
    [50] Hafen JA, Mahapatra S, Wilkinson ECet al. Reversible cleavage and formation of thedioxygen O-O bond within a dicopper complex. Science, 1996, 272: 1397-400.
    [51] 中国科学技术情报研究所重庆分所,国外气体脱硫新技术(续集).科学技术文献出版社重庆分社出版,1979.
    [52] 刘守军,刘振宇.活性炭载金属脱硫剂的制备与筛选[J].煤炭转化,2000,23:53-58.
    [53] Jerzy Klinik, Teresa Grzybek. The influence of the addition of coalt, nickel, manganese and vanadium to active carbons on their efficiency in SO_2 removal from stack gases [J]. Fuel, 1992, 71: 1303-1308.
    [54] Teresa J. Bandosz. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures[J]. Journal of Colloid and Interface Science, 2002, 246: 1-20.
    [55] Chang, C H. Carbon, 1981, 175: 19.
    [56] Hafen JA, Mahapatra S, et al. [J] Reversible cleavage and formation of the dioxygen O-O bond within a dicopper complex, Science, 1996, 271: 1397-1400.
    [57] Shusen Wang, Desulfurizing agent derived from coal [J]. Carbon, 1992, 30:75-79.
    [58] 戴金星,胡见义,贾承造等.科学安全勘探开发高硫化氢天然气田的建议[J].石油勘探与开发,2004,31(2):1-4.
    [59] M.A. Ahmed, E. Garcia, L. Alonso et al. A MS, SEM-EDX and XRD study of Ti or Cu-doped zinc ferrites as regenerable sorbents for hot coal gas desuifurization[J]. Applied Surface Science, 2000, 156: 115-124.
    [60] 叶宁,毕业军.烟道气回收CO_2的工业应用[J].化学工程师,2005,(10):59-61.
    [61] 费维扬,艾宁,陈健.温室气体CO_2的捕集和分离——分离技术面临的挑战和机遇.化工进展,2005,24(1):1-4.
    [62] 枕戈.可雨生能源走进春天[J].中国石油化工,2006,3:28-29.
    [63] 聂春雷,孙钰.“十一五”能源发展的绿色走向[J].环境保护,2006,2:39-43.
    [64] 刘守新,王岩,张世润.活性炭再生技术研究[J].东北林业大学学报,2001,29(3):54-57.
    [65] Moses Coss P, Chang Yul Cha, Microwave regeneration of activated carbon used for removal of solvents from vented air[J]. Technical Paper, 2000, 50: 529-535.
    [66] 刘守新,张世润,孙承林.煤质活性炭的催化再生[J].催化学报,2003,24(5):355-358.
    [67] Huiping Zhang. Regeneration of exhausted activated carbon by electrochemical method[J]. Chemical Engineering Journal. 2003, 86: 81-85.
    [68] A. Lisovskii, R. Semiat, C.aharonia. Adsorption of sulfur dioxide by active carbon treated by nitric acid. I. Effect of the treatment on adsorption of SO_2 and extractability of the acid formed[J]. Carbon, 1997, 35: 1639-1643.
    [69] Shusen Wang. Desulfurizing agent derived from coal[J]. Carbon, 1992, 30: 75-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700