用户名: 密码: 验证码:
合成气制低碳醇碳化钼催化剂的研究及其对生态环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化石能源日益枯竭和环境污染日趋严重的今天,寻找绿色、清洁的替代能源迫在眉睫。利用生物质能源,开发“绿色燃料”——低碳醇燃料是解决该问题的主要途径之一。由生物质制备合成气用于合成低碳醇燃料在经济和技术方面都具有潜在的优势,有巨大的应用前景。然而如何提高合成气制低碳醇反应活性、减少尾气中CH4和C02的排放以及降低反应过程中的能耗是未来合成气制低碳醇反应实现工业化需要解决的问题。因此合成具有高活性和高选择性的合成气制低碳醇催化剂就成为解决问题的首要因素。研究表明碳化钼催化剂在合成气制低碳醇反应中具有较高的C2+OH选择性,是一类非常有前景的催化剂。
     本文制备了负载型碳化钼催化剂,对其合成气制低碳醇反应的催化活性、尾气中CH4和CO2的排放量进行综合评价。以具有三维笼状结构的介孔分子筛SBA-16为载体,通过等体积浸渍将活性组分负载到载体上,制备了一系列Ni-β-Mo2C-K/SBA-16催化剂。通过XRD、TEM及比表面积等测试手段,对催化剂物相、孔结构和活性成分等进行分析,重点讨论载体、助剂与催化剂结构、性能之间的关系,探讨影响催化剂反应性能的因素。
     实验发现,反应温度对催化活性的影响最明显,升高反应温度可以提高CO转化率、C2+OH选择性和时空产率,但是总醇选择性会降低;反应压力对催化性能的影响最小,在一定范围内改变压力对反应活性几乎没有影响;空速对反应的影响介于温度和压力之间,提高空速可以增加总醇选择性,但CO转化率和C2+OH选择性会降低。助剂Ni含量过低会降低C2+OH选择性,而过高会生成烃类化合物,因此在负载型碳化钼催化剂中Ni/Mo的物质量之比在1/8时反应活性最好。K助剂对总醇选择性和C2+OH选择性有影响。在负载型碳化钼催化剂中K/Mo的摩尔比在3/10时CO转化率、总醇选择性和C2+OH选择性最高。增加Mo含量,CO转化率、总醇选择性、C2+OH选择性和时空产率都会提高。当Mo负载量30%、Ni/Mo=1/8、K/Mo=3/10时,负载型催化剂Ni-β-Mo2C-K/SBA-16的活性最佳。通过催化反应发现具有三维笼状孔道且含有较大孔径的SBA-16介孔材料能够促进催化反应、提高CO转化率、总醇选择性和C2+OH选择性。
     将负载型双金属碳化钼催化剂应用于CH4/CO2催化重整反应,模拟了合成气制低碳醇反应装置与CH4/CO2催化重整反应装置耦合的生产模式,摸索合成气制低碳醇反应装置与CH4/CO2催化重整装置耦合的经验。
It is very urgent for looking green and clean alternative energy with the depletion of fossil energy and environmental pollution. Using biomass energy to developing "green fuel"—alcohol fuel is one of the main ways to solve the problem. It has potential advantage and great prospect on economic and technical aspects that synthesis gas preparation from biomass for alcohol fuel. How to improve the syngas to alcohol reaction activity, reduce exhaust of CH4and CO2as well as energy consumption in the process of syngas to alcohol are urgent problems for future industrialization. A key solution for solving the problem is to develop the syngas to alcohol catalyst with high activity and high selectivity. It is evident from the recent research that the β-Mo2C-based catalysts are with high C2+OH selectivity and thus the most promising catalysts for higher alcohol synthesis.
     In this paper we prepared supported molybdenum carbide catalysts. The comprehensive evaluation of the catalysts such as syngas to alcohol activity, emissions of CH4and CO2is presented and discussed.3D cage-like structure of mesoporous molecular sieve SBA-16as the carrier, prepared a series of Ni-β-Mo2C-K/SBA-16catalysts by impregnation method. The N2adsorption-desorption isotherms, XRD, TEM measurements were used to characterize the phase, pore structure, element distribution and active sites of the catalysts.
     We found that the influence of the reaction temperature on the catalytic activity is the most obvious, elevated reaction temperature may increase the rate of CO conversion, C2+OH selectivity and space time yield, but would reduce total alcohol selectivity at the same time. Reaction pressure is minimal effect on the catalytic performance; the pressure is changed within a certain range, almost no influence on the reaction activity. Space velocity range between temperature and pressure effect on the reaction, increasing the space velocity could promote the selectivity of the total alcohol with reducing the CO conversion and C2+OH selectivity. Low Ni content will reduce the C2+OH selectivity, and will generate the hydrocarbon compound with high contents. Therefore, the mass ratio of Ni/Mo=1/8in supported molybdenum carbide catalyst has the highest reactivity. Metal K affects the total alcohol selectivity and C2+OH selectivity. The CO conversion, total alcohol selectivity and C2+OH selectivity are high when K/Mo molar ratio of3/10. The CO conversion rate, the total alcohol selectivity, C2+OH selectivity and space-time yield improved with increasing the Mo content. When the the Mo loading amount30%, Ni/Mo=1/8, K/Mo=3/10, the activity of the supported catalyst Ni-β-Mo2C-K/SBA-16has the best performence. By catalytic reaction, having a3D cage-like pore and containing the larger aperture of the SBA-16mesoporous material can contribute to the catalytic reaction, which could enhance the rate of CO conversion, and total alcohol selectivity and C2+OH selectivity.
     The supported bimetallic molybdenum carbide catalyst is applied in CH4/CO2reforming reaction, and a production mode was simulated by coupling of the alcohol from syngas device with CH4/CO2reforming unit.
引文
[1]中华人民共和国2011年国民经济和社会发展统计公报.北京:国家统计局,2012
    [2]白凤华.费托合成反应的催化剂制备和性能研究及其对生态环境的影响[D].呼和浩特:内蒙古大学,2008
    [3]孙清.燃料乙醇的应用[J].可再生能源,2010,28(6):151-153
    [4]李文怀,马玉刚,张侃,等.煤基合成气合成低碳醇进展[J].煤化工,2003,10(8):12-15
    [5]米泉龄,王瑞婷,张雪静.生物质能的开发与利用[J].林产工业,2010,37(4):51-53
    [6]雷学军,罗梅健.生物质能转化技术及资源综合开发利用研究[J].中国能源,2010,13(1):22-29
    [7]林宗虎.生物质能的利用现况及展望[J].自然杂志,2010,32(4):196-201
    [8]Kirubakaran V., Sivaramakrishnan V., Nalini R., etc. A review on gasifieation of biomass[J]. Renewable and Sustainable Energy Reviews,2009,13:179-186
    [9]张宝芝,李华锋,翟军峰.开发生物质能源实现可持续发展[J].农村生态环境保护,2008,22:10-11
    [10]陈曦,韩志群,孔繁华,等.生物质能源的开发与利用[J].化学进展,2007,19:1091-1097
    [11]骆仲涣,张冀强,姚向军.中国生物质能利用技术评价[J].中国能源,2004,26(9):39-42
    [12]赵军,王述洋.我国生物质能资源与利用[J].太阳能学报,2008,29(1):90-93
    [13]田贺忠,赵丹,王艳.中国生物质燃烧大气污染物排放清单[J].环境科学学报,2011,31(2):349-357
    [14]张纪庄.生物质能利用方式的分析比较[J].新能源及工艺,2003,2:23-25
    [15]吴根,白丽梅,于洋,等.生物质转化能源技术的发展现状及趋势探讨[J].环境科学与管理,2008,33(1):166-168
    [16]Rakass S, Oudghiri H, Rowntree P, etc. Steam reforming of methane over unsupported nickel catalysts[J]. Journal of Power Sources,2006,158:485-496
    [17]Jin R., Chen Y., Li W., etc, Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst[J]. Applied Catalysis A:General,2000,201:71-80
    [18]Fukada S., Shigeki O. Partial oxidation of methane in permeable Ni tube for effective hydrogen production[J]. Separation science and technology,2007,42:73-87
    [19]Stagg-Williams S.M., Noronha E.B., Fendley G, etc. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides[J]. Journal of Catalysis,2000,194:240-249
    [20]郝世雄,余祖孝,刘兴勇.甲烷二氧化碳催化重整制合成气研究进展[J].化学世界,2010(5):314-318
    [21]陈雅琳,高吉喜,李咏红.中国化石能源以生物质能源替代的潜力及环境效应研究[J].中国环境科学,2010,30(10):1425-1431
    [22]计军平,马晓明.中国温室气体排放增长的结构分解分析[J].中国环境科学,2011,31(12):2076-2082
    [23]Aritomo Y., Enrique I. Catalytic activation and reforming of methane on supported palladium clusters[J]. Journal of Catalysis,2010,274:52-63
    [24]黄金煌.农业生物质能源发展现状及建议[J].能源与环境,2008,4:76-77
    [25]蒋钧.沼气是人类可持续发展的最佳能源[J].可再生能源,2007(6):51-52
    [26]Hamelinck C. N., Fannij APC. Future prospects for production of methanol and hydrogen from biomass[J], Power Sources,2002,111 (1):1-22
    [27]Chmielniak T., Scizko M. Co-gasification of biomass and coal for methanol synthesis[J]. Applied Energy,2003,74(3/4):393-403
    [28]Tijmensen M,J.A., Fannij APC, Hamelinck C.N., etc. Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification[J]. Biomass Bioenergy, 2002,23(2):129-152
    [29]Lv P. M., Yuan Z. H., Wu C. Z., etc. Bio-syngas production from biomass catalytic gasification [J]. Energy Conversion and Management,2007,48:1132-1139
    [30]Wang T. J., Chang J., Lv P. M. Synthesis gas production via biomass catalytic gasification with addition of biogas [J]. Energy & Fuels,2005,19(2):637-644
    [31]陈桂芳,马春元,陈守燕,等.超临界水气化生物质技术研究进展[J].化工进展,2010,29(1):45-50
    [32]涂军令,应浩,李琳娜.生物质制备合成气技术研究现状与展望[J].林产化学与工业,2011,31(6):112-118
    [33]郎宝,李秀金,季生福.镧助剂对模拟生物沼气重整制备合成气中Ni/SBA-15催化剂结构和性能的影响[J].物理化学学报,2009,25(8):1611-1617
    [34]Aritomo Yamaguchi, Enrique Iglesia. Catalytic activation and reforming of methane on supported palladium clusters[J]. Journal of Catalysis,2010,274:52-63
    [35]陈洋庆,李白滔.甲烷二氧化碳重整反应中催化剂的抗积炭性能研究进展[J].石油与天 然气化工,2009,38(1):20-24
    [36]Taro Hirose., Yasushi Ozawa., Masatoshi Nagai. Preparation of a nickel molybdenum carbide catalyst and its activity in the dry reforming of methane[J]. Chinese Journal of Catalysis,2011,32: 771-776.
    [37]Modell M. Gasification and liquefaction of forest production supercritical water. In Fundamentals of Thermochemical Biomass[A]. London:Applied Science Publisher[C].1985: 95-119.
    [38]Osada M., Sato O., Watanabe M., etc. Water density effect on lignin gasification over supported noble metal catalysts in supercritical water[J]. Energy & Fuels,2006,20:930-935
    [39]Kruse A., Henningsen T., Smag A., etc. Biomass gasification in supercritical water:influence of the dry matter content and the formation of phenols[J]. Industrial & Engineering Chemistry Research,2003,42:3711-3717
    [40]齐会杰,李文怀,孙予罕.低碳混合醇作为燃料和燃料添加剂的应用[C].中国石油学会天然气化工利用第六次研讨会论文集,成都:中国石油学会,2004:25-27
    [41]李德宝,马玉刚,齐会杰等.CO加氢合成低碳混合醇催化体系研究新进展[J].化学进展,2004,16(4):584-592
    [42]Subramani V, Gangwal S. K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy & Fuels,2008,22 (2):814-839
    [43]Vahid M., Mohammad H. P. Synthesis of C1-C6 alcohols over copper/cobalt catalysts investigation of the influence of preparative procedures on the activity and selectivity of Cu-Co2O3/ZnO, A12O3 catalyst[J]. Catalysis Communications,2006,7:542-549
    [44]Xu R., Yang C, Wei W., etc. Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas [J], Journal of Molecular Catalysis A:Chemistry,2004,221:51-58.
    [45]Davis B.H. Fischer-Tropsch synthesis:overview of reactor development and future potentialities [J]. Topics in Catalysis,2005,32:143-168
    [46]Dry M. E. High quality diesel via the Fischer-Tropsch process-a review[J]. Journal of Chemical Technology and Biotechnology,2002,77:43-50
    [47]Sugier A., Freund E., Page J. L. Production of alcohols from synthesis gases[P]. U.S. Patent No.4,346,179, August 1982
    [48]Nguyen Tien-Thao, M. Hassan Zahedi-Niaki, Houshang Alamdari, etc. Effect of alkali additives over nanocrystalline Co-Cu-based perovskitcs as catalysts for higher-alcohol synthesis[J]. Journal of Catalysis,2007,245:348-357
    [49]Courty P., Durand D., Forestiere A., etc. Process of use of a catalyst for synthesizing saturated primary aliphatic alcohols[P]. U.S. Patent No.4,675,343, June 1987
    [50]Mohammad A., Haider., Makarand R., Gogate, Robert J. Davis. Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol [J]. Journal of Catalysis,2009,261:9-16
    [51]Jiao Guiping, Ding Yunjie, Zhu Hejun, etc. Effect of the reduction temperature of Co-La-Zr/AC on the synthesis of higher alcohols from syngas[J]. Chinese Journal of Catalysis, 2009,30(2):92-94
    [52]Yunlai Su., Yingli Wang., Zhongmin Liu. Preparation and characterization of ultrafine Fe-Cu-based catalysts for CO hydrogenation[J]. Journal of Natural Gas Chemistry,2008,17: 327-331
    [53]Spath P. L., Dayton D. C. Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas[C]. NREL/TP-510-34929,2003
    [54]Herman R. G. Advances in catalytic synthesis and utilization of higher alcohols[J]. Catalysis Today,2000,55:233-237.
    [55]Christensen J. M., Mortensen P.M.,Trane R., etc. Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide[J]. Applied Catalysis A:General,2009,366:29-43
    [56]Venkateswara R.S., Ajay K.D., Janusz K.Deactivation studies of alkali-promoted trimetallic Co-Rh-Mo sulfide catalysts for higher alcohols synthesis from synthesis gas[J]. Energy Fuels,2011, 25 (2):580-590
    [57]Venkateswara R. S.,Ajay K. D., Janusz K. Intrinsic reaction kinetics of higher alcohol synthesis from synthesis gas over a sulfided alkali-promoted Co-Rh-Mo trimetallic catalyst supported on multiwalled carbon nanotubes (MWCNTs)[J]. Energy Fuels,2010,24 (8):4130-4137
    [58]Li D. B., Yang C., Zhao N., etc. The performances of higher alcohol synthesis over nickel modified K2CO3/MoS2 catalyst[J]. Fuel Processing Technology,2007,88:125-127
    [59]Iranmahboob J., Toghiani H., Hill D. O. Dispersion of alkali on the surface of Co-MoS2/clay catalyst:A comparison of K and Cs as a promoter for synthesis of alcohol[J]. Applied Catalysis A: General,2003,247:207-218
    [60]Bao J., Fu Y. L., Sun Z. H., etc. A highly active K-Co-Mo/C catalyst for mixed alcohol synthesis from CO+H2[J]. Chemical Communication,2003,6:746-747
    [61]Xiang M. L., Li D. B., Sun Y. H. Synthesis of higher alcohols from syngas over K/Co/β-Mo2C catalysts[J]. Catalysis Communication,2007,8:503-507
    [62]向明林,李德宝,肖海成.K改性β-Mo2C催化剂CO加氢合成低碳混合醇的研究[J].燃料化学学报,2006,34(2):202-204
    [63]Kinkade N.E. Process for producing alcohols from carbon monoxide and hydrogen using an alkali-molybdenum sulfide catalyst[P]. PCT Int. Pat. Publication No. WO 85/03073, July 1985.
    [64]Smith K. J., Herman R. G., Klier K.. Kinetic modelling of higher alcohol synthesis over alkali-promoted Cu/ZnO and MoS2 catalysts[J]. Chemical Engineering Science,1990,45(8): 2639-2646
    [65]Fang K. G., Li D. B., Lin M. G., etc. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catalysis Today,2009,147(2):133-138
    [66]Stevens R. R. Process for producing alcohols from synthesis gas[P]. U.S. Patent No.4,882, 360, November 1989
    [67]Wu Xiao-man, Guo Yan-yan, Zhou Jin-mei, etc. Co-decorated carbon nanotubes as a promoter of Co-Mo-K oxide catalyst for synthesis of higher alcohols from syngas[J]. Applied Catalysis A: General,2008,340:87-97
    [68]Zhang Y., Sun Y., Zhong B. Synthesis of higher alcohols from syngas over ultrafine Mo-Co-K catalysts [J]. Catalysis Letters,2001,76:249-253
    [69]Levy R. L.; Boudart M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis[J]. Science,1973,181:547
    [70]向永生,赵旭涛,马建泰,等.碳化钼催化剂研究进展[J].分子催化,2009,23(3):282-290
    [71]胡林华.介孔分子筛SBA-15组装碳化钨催化剂的制备、表征及催化性能研究[D].北京:北京化工大学,2007
    [72]闻振乾,赵建平,符剑刚,等.含钼催化剂的应用与前景[J].稀有金属与硬质合金,2009,37(2):50-54
    [73]Nagai M., Oshikawa K., Kurakami T.,etc. Surface properties of carbided molybdena-alumina and its activity for CO2 hydrogenation[J]. Journal of Catalysis,1998,180:14-23
    [74]Dai-Viet N. Vo, Adesoji A. Adesina. Fischer-Tropsch synthesis over alumina-supported molybdenum carbide catalyst [J], Applied Catalysis A:General,2011,399:221-232
    [75]Taro Hirose, Yasushi Ozawa, Masatoshi Nagai. Preparation of a nickel molybdenum carbide catalyst and its activity in the dry reforming of methane[J]. Chinese Journal of Catalysis,2011,32: 771-776
    [76]Zhao Lihong, Fang Kegong, Sun Yuhan, etc. Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation[J]. Catalysis Today,2010,158:490-495
    [77]Venkateswara Rao Surisettya, Ajay Kumar Dalaia, Janusz Kozinskib. Alcohols as alternative fuels:an overview[J]. Applied Catalysis A:General,2011,404:1-11
    [78]Leclercq L., Imura K., Yoshida S., etc. Synthesis of New Catalytic Materials:Metal Carbides of the Group VIB Elements[J]. Studies in Surface Science and Catalysis,1979,3:627-639
    [79]Mitao T., Shishikuka I., Matsuoka M., etc. CVD synthesis of alumina-supported molybdenum carbide catalyst[J]. Chemisty Letters,1996,7:561-562
    [80]Markel E. J., Burdick S.E., Leaphart Ⅱ, M. E., etc. Synthesis, characterization, and thiophene desulfurization activity of unsupported Mo2N macrocrystalline catalysts[J]. Journal of Catalysis, 1999,182:136
    [81]王萍,周志军,田晓飞,等.负载型氮化钴铂催化剂的制备及催化性能[J].石油化工高等学校学报,2003,16(2):13-24
    [82]王广建,柳荣展,常俊石.新型催化剂-碳化钼和碳化钨的现状和展望[J].青岛大学学报,2001,16(3):51-53
    [83]靳广洲,樊秀菊,孙桂大,高俊斌,朱建华.钴掺杂对碳化钼催化噻吩加氢脱硫性能的影响[J],高等学校化学学报,2007,28(6):1169-1174
    [84]Anne Griboval-Constant, Jean-Marc Giraudon, Ginette Leclercq, etc. Catalytic behaviour of cobalt or ruthenium supported molybdenum carbide catalysts for FT reaction[J]. Applied Catalysis A:General,2004,260:35-45
    [85]Ahmad Hanif, Tiancun Xiao, Andrew P. E. York, etc. Study on the Structure and Formation Mechanism of Molybdenum Carbides[J]. Chemistry of Materials,2002,14:1009-1015
    [86]Quanli Zhu, Qifeng Chen, Xiaobin Yang, etc.A new method for the synthesis of molybdenum carbide[J].Materials Letters,2007,61:5173-5174
    [87]Xiao Tiancun., York A.P.E, W illiamsV.C., etc. Preparation of molybdenum carbides using butane and their catalytic performance[J]. Chemistry of Materials,2000,12(12):3896-3905
    [88]朱全力,章秋霖,杨晓斌,等.碳源对MoO3/Al2O3碳化过程的影响[J].分子催化,2010,24(1):45-49
    [89]Sandra Chouziera, Pavel Afanasieva, Michel Vrinata, etc. One-step synthesis of dispersed bimetallic carbides and nitrides from transition metals hexamethylenetetramine complexes[J]. Journal of Solid State Chemistry,2006,179:3314-3323
    [90]王小慧,张明慧,李伟,等.络合物分解法制备碳氮夹杂钼基催化剂及其催化性能[J].中国科学B辑:化学,2009,39(9):897-903
    [91]Huamin Wang,Wei Li, Minghui Zhang. New approach to the synthesis of bulk and supported bimetallic molybdenum nitrides[J].Chem. Mater,2005,17:3262-3267
    [92]HuaMin Wang, XiaoYong Du, MingHui Zhang, etc. Synthesis of bulk and alumina-supported γ-Mo2N catalysts by a single-step complex decomposition method[J]. Catalysis Today,2008,131: 156-161
    [93]XiaoHui Wang, MingHui Zhang, Wei Li, etc. Synthesis and characterization of cobalt-molybdenum bimetallic carbides catalysts[J]. Catalysis Today,2008,131:111-117
    [94]Manish Patel, J. Subrahmanyam. Synthesis of nanocrystalline molybdenum carbide (Mo2C) by solution route[J],Materials Research Bulletin,2008,43:2036-2041
    [95]Hyeon T., Fang M, Suslick K. S. Nanostructure molybdenum carbide:sonochemical synthesis and catalytic properties[J]. Journal of the American Chemical Society,1996,118:5492-5493
    [96]Li S., Lee J. S., Hyeon T.,etc. Catalytic hydrodenitrogenation of indole over molybdenum nitrides and carbides with different structure[J]. Applied Catalysis A:General,1999,184:1-9
    [97]Kim, J. H.; Kim, K. L., A study of preparation of tungsten nitride catalysts with high area[J]. Applied Catalysis A:General,1999,181:103-111
    [98]Li S.; Lee J.S., Molybdenum nitide and carbide prepared from heteropolyacids preparation and characterization[J]. Journal of Catalysis,1996,162:76-87
    [99]Yuanzhi Li, Yining Fan, Yi Chen. A novel route to nanosized molybdenum boride and carbide and/or metallic molybdenum by thermo-synthesis method from MoO3, KBH4, and CCl4[J]. Journal of Solid State Chemistry,2003,170:135-141
    [100]Anne Griboval-Constant, Jean-Marc Giraudon, Ginette Leclercq,etc.Catalytic behaviour of cobalt or ruthenium supported molybdenum carbide catalysts for FT reaction[J]. Applied Catalysis A:General,2004,260(1):35-45
    [101]Lee J.S., Kim S., Kim Y.G. Electronic and geometric effects of alkali promoters in CO hydrogenation over K/Mo2C catalysts[J]. Topics in Catalysis,1995,2(1-4):127-140
    [102]Woo H.C., Park K.Y., Kim Y.G., etc. Mixed alcohols synthesis from carbon monoxide and dihydrogen over potassium-promoted molybdenum carbide catalysts[J]. Applied Catalysis,1991, 75(1):267-280
    [103]Yang Y.,Wang Y D.,Liu S,etc. Mo-Co-K Sulfide-based catalysts promoted by rare earth salts for selective synthesis of ethanol and mixed alcohols from syngas[J]. Chinese Journal of Catalysis, 2007,28 (12):1028-1030
    [104]Christensen J.M., Mortensen P.M., Trane R, etc. Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide[J]. Applied Catalysis A:General,2009,366:29-43
    [105]Xiang M.L, Li D. B, Li W.H. Performances of mixed alcohols synthesis over potassium promoted molybdenum carbides[J]. Fuel,2006,85:2662-2665
    [106]Park K.Y, Seo W.K, Lee J.S. Selective synthesis of light olefins from syngas over potassium-promoted molybdenumcarbide catalysts[J]. Catalysis Letters,1991,11(3-6):349-356
    [107]Santiesteban J.G., Bogdan C.E., Herman R.G.,etc. Mechanism of C1-C4 alcohol synthesis over alkali/MoS2 and alkali/Co/MoS2 catalysts[C]. Proceedings of the 9th International Congress on Catalysis, Phillips,1988,2:561
    [108]Qi H.J., Li D.B., Yang C. Nickel and manganese co-modified K/MoS2 catalyst:high performance for higher alcohols synthesis from CO hydrogenation [J], Catalysis Communication, 2003,4:339-342
    [109]卞国柱,范立,伏义路,等.K-Mo基催化剂的表面酸性与其合成醇选择性[J].物理化学学报,1998,5:401-406
    [110]Xiang M.L., Li D.B., Xiao H.C. K/Ni/β-Mo2C:A highly active and selective catalyst for higher alcohols synthesis from CO hydrogenation[J]. Catalysis Today,2008,131:489-495
    [111]Bugyi L, Solymosi F. Effects of Potassium on the Chemisorption of CO on the Mo2C/Mo (100) Surface [J]. The Journal of Physical Chemistry B,2001,105:4337-4342
    [112]Mross W.D. Alkali doping in heterogeneous catalysis[J]. Catalysis reviews-science and engineering,1983,25:591-637.
    [113]Praliaud H., Dalmon J.A., Mirodatos C., etc. Influence of potassium salt addition on the catalytic properties of silica-supported nickel[J]. Journal of Catalysis,1986,97:344-356
    [114]Bao J, Fu Y.L., Bian G.Z. Sol-gel Preparation of K-Co-Mo Catalyst and its Application in Mixed Alcohol Synthesis from CO Hydrogenation[J]. Catalysis Letters,2008,121:151-157
    [115]Li Z.R., Fu Y.L., Bao J. Effect of cobalt promoter on Co-Mo-K/C catalysts used for mixed alcohol synthesis[J]. Applied Catalysis A:General,2001,220:21-30
    [116]Wu X.M, Guo Y.Y, Zhou J.M. Co-decorated carbon nanotubes as a promoter of Co-Mo-K oxide catalyst for synthesis of higher alcohols from syngas[J]. Applied Catalysis A:General,2008, 340:87-97
    [117]Sehested J., Dahl S., Jacobsen J.,etc. Machination of CO over nickel:mechanism and kinetics at high H2/CO ratios[J].The Journal of Physical Chemistry B,2005,109:2432-2438
    [118]Zhang Y, Sun Y, Zhong B. Synthesis of higher alcohols from syngas over ultrafine Mo-Co-K catalysts[J]. Catalysis Letters,2001,76:249-253
    [119]Xiang M.L., Li D.B., Xiao H.C., etc. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/β-Mo2C catalysts[J]. Fuel,2008,87:599-603
    [120]张建利,张侃,李德宝,等.碳化方式对铁基催化剂CO加氢反应性能的影响[J].分子催化,2007,12(增刊):MC505-MC506
    [121]王宁,房克功,林明桂,等.钾改性铁-钼碳化物CO加氢合成低碳混合醇的研究[J].天然气化工,2010,35:6-9
    [122]Zhao Lihong, Fang Kegong, Sun Yuhan, etc. Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation[J]. Catalysis Today,2010,158:490-495
    [123]Nielsen L. P., Christensen S. V., Tops(?)e H., et al. Changes in metal-sulfur bond energy in promoted and unpromoted molybdenum catalysts[J]. Catalysis Letters,2000,67(2-4):81-85
    [124]Xu X.D., Doesburg E.B.M., Scholten J.J.F. Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism[J]. Catalysis Today,1987,2: 125-170
    [125]姜涛,牛玉琴,钟炳.超临界条件下由合成气合成低碳醇的研究[J].天然气化工,1999,24(2):27-31
    [126]Song C. S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catalysis Today,2003,86(1-4):211-263
    [127]马晶.SBA-15(16)介孔分子筛的功能化修饰及其在多相催化中的应用[D].哈尔滨:哈尔滨工业大学,2011
    [128]吴维成.负载型碳化钼催化剂的制备、表征和选择加氢反应性能的研究[D].大连:大连化学物理研究所,2004
    [129]Smarsly B., Polarz, S., Antonietti M. Preparation of porous silica materials via sol-gel nanocasting of nonionic surfactants:A mechanistic study on the self-aggregation of amphiphiles for the precise prediction of the mesopore size[J]. The Journal of Physical Chemistry B,2001,105: 10473-10483
    [130]Lettow J. S., Han Y. J., Schmidt-Winkel P., etc.Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas[J]. Langmuir,2000,16(22):8291-8295
    [131]Wan Y., Zhao D. On the controllable soft-templating approach to mesoporous silicates[J]. Chemical Reviews,2007,107:2821-2860
    [132]Miyazawa K., Inagaki S. Control of the microporosity within the pore walls of ordered mesoporous silica SBA-15[J]. Catalysis Communications,2000,21:2121-2122
    [133]Oliver C. Gobin, Ying Wan, Dongyuan Zhao, etc., Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1:Synthesis and Characterization [J]. The Journal of Physical Chemistry C,2007,111:3053-3058
    [134]Juan Carlos Amezcua, Lilia Lizama, Cecilia Salcedo, etc. NiMo catalysts supported on titania-modified SBA-16 for 4,6-dimethyldibenzothiophene hydrodesulfurization[J]. Catalysis Today,2005:107-108
    [135]Yajuan Hao, Yanzhu Chong, Shuru Li, etc. Controlled synthesis of Au nanoparticles in the nanocages of SBA-16:improved activity and enhanced recyclability for the oxidative esterification of alcohols[J]. The Journal of Physical Chemistry C,2012,116:6512-6519
    [136]Barron Cruz A.E.,. Melo Banda J.A., Hernandez Mendoza, etc. Pt and Ni supported catalysts on SBA-15 and SBA-16 for the synthesis of biodiesel[J]. Catalysis Today,2011,166:111-115
    [137]Chen J.G. Carbide and nitride overlayers on early transition metal surfaces:preparation, characterization,and reactivities[J]. Chemical Reviews,1996,6:1477-1480
    [138]Kegong Fang., Debao Li., Minggui Lin., etc. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catalysis Today,2009,147:133-138
    [1]Sandra Chouziera, Pavel Afanasieva, Michel Vrinata, etc. One-step synthesis of dispersed bimetallic carbides and nitrides from transition metals hexamethylenetetramine complexes[J]. Journal of Solid State Chemistry,2006,179:3314-3323
    [2]王小慧,张明慧,李伟,等.络合物分解法制备碳氮夹杂钼基催化剂及其催化性能[J].中国科学B辑:化学,2009,39(9):897-903
    [3]Huamin Wang,Wei Li, Minghui Zhang. New approach to the synthesis of bulk and supported bimetallic molybdenum nitrides[J]. Chemistry of Materials,2005,17:3262-3267
    [4]HuaMin Wang, XiaoYong Du, MingHui Zhang, etc. Synthesis of bulk and alumina-supported γ-Mo2N catalysts by a single-step complex decomposition method[J]. Catalysis Today,2008, 131:156-161
    [5]XiaoHui Wang, MingHui Zhang, Wei Li, etc. Synthesis and characterization of cobalt-molybdenum bimetallic carbides catalysts[J]. Catalysis Today,2008,131:111-117
    [6]Juan Zou, Minglin Xiang, BoHou, etc. Single-step thermal carburization synthesis of supported molybdenum carbides from molybdenum-containing methyl-silica[J]. Journal of Natural Gas Chemistry,2011,20:271-280
    [7]Minglin Xiang, Debao Li, Haicheng Xiao, etc. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/β-Mo2C catalysts[J]. Fuel,2008,87:599-603
    [8]Lihong Zhao, Kegong Fang, Yuhan Sun, etc. Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation[J]. Catalysis Today,2010,158:490-495
    [9]A M Stux, C Laberty-Robert, K E Swider-Lyons. Pechini synthesis and characterization of molybdenum carbide and nickel molybdenum carbide[J]. Journal of Solid State Chemistry,2008, 181:2741-2747
    [10]Heng Shou, Robert J. Davis. Reactivity and in situ X-ray absorption spectroscopy of Rb-promoted Mo2C/MgO catalysts for higher alcohol synthesis[J]. Journal of Catalysis,2011,282: 83-93
    [11]Minglin Xiang, Juan Zou, Debao Li, Wenhuai Li, Yuhan Sun, Xichun She. Nickel and potassium co-modified β-Mo2C catalyst for CO conversion[J]. Journal of Natural Gas Chemistry 2009,18:183-186
    [12]赵明,王海蓉,陈山虎,等.CeO2-ZrO2-Al2O3的制备及其负载钯三效催化剂的催化性能[J].催化学报,2010,31(4):429-434
    [13]徐军科,任克威,王晓蕾,等La2O3对沼气重整制氢催化剂Ni/γ-Al2O3的影响[J].物理化学学报,2008,24(9):1568-1572
    [14]Minglin Xiang, Debao Li, Haicheng Xiao, etc. K/Ni/β-Mo2C:A highly active and selective catalyst for higher alcohols synthesis from CO hydrogenation[J]. Catalysis Today,2008,131: 489-495
    [1]Minglin Xiang, Debao Li, Haicheng Xiao, etc. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/β-Mo2C catalysts[J]. Fuel,2008,87:599-603
    [2]向永生,赵旭涛,马建泰,等.碳化钼催化剂研究进展[J].分子催化,2009,23:282-290
    [3]Jae-Seung Lee, Sang Hoon Joo, Ryong Ryoo. Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters[J]. Journal of American Chemical Society,2002,124:1156-1157
    [4]吴平易.介孔分子筛组装碳化钼和磷化镍催化剂的制备及其催化性能研究[D].北京:北京化工大学,2009
    [5]金政伟,汪晓东,崔秀国.弱酸性条件下SBA-16型二氧化硅介孔材料的合成与表征[J].化工学报,2006,57:1486-1489
    [6]史克英,池玉娟,金效齐,等.改性中孔分子筛SBA-16薄膜的合成及表征[J].化学学报,2005,63:885-890
    [7]S Kataoka, A Endo, A Harada, etc. Fabrication of mesoporous silica thin films inside microreactors[J]. Material Letters,2008,62:723-726
    [8]熊海峰.SBA-15负载的钴、钌费-托合成催化剂结构及性能的研究[D].苏州:苏州大学,2008
    [9]Oliver C. Gobin, Ying Wan, Dongyuan Zhao, etc. Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1:Synthesis and Characterization[J]. Journal of Physical Chemistry C,2007, 111:3053-3058
    [10]Lihong Zhao, Kegong Fang, Yuhan Sun, etc. Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation[J]. Catalysis Today,2010,158:490-495
    [11]卢泽湘,吴平易,季生福,等.Pt/SBA-15/Pt/SBA-16催化剂的合成、表征及甲烷催化燃烧性能[J].分子催化,2008,22:368-373
    [12]向明林,李德宝,肖海成,等.Mo2C催化剂CO加氢合成低碳混合醇的研究[J].分子催化,2007,21(增刊):MC495-MC496
    [13]Masatoshi Nagai, Amin Md. Zahidul, Kenji Matsuda. Nano-structured nickel-molybdenum carbide catalyst for low-temperature water-gas shift reaction[J]. Applied Catalysis A:General,2006, 313:137-145
    [14]S H Liang, F Teng, G. Bulgan, Y F Zhu. Effect of Jahn-Teller Distortion in La0.5Sr0.5MnO3 Cubes and Nanoparticles on the Catalytic Oxidation of CO and CH[J]. Journal of Physical Chemistry C,2007,111:16742-16749
    [15]尹红梅,丁云杰,罗洪原,等.铁助剂对Rh-Mn-Li/SiO2催化剂表面上的CO脱附和CO加氢行为的影响[J].催化学报,2002,23(5):448-452
    [16]王瑞雪,吴宝山,李永旺.单相碳化铁的制备及其表面吸附性质[J].催化学报,2012,33(5):863-869
    [17]张业,孙予罕,钟炳.合成低碳醇超细Mo-Co-K催化剂的TPD研究[J].燃料化学学报,2002,30(3):277-280
    [18]J G Santiesteban, C E Bogdan, R G Herman, etc. Mechanism of C1-C4 alcohol synthesis over alkali/MoS2 and alkali/Co/MoS2 catalysts[C]. Proceedings of the 9th International Congress on Catalysis, Phillips,1988,2:561
    [19]王宁,房克功,林明桂,等.钾改性铁-钼碳化物CO加氢合成低碳混合醇的研究[J].天然气化工,2010,35:6-9
    [20]G. Singh, B. P. Baranwal, I. P. S. Kapoor, etc. Some transition metal nitrate complexes with hexamethylenetetramine part IV. preparation, X-ray crystallography and thermal decomposition[J]. Journal of Thermal Analysis and Calorimetry,2008,91 (3):971-977
    [21]M. Grzywa, B. Wlodarczyk-Gajda, W. Lasocha. Thermal decomposition study of selected isopolymolybdates[J]. Journal of Thermal Analysis and Calorimetry,2009,96 (2):395-401
    [22]W.M. Shaheen. Thermal behaviour of pure and binary Fe(NO3)3·9H20 and (NH4)6MO7O24·4H2O systems[J]. Materials Science and Engineering A,2007,445-446:113-121
    [23]W. M. Shaheen, M. M. Selim. Thermal decompositions of pure and mixed manganese carbonate and ammonium and ammonium molybdate tetrahydrate[J]. Journal of Thermal Analysis and Calorimetry,2000,59:961-970
    [24]Michal Kruk, Chin Ming Hui. Thermally induced transition between open and closed spherical pores in ordered mesoporous silicas[J]. Journal of American Chemistry society,2008,130: 1528-1529
    [25]ChiFeng Cheng, YiChun Lin, HsuHsuan Cheng, etc. The effect and model of silica concentrations on physical properties and particle sizes of three-dimensional SBA-16 nanoporous materials[J]. Chemical Physics Letters,2003,382:496-501
    [26]卢泽湘,吴平易,季生福,等.Pt/SBA-15、Pt/SBA-16催化剂的合成、表征及甲烷催化燃烧性能[J].分子催化,2008,22(4):368-373
    [27]Mohamed A. Ballem, Emma M. Johansson, Jose M. C6rdoba, etc. Synthesis of hollow silica spheres SBA-16 with large-pore diameter[J]. Materials Letters,2011,65:1066-1068
    [28]Tae-Wan Kim, Ryong Ryoo, Michal Kruk, etc. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time[J]. Journal of Physical Chemistry B,2004,108:11480-11489
    [29]Monica Mesa, Ligia Sierra, Joel Patarin, etc. Morphology and porosity characteristics control of SBA-16 mesoporous silica. Effect of the triblock surfactant Pluronic F127 degradation during the synthesis[J]. Solid State Sciences,2005,7:990-997
    [30]Yajuan Hao, Yanzhu Chong, Shuru Li, etc. Controlled synthesis of Au nanoparticles in the nanocages of SBA-16:improved activity and enhanced recyclability for the oxidative esterification of alcohols[J].The Journal of Physical Chemistry C,2012,116:6512-6519
    [1]Venkateswara Rao Surisettya, Ajay Kumar Dalaia, Janusz Kozinskib. Alcohols as alternative fuels:An overview[J]. Applied Catalysis A:General,2011,404:1-11
    [2]陈军,顾娟红,薛良.低碳时代绿色化学与社会经济可持续发展[J].经济研究导刊,2010,86:178-179
    [3]冯辉霞,王毅,张婷.生态化学与化学可持续性发展[J].化学与生物工程,2010,27:17-19
    [4]金涌,魏飞.循环经济与生态工业工程[J].西安交通大学学报(社会科学版),2003,23:7-16
    [5]Liang Changhai, Ma Wenping, Feng Zhao-chi, etc. Activated carbon supported bimetallic CoMo carbides synthesized by carbothermal hydrogen reduction[J]. Carbon,2003,41:1833-1839
    [6]Zhao Lihong, Fang Kegong, Sun Yuhan. Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation [J]. Catalysis Today,2010,158:490-495
    [7]Stux A M, Laberty-Robert C, Swider-Lyons K E. Pechini synthesis and characterization of molybdenum carbide and nickel molybdenum carbide[J]. Journal of Solid State Chemistry,2008, 181:2741-2747
    [8]Yao Songdong, Gu Li-jun, Sun Changyong, etc. Combined methane CO2 reforming and dehydroaromatization for enhancing the catalyst stability [J]. Industrial & Engineering Chemistry Research,2009,48:713-718
    [9]任世彪,邱金恒,王春燕,等.Ni2+在γ-Al2O3上的分散状态及负载型Ni/γ-Al2O3催化剂的α-蒎烯加氢活性[J].无机化学学报,2007,23(6):1021-1028
    [10]Huang Tao, Huang Wei, Huang Jian, etc. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts[J]. Fuel Processing Technology,2011,92:1868-1875
    [11]卢泽湘,吴平易,季生福,等.Pt/SBA-15、Pt/SBA-16催化剂的合成、表征及甲烷催化燃烧性能[J].分子催化,2008,22:368-373
    [12]赵明,王海蓉,陈山虎,等.CeO2-ZrO2-Al2O3的制备及其负载钯三效催化剂的催化性能[J].催化学报,2010,31:429-434
    [13]徐军科,任克威,王晓蕾,等.La203对沼气重整制氢催化剂Ni/γ-Al2O3的影响[J].物理化学学报,2008,24:1568-1572
    [14]程金民,黄伟,左志军.碳化终温对碳化钼的制备及甲烷二氧化碳重整催化性能的影[J].高等学校化学学报,2010,31(1):130-134
    [15]Sun Hui, Tang Qinghu, Du Yu, etc. Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities:Modified synthesis and its catalytic application[J]. Journal of Colloid and Interface Science,2009,333(1):317-323
    [16]Taro Hirose, Yasushi Ozawa, Masatoshi Nagai. Preparation of a nickel molybdenum carbide catalyst and its activity in the dry reforming of methane[J]. Chinese Journal of Catalysis,2011,32: 771-776
    [17]Katsuhiko Oshikawa, Masatoshi Nagai, Shinzo Omi. Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS[J]. Journal of Physics Chemistry:B,2001,105: 9124-9131
    [18]Zhaoyin Hou, Jing Gao, Jianzhong Guo, etc. Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor[J]. Journal of Catalysis,2007, 250:331-341
    [19]Liu Ping, Rodriguze J A. Water-Gas-Shift reaction on molybdenum carbide surfaces:essential role of the oxycarbide[J]. Journal of Physics Chemistry:B,2006,110:19418-19425
    [20]Naito S, Tsuji M, Sakamoto Y, etc. Stud Surf Sci Catal,2000,143:415-419
    [21]Shi Chuan, Zhang Anjie, Li Xiaosong, etc. Ni-modified Mo2C catalysts for methane dry reforming[J]. Applied Catalysis A:General,2012, (431-432):164-170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700