用户名: 密码: 验证码:
燃煤烟气脱硫脱氮一体化工艺及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石灰石-石膏湿法烟气脱硫工艺是目前技术最成熟、应用最广泛的脱硫工艺,在可预见的将来,典型的石灰石一石膏法仍将占据主要地位。而随着国家《火电厂大气污染物排放标准》的提高和《排污费征收使用管理条例》的实施,对氮氧化物的控制,必将提高到新的地位,因此,对石灰石-石膏湿法烟气脱硫工艺进行适当的改造使之同时具有脱氮能力,是今后脱氮技术研究的一个重点。加入添加剂后,使石灰石-石膏湿法烟气脱硫工艺同时具有脱氮能力,是本研究的重点内容。这既是国内外领先的研究内容,也是中国国电集团公司下达国电环境保护研究院的重点研究项目。本研究的全部试验研究在该研究院完成。
     研究从以下几个方面展开:
     1、收集和消化国外最新的脱氮技术和工艺,掌握世界上最新的脱氮技术;调研国内最新脱氮技术的研究内容和手段,摸清国内的脱氮现状;针对国内外的脱氮研究现状,制定适合我国火电厂现状的脱氮技术的研究重点和思路。
     2、通过小试,对数种添加剂进行初步筛选,得出尿素在脱氮过程中有着非常明显的作用。以此作为添加剂具有价廉、易得的优点,故将之定为进一步小试的添加剂。在进一步小试中,对吸收反应的pH值、吸收反应气液接触时间、吸收反应温度、烟气中NO_x的氧化度以及添加剂的加入量等因素进行优化,找出最佳的工艺条件,为下一阶段的中试打下基础。
     3、中试所使用的设备是国电环境保护研究院的简易湿法脱硫工艺试验装置,将该系统改造后用于脱硫脱氮一体化工艺试验。研究过程中,探索了尿素添加剂在湿法烟气脱硫脱氮吸收反应中的作用、特性、反应速率、反应机理以及各种工艺条件对脱硫脱氮效率的影响。结果表明:在简易湿法石灰石-石膏烟气脱硫系统的石灰石浆液中添加尿素后,其有着较好的脱氮能力。
     在简易湿法石灰石-石膏烟气同时脱硫脱氮工艺试验台上运用尿素作添加剂,按小试得出的最佳工艺条件进行试验,烟气中SO_2的脱除效率达到90%以上,NO_x的脱除效率可达到50%以上。
     4、在确认尿素具备脱氮能力后,又从热力学上对尿素作添加剂湿法烟气同时脱硫氮吸收反应的可行性和限度进行分析计算,结果表明:该吸收反应不仅是可行的,而且在通常情况下,有着非常高的脱氮效率。
     5、通过对反应产物的分析可知,如果排浆后的浓吸收液不进行强制氧化,反应后吸收液中含有大量的亚硫酸盐,这样生成的石膏副产品将无法使用。但通过曝气氧化处理后,有90%以上的亚硫酸根转化为硫酸根。经脱水分离,副产品石膏中的半水亚硫酸钙的含量非常低,对石膏的正常应用无任何影响。化学分析还表明,添加尿素后,添加剂对原工艺系统和副产品的影响皆可忽略。
     6、经济技术分析表明:尿素作添加剂湿法烟气同时脱硫脱氮工艺具有投资省、运行费用低、对原有的WFGD系统无不良影响,有着广阔的应用前景,其应用将会产生很好的经济效益,与同时投产WFGD和SCR系统相比,可节约大量的资金。
     7、通过对SO_2和NO_x吸收过程的分析可知,在尿素作添加剂石灰石-石膏湿法烟气同时
Wet limestone-gypsum FGD(flue gas desulfurization)technology is the maturest and most largely applied currently. In the foreseeable future, the typical limestone-gypsum way will be still dominant. With the raise of“The Exhausting Standard of the Air Contamination in the Power Plant”and the execution of“the Managing Ordinance of How to collecting and Using the draining Fee”, the control of NO_x will be more important. Therefore, it will be the main research to remove DeNox in the FGD process. It is also the main research point of the essay to add the additive to FGD process to remove DeNox. It is new both abroad and at home. It is largely invested by the China Guodian Group.
     The research has been developed in the following aspects:
     1. Collecting, digesting and mastering the latest DeNox technology around the world; researching the most advantaged DeNox technology in China; finding out the research highlight of the proper DeNox technology for the power plants in China according to the current situation.
     2. Comparing the effect of the different additives in DeNox process, Carbamide was proved to be most effective. Besides, it’s cheap and easily got. Optimizing the pH value during the absorbing reaction, liquid gas contact time, temperature, oxidizability of NO_x and the add-on of additive, finding out the best condition for the next test.
     3. The equipment in the next test is that for simple wet desulfurization and DeNox process with the capacity of 10000Nm3/h. The simulated flue gas comprises air, liquefacient SO_2 and NO. The gas enters the absorber ofπtype from the inlet duct,then goes down to the downstream reacting area and then goes up to the upstream reacting area. After being washing, it goes to the ME of two layers (the first layer on the upper reacting area while the second on the outlet duct). The clean stimulated gas is discharged through the ID fan. In the research, the effect, characteristic, reacting velocity, reacting principle of the carbamide in wet flue gas desulfurization process and the different effect of the various process conditions to the carbamide. It turns out that adding carbamide to the limestone slurry in simple limestone-gypsum FGD process could deprive NO_x. Under the best working condition with carbamide as the additive, the removal efficiency of SO_2 is higher than 90% and that of the NO_x is higher than 50%.
     The above mentioned research that carbamide is added to the limestone slurry as additive is the innovative way in the world.
     4.After confirming that carbamide could help remove NO_x, I have analyzed its feasibility according to thermodynamics theory and calculated its limitation. The conclusion is such absorbing reaction is feasible with very high DeNox efficiency.
     5. By analyzing the reaction product, I have found that there will be large quantity of sulfite in the reacted slurry without oxidizing forcedly the dense absorbing slurry. Then the byproduct of gypsum could not be used. Yet over 90% of SO_3~(2-) could be transformed to sulfite by being aerated. After dewatering separation, the content of calcium sulfitc in the gypsum is very small, which doesn’t effect the normal use of the gypsum. It’s also concluded that the effect of carbamide to the process system and byproduct could be neglected.
     6. Through analyzing from economy and technology, there will be low investment, low operation cost and no bad effect to the original WFGD system with carbamide as the additive for desulfurization and DeNox at the same time. Then it will be largely applied in
引文
[1]郝吉明,王书肖等编著.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001:1~24
    [2]朱法华,王圣等.火电 NOX 排放现状与预测及控制对策[J]. 能源环境保护,2004,18(1):1-5
    [3]王志轩,朱法华等编著.火电二氧化硫环境影响与控制对策[M].北京:中国环境科学出版社,2002:33-45
    [4]郝吉明,马广大等编著.大气污染控制工程(第 1 版)[M].北京:高等教育出版社,1989: 7-8,43-55
    [5]郑瑛.钙基脱硫的机理描述及炉内喷钙脱硫的研究[D] :[博士学位论文].武汉:华中理工大学,1998
    [6]魏学好 ,周浩.中国火力发电行业减排污染物的环境价值标准估算 [J].环境科学研究,2003,16⑴:53-56
    [7]王圣.大气污染物排放标准对中国国电集团火电厂的影响与对策[D]:[硕士学位论文].南京:南京信息工程大学,2005
    [8]国家环境保护总局和国家质量监督检验检疫总局. GB13223-2003《火电厂大气污染物排放标准》[S].北京: 中国环境科学出版社,2004
    [9]岑超平.同时脱硫脱氮处理是我国烟气治理的发展方向[J].环境保护,2001,⑿:17.
    [10]Streets D.G., Waldhoff S.T.. Present and Future Emission of Air Pollutants in China:SO2, NOX and CO2[J]. Atmospheric Environment, 2000,34⑶:363-374
    [11]童志权主编.工业废气净化与利用[M].北京:化学工业出版社,2001:297-314
    [12]郭东明.硫氮污染防治工程技术及其应用[M].北京:化学工业出版社,2001
    [13]钟秦编著.燃煤烟气脱硫脱氮技术及工程实例[M].北京:化学工业出版社,2002:284-287, 343-349
    [14]吴碧君.燃烧过程中氮氧化物的生成机理[J]. 电力环境保护,2003,19(4):9-12
    [15]王小明,薛建明等.国内外烟气脱硫技术的发展与现状[J].电力环境保护.2000,1:31-34
    [16]冯玲,杨景玲等.烟气脱硫技术的发展与应用现状[J].环境工程.1997,2:19-24
    [17]王金南,杨金田等.二氧化硫排放交易—美国的经验与中国的前景(第 1 版)[M].北京:中国环境科学出版社,2000:1-84
    [18]赵毅,李守信主编.有害气体控制工程[M].北京:化学工业出版社,2001
    [19]黄诗坚.增压流化床联合循环(PFBC)系统及其环保特性[J].电力环境保护,1998,14(2):6-12.
    [20]崔树建.整体煤气化燃气-蒸汽联合循环[M].北京:中国电力出版社,1996.
    [21]Stouffer M.R..Advanced Coolside Desulfurization Process. Environ. Progr., 1993,12(2):133.
    [22]单志峰,黄友明.国外烟气同步脱硫脱氮技术现状[J].冶金环境保护,1999,(4):40~45
    [23]陈继录.加拿大环境保护技术.国际电力[J],1999,(1):56~58
    [24]Judith Irene Shuckerow. Control of Air Toxin Particulate and Vapor Emissions after Coal Combustion Utilizing Calcium Magnesium Acetate[J]. Resouces, Conservation and Recycling,1996,⒃:15-69
    [25]Ekkehard Richter, Wolfgang Wunnenberg. Experiences with active coke processes forsimultaneous removal of SOX and NOX[J].US PB Rep.,1989,(4):229~246
    [26]王德荣 ,林彦奇等 .利用焦炭吸附进行燃煤烟气脱硫脱氮技术的研究 [J].环境保护科学,2002,28(2):4~6
    [27] Schoubye, P. Tops Φe SNOX Process Removes NOX and SO2 as Sulfuric Acid. Proc. Util. High Sulfur Coal Proc. Int.Conf. 2nd., 1989:875-880.
    [28]郑楚光主编.洁净煤技术[M].武汉:华中理工大学出版社,1996:295-355
    [29] J. T. Yeh. Integrated Testing of the NOXSO Process Simutaneous Removal of SO2 and NOX from Flue Gas. Chem. Eng. Comm.,1992,114:65-88.
    [30]Halsbeck J. L. Lifecycle Test of NOXSO Process: Simultaneous Removal of NOX & SO2 from Flue Gas. Proc.Annu.Int.Coal Conf.,1989,6th:319-329
    [31]邰国荣,韩宾兵.成都电子束烟气脱硫示范工程[J].中国电力,1998,(11): 42-47
    [32]Mendelsohn M H, Livengood C D. Stability Studys of Produced in Pilot Plant Testing Using Ferrous-EDTA and Magnesium Enhanced Lime for Sulfur-Dioxide/Nitrogen Oxides Removal [J]. Water, Air, and Soil Pollution, 1998,(101):105-121
    [33]Jerry J. Kaczur. Oxidation Chemistry of Chloric Acid in NOX/SO2 and Air Toxic Metal Removal from Gas Steams [J]. Environmental Progress, 1996,15(4): 245-253
    [34] Chang S G,Lee G C. LBL PhoSNOX Process for Combined Removal of SO2 and NOX from Flue Gas[J]. Environmental Progress, 1992,11(1): 663
    [35]Jordan M Haywood. The Economic Feasibility of Using Hydrogen Peroxide for the Enhanced Oxidation and Removal of Nitrogen Oxides from Coal Fired Power Plant Flue Gases[J]. Journal of The Air & Waste Management Association, 1998,(48):238-246
    [36]赵由才 ,徐迪民等 .钼硅酸化学吸收同时去除气流中的 SO2 和 NOX[J]. 同济大学学报,1995,23(4):403-406
    [37]Kiel J H A. Performance of silica-supported copper oxide sorbent for SO2/NOX removal from flue gases[J]。Applied catalysis B: Environmental,1992,1:13-39.
    [38]钟秦,吕喆等.可再生半胱氨酸亚铁溶液同时脱除 SO2 和 NOX[J]. 南京理工大学学报, 2000,24(5):468-472
    [39]RobertOhlms.DESONOX Process for Flue gas Cleaning.Catal.Today,1993,16:247-261.
    [40]S. Blumrich & B. Engler. The DESONOX/REDOX Process for Flue Gas Cleaning. Catal. Today, 1993,17:301-310.
    [41]季学李编著.大气污染控制工程[M].上海:同济大学出版社,1992.
    [42]徐维正.用尿素净化烟道气的新工艺[J].化工科技动态,1993,(3-4):43-47.
    [43]郭嘉 ,江睿等 .混煤燃烧过程中氮氧化物的生成规律及其计算机模拟 [J]. 电站系统工程,1994,10(2):44-47
    [44]国家环境保护总局《空气和废气监测分析方法》编委会编.空气降废气监测分析方法(第四版)[M].北京:中国环境科学出版社,2003:126-132
    [45]孙兰,胡毅志等.游泳池水中尿素的测定--二乙酰一肟-硫氨脉分光光度法[J].环境与健康杂志,1995,12(4):176-178
    [46]马双忱,赵毅等.采用杂多酸化合物溶液同时脱硫脱氮的实验研究[J]. 环境污染治理技术与设备.2003,3(3):47-50
    [47]赵毅,李守信主编.有害气体控制工程(第 1 版)[M].化学工业出版社,2001 年 136-141
    [48]岑超平.尿素添加剂湿法烟气同时脱硫脱氮研究[D]:[博士学位论文].广州:华南理工大学,2002
    [49] 岑 超 平 , 古 国 榜 . 尿 素 湿 法 烟 气 同 时 脱 硫 脱 氮 反 应 热 力 学 分 析 [J]. 环 境 科 学 与 技术,2004,27(5):7~8
    [50]天津大学物理化学教研室编.物理化学(上册)(第二版)[M].北京:高等教育出版社,1982:36~150
    [51]朱炳辰主编.化学反应工程[M].北京:化学工业出版社.2001:238
    [52]周律编著.环境工程技术经济和造价管理[M].北京:化学工业出版社,2001:96-128
    [53] F. Ruhland et al., The Kinetics of the Absorption of Sulfur Dioxide in Calcium Hydroxide Suspensions, Chem. Eng. Sci., 46(4), 939-947, 1991
    [54] G.H. Newton et al., Modeling the SO2-Slurry Droplet Reaction, AIChE J.,36(12), 1865-1872, 1990
    [55] J.K. Neathery,Model for Flue Gas Desulfurization in a Circulating Dry Scrubber, AICHEJ., 42(1), 259-268, 1996
    [56]10. H.迪特尼奥尔斯科戈,化工基本过程与设备,化学工业出版社,1988
    [57]J.M.史密斯著,化工动力学,化学工业出版社等,1988
    [58]姜信真等,气液反应理论与应用基础,烃加工出版社,1990
    [59]Ramachandran P.A., Sharma M. M., Absorption with the fast reaction in a slurry containing sparingly soluble fine particles. Chem. Eng. Sci. 1969,24:1681-1686
    [60]Bjerle I., Bengtsson S. and Frankviat K., Absorption of SO2 in CaCO3 slurry in a laminar jet absorber. Chem. Eng. Sci. 1972,27:1853-1861
    [61]Takeda T. et al. 12th fall meeting of the Society of Chem. Eng. Japan. Nagoya, 1976
    [62]Uchida S, Kolde K., shindo M.. Gas absorption with fast reaction into a slurry containing fine particles. Chem. Eng. Sci. 1975, 30:644-646
    [63]Uchida S., Wen C. Y.. Rate of gas absorption into a slurry accompanied by instantaneous reaction. Chem. Eng. Sci. 1977,32:1277-1281
    [64]Gary T. Rochelle, C. Judson King. The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 from waste gases. Ind. Eng. Chem. Fundam. 1977,16:67-75
    [65]Sada E., Kumazawa H. et al. Single and simultaneous absorption of lean SO2 snd NO2 into aqueous slurries of Ca(OH)2 or Mg(OH)2 particles. J. Chem. Eng. Japan, 1979, 12:111
    [66]Sada E., Kumazawa H. et al. Kinetics of absorption of lean sulphur dioxide into aqueous slurries of calcium carbonate and magnesium. Chem. Eng. Sci. 1981a,36:146
    [67]Sada E., Kumazawa H. et al. Desulfurization by limestone slurry with added magnesium sulfate. Chem. Eng. J. 1981b, 22:133
    [68]Sada E., Kumazawa H. et al. Absorption of dilute SO2 into aqueous slurries of CaSO3. Chem. Eng. Sci. 1982, 37:1432
    [69] Uchida S. and Ariga O.. Absorption of sulfur dioxide into limestone slurry in a stirred tank. Can. J. Chem. Eng. 1985, 63:778-783
    [70]Mehra, A.. Gas absorption in reactive slurries: particle dissolution near gas-liquid interface. Chem. Eng .Sci. 1996, 51:461-477
    [71]Lancia,A.; Musmarra, D. et al. SO2 absorption in a bubbling reactor using limestone suspensions. Chem. Eng. Sic.1994,49: 4523-4532.
    [72]Charlotte Brogren and Han T. Kalsson. The impart of the electrical potential gradient on limestone dissolution under wet flue gas desulfurization conditions. Chem. Eng. Sic. 1997, 52: 3101-3106
    [73]Gage, C .Limestone dissolution in modeling of slurry scrubbing for flue gas desulfurization. Ph. D. thesis, University of Texas, Austin, TX. 1989.
    [74]Agarwal, R. S. and Rochelle, G. T. Chemistry of limestone slurry scrubbing. Presented at the 1993 SO2 Control Symposium, Boston, MA.
    [75]Gerbec, M; Stergarsek, A.; Kocjancic, R. Simulation model of wet flue gas desulfurization plant. Comput. Chem. Eng. 1995,19,Suppl.,S283.
    [76]Charlotte Brogren and Han T.Karlsson. Modeling the absorption of SO2 in a spray scrubber using the penetration theory. Chem. Eng. Sci. 1997, 52:3085-3099.
    [77]Soren, Kiil; Michelsen and Kim Dam-Johansen. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant. Ind. Eng. Chem. Res. 1998, 37;2792-2806.
    [78]钟秦.湿法烟气脱硫的理论和实验研究( Ⅱ )—湿壁塔烟气脱硫模型(J).南京理工大学学报,1999,23(1):1~5
    [79]浙江大学普通化学教研组编.普通化学(第四版)[M].北京:高等教育出版社,1995:4~65.
    [80]吴颖海.循环流化床烟气脱硫模拟中试试验和理论研究[D] :[博士学位论文].南京:东南大学,2002.
    [81]D.R. Babu et al., Absorption of Sulfur Dioxide in Calcium Hydroxide Solutions, Ind. Eng. Chem. Fundam., 1984,23:370-373
    [82] G.H. Newton et al., Modeling the SO2-Slurry Droplet Reaction, AIChE J.,36(12), 1865-1872, 1990
    [83]J.K. Neathery,Model for Flue-Gas Desulfuization in a Circulating DryScrubber, AICHEJ., 42(1), 259-268, 1996
    [84]A.E. Rabe et al., Vapor Liquid Equilibrium Data for the Binary System[J].Sulfur Dioxide and Water, J. of Chem. Eng. Data, 8, 133-136, 196
    [85]S.R. Dantuluri et al., Mathematical Model of Sulfur Dioxide Absorption into aCalcium Hydroxide Slurry in a Spray Dryer, Sep. Sci. Tech., 25(13-15), 1843-1855, 1990
    [86]A.J.博尼科等著,气态污染物工业控制设备,化学工业出版社,198
    [87] 沈德树,甘海民明.以 CuO 为主活性组分同时脱硫脱硝催化剂的研究[J].湖南大学学报,1994(1):103-108.
    [88]刘谦,传递过程原理,高等教育出版社,1990.
    [89]Sherwood, T. K.; Pigford, R. L. and Wilke, C. R. Mass Transfer.McGraw-Hill,New York.
    [90]姚允斌,物理化学手册,上海科学技术出版社,1985,12.
    [91]W.Pasiuk-Bronikowska and K.J.Rudzinski.Absortion of SO2 into aqueous systems, Chem. Eng. Sci. 1991,46:2281-2291.
    [92]王德容.利用焦炭吸附进行燃煤烟气脱硫脱氮技术的研究 [J].环境保护科学,2002(2):4-6.
    [93]Yeh J T. Integrated testing of the NOXSO processsimutaneous removal of SO2 and NOx from flue gas[J]. Chemical Engineering Communications, 1992,114:65-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700