用户名: 密码: 验证码:
恒电位和恒电流下苋菜红在ACF上的电化学脱色
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料废水具有组成复杂、色度高,COD、TOC含量高,悬浮物多,水质、水量变化大,难降解物质多等特点,是难处理工业废水之一。电化学水处理方法作为一种环境友好技术,具有无需或少量投加化学药剂,不产生二次污染,后处理简单,占地面积小,管理方便等优点,在染料废水处理领域,越来越受到人们的重视。
     目前,电化学方法处理染料废水的研究多数是在给定槽压或恒流供电方式下,以考察电极材料、槽压、电流密度、电解质浓度、pH或传质速率等控制条件对脱色率、有机物去除率、电流效率以及能耗的影响为主要内容,而在恒电位或恒电流模式下,电极电位或电流密度对染料脱色行为影响的研究鲜有报道。对于异相界面电极反应,电极电位决定了反应的难易程度,而电流密度在一定程度上决定了反应速率。同时,大部分研究采用了无隔膜电解槽,由于阴、阳极反应的相互干扰,想确定电氧化或电还原在染料降解脱色过程中所起的作用是相当困难的。
     本论文以建立一种能够考察电极电位和电流密度如何影响某一染料在某一电极上电化学脱色行为的实验模式为目的,在恒电位和恒电流模式下,采用由阳离子交换膜分隔的双室电解槽,以ACF为工作电极(阳极或阴极),考察了电极电位和电流密度对偶氮染料苋菜红电化学脱色行为,即脱色机理、脱色动力学和色度、COD、TOC的去除的影响。
     研究结果表明本实验模式可成功地完成电极电位和电流密度对苋菜红在ACF电极上电化学脱色行为影响的研究。实验条件下(pH=6.4),苋菜红在ACF电极上的氧化电位和还原电位分别为0.6V和-0.2V。恒电位模式下,当电位为-0.2V~-0.8V时,电还原是脱色的主要原因;当电位为-0.1V~0.5V时,脱色是由于苋菜红在ACF上的吸附,吸附不受ACF极化的影响;当电位为0.6V~1.4V时,脱色以苋菜红的电氧化为主。恒电流模式下,当阴极电流密度为-0.844mA/cm~2~-1.13 mA/cm~2时,脱色的主要原因是苋菜红的阴极还原;当电流密度为-0.813 mA/cm~2~0.0625 mA/cm~2时,脱色源于苋菜红在ACF上的吸附,吸附不受ACF极化的影响;当阳极电流密度0.125 mA/cm~2~0.5mA/cm~2时,主要是苋菜红电氧化导致脱色。
     苋菜红的电氧化和电还原降解脱色过程遵循准一级反应动力学;恒电位阴极还原和恒电流阳极氧化时,脱色速率常数分别同电极电位或电流密度呈线性相关。
Dye wastewater is characterized by complicated components, strong color, highly fluctuating pH, high COD, TOC concentration and suspend solids, low biodegradability, and widely varied quality and quantity, so it has been rather difficult to treat dye wastewater. As an eco-friendly technology, electrochemical method added little or no additional chemicals without secondary pollutants for wastewater treatment. In recent years, there has been increasing interest in the use of electrochemical methods for the treatment of dye wastewater.
    Most study on dye wastewater treatment with electrochemical method was conducted with cell voltage or current constantly controlled and the parameters of voltage, current density, wastewater conductivity, pH, current efficiency and energy consumption were evaluated. However, there are few reports on the relationship between the decolorization and the potential and current density. It is known that potential and current density are the fundamental factors for the electrochemical process. So it is necessary and important to evaluate the effect of potential and current density on the decolorization of dye wastewater. Besides, a great number of experiments were performed in a single compartment electrolytic cell. As a result, it is difficult to make sure the pure contribution of electrooxidation and electroreduction for the decolorization of dye wastewater because of the cross- interference of the anode and cathode.
    The objective of this study is to estimate an experimental model for the investigation of the effect of the potential and current density on the decolorization of dye wastewater. Activated carbon fiber (ACF) was used as anode or cathode under potentiostatic and galvanostatic model, respectively. Amaranth, a kind of azo dye, was chosen as the model compound. The electrolytic cell was designed as a two-compartment cell separated by cation selective membrane. The effect of potential and current density on the decolorization kinetics, color, total organic carbon (TOC) and chemical oxygen demand (CODcr) removal ratio were analyzed.
    The results obtained were shown as: (1) The Amaranth water was oxidized on ACF at the potential of 0.6V and reduced at the potential of -0.2V. (2) In the range of -0.1V~0.5V and -0.813 mA/cm2~0.0625 mA/cm2, the decolorization results from the adsorption of Amaranth on ACF and the adsorption behavior is insignificantly affected by electric polarization; (3) In the range of -0.2V~-0.8V and -0.844 mA/cm2~-1.13 mA/cm2, the electroreduction plays an important role in the decolorization.
    
    
    Furthermore, the decoloring process follows pseudo-first order kinetics; (4) In the range of 0.6V~1.4V and 0.125 mA/cm2~0.5 mA/cm2, the electrooxidation results in the decolorization and the decoloring process also follows pseudo-first order kinetics.
引文
[1] N. Mohan, N. Balasubramanian, V. Subramanian. Electrochemical Treatment of Simulated Textile Effluent[J]. Chem. Eng. Technol, 2001, (24)7: 749-753
    [2] 杨辉,卢文庆.应用电化学[M].北京:科学出版社,2001.23
    [3] 梁宏,曾抗美,杨基成,史济峰.童琪.多维电极法处理高色度活性嫩黄模拟废水的研究[J].四川大学学报,2003,35(1):52-55
    [4] Ya Xiong, Peter J. Strunk, Hongyun Xia, Xihai Zhu, Hans T. Karlsson, treatment of dye wastewater containing acid orange ⅱ using a cell with three-phase three-dimensional electrode[J]. Wat. Res, 2001, 35(17): 4226-4230
    [5] 王爱民,曲久辉,姜桂兰.电化学方法降解酸性红B研究.环境科学。2003.24(2):108-111
    [6] 李大鹏,电化学氧化处理印染废水的过程和特性[J].中国给水排水,2002,18(5):6-9
    [7] 于秀娟.王辉,闫鹤,汪权伟,李传宝.电化学氧化对罗丹明B脱色的研究[J].重庆环 境科学.2003.25(9):42-45
    [8] 吴星五,赵国华,高廷耀.电化学法水处理新技术—降解有机废水[J].环境科学学报,2000,20(增刊):80-84
    [9] Xueming Chen, Guohua Chen, Po Lock Yue. Anodic oxidation of dyes at novel Ti/B-diamond electrodes[J]. Chemical Engineering Science, 2003, 58:995--1001
    [10] Aimin Wang, Jiuhui Qu, Huijuan Liu, Jiantuan Ge. Degradation of azo dye Acid Red 14 in aqueous solution by electrokinetic and electrooxidation process[J]. Chemosphere, 2004, 55: 1189-1196
    [11] 张江,张军延,朱仲良.日落黄水溶液电解降解动力学过程分析[J].分析化学的成就与挑战,645-646
    [12] 腾嵨 昭,相浑益男,井上微.电化学测定方法[M].北京:北京大学出版社,1995.27
    [13] M.M. Dávila-Jiménez, M.P. Elizalde-González, A. Gutiérrez-González, A.A. Peáez-Cid. Electrochemical treatment of textile dyes and their analysis by high-performance liquid chromatography with diode array detection[J]. Journal of Chromatography A, 2000, 889:253-25
    [14] T. Bechtold, E. Burtscher, A. Turcanu. Cathodic decolourisation of textile waste water containing reactive dyes using a muiti-cathode electrolyser[J]. J. Chem. Technol. Biotechnol, 2001, 76: 303
    [15] 贾金平,杨骥,廖军.活性炭纤维(ACF)电极法处理染料废水的探讨[J].上海环境科学,1997,16(4): 19-25
    [16] A.G. Vlyssides, M. Loizidou, P.K. Karlis, A.A. Zorpas, D. Papaioannou. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode[J]. Journal of Hazardous Materials, 1999, B70: 41-52
    [17] J.Naumczyk, L. Szpyrkowicz, F. Zilio-Grandi. Electrochemical treatment of textile wastewater[J]. Wat. Sci. Tech. 1996, 34(11): 17-24
    [18] C-H. YANG, C-C. LEE, T-C. WEN. Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater[J]. Journal of Applied Electrochemistry, 2000, 30:1043-1051
    [19] A.G. Vlyssides, D. Papaioannou, M. Loizidoy, P.K. Karlis a, A.A. Zorpas. Testing an electrochemical method for treatment of textile dye wastewate[J]. Waste Management, 2000, 20: 569-574
    
    
    [20] 王慧.王建龙.占新民,钱易.电化学法处理含盐染料废水[J].中国环境科学.1999,19(5):441-444
    [21] Tak-Hyun Kim, Chulhwan Park, Jinwon Lee, Eung-Bai Shin, Sangyong Kim. Pilot scale treatment of textile wastewater by combined process[J]. Water Research, 2002, 36: 3979-3988
    [22] Li Fan, Fenglin Yang, Weishen Yang. Performance of the decolodzation of an azo dye with bipolar packed bed cell[J]. Separation and Purification Technology, 2004, 34:89-96
    [23] 徐敏.葛建团.偶氮染料电化学氧化脱色动力学及其影响因素[J].兰州铁道学院学报(自然科学版),2002,21(4):85-88
    [24] 廖桂茵.活性艳红x-B电化学氧化研究[J].荆州师专学报(自然科学版).1998,21(2):70-71
    [25] Tak-Hyun Kim, Chulhwan Park, Eung-Bai Shin, Sangyong Kim. Effects of Cl-based chemical coagulants on electrochemical oxidation of textile wastewater[J]. Desalination, 2003, 155:59-65
    [26] 葛建团,曲久辉,徐敏.电化学方法用于酸性红B模拟废水脱色试验研究[J].环境污染治理技术与设备,2002,3(5):12-14
    [27] Stephen J.Allen, Kayed Y. H. Khader, Murad Bino. Electrooxidation of Dyestuffs in Waste Water[J]. J. Chem. Tech. Biotechnol, 1995, 62:111-117
    [28] Lin, Sheng H.; Chen, Ming L. Treatment of textile wastewater by chemical methods for reuse. Water Research, 1997, 31(4): 868-876
    [29] 陈日耀,郑曦,陈晓,林智红,陈震.电化学方法生成羟基自由基及其在染料降解脱色中的应用[J].吉林化工学院学报,2001,18(3):1-4
    [30] 陈日耀,郑曦,曲跃文,林智虹,陈晓,陈震,张义康.电生成羟基自由基及其对染料降解脱色的研究[J],环境科学研究,2002,15(1):16-19
    [31] 郑曦,陈日耀.林建民,颜志森,陈晓,林智虹,曲跃文.陈震.电生成羟基自由基在染料废水降解脱色中的应用[J].福建师范大学学报(自然科学版),2001,17(4):57-60
    [32] 郑曦,陈日耀,陈晓,林智虹,陈震.电化学法生成Fenton试剂及其在工业染料废水降解脱色中的应用[J].环境污染治理技术与设备,2001.2(4):72-76
    [33] T. Bechtold, E. Burtscher, A. Turcanu. Direct cathodic reduction of Leuco Sulfur Black 1 and Sulfur Black 1. J. Appl. Electrochem, 1998, 28:1243-1250
    [34] Yasuki Yoshida, Setsuro Ogata, Shuji Nakamats, Takayuki Shimamune, Keiichi Kikawa, Hiroshi Inoue, Chiaki Iwakura. Decoloration of azo dye using atomic hydrogen permeating through a Pt-modified palladized Pd sheet electrode[J]. Electrochimica Acta, 1999, 45:409-414
    [35] M. Cerón-Rivera, M.M. Dávila-Jiménez, M.P. Elizalde-González. Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere, 2004, 55:1-10
    [36] T. BECHTOLD, C. MADER, J. MADER. Cathodic decolourization of textile dyebaths: Tests with full scale plant[J]. Journal of Applied Electrochemistry, 2002, 32: 943-950
    [37] 范丽,周艳伟,杨卫身,杨凤林.炭材料用作电吸附剂的研究与进展[J].新型碳材料,2004,19(2):1-6
    [38] P.J.Mayne, R.Shackleton. Adsorption on packed bed electrodes[J]. J. Appl. Electrochem, 1985,15: 745—754
    [39] 范丽,杨卫身,杨凤林,张兴文.复极填充床电解槽用于偶氮染料废水脱色[J].中国给水排水,2002,18(4):34-36
    [40] 赵少陵,贾金平.活性炭纤维电极法处理印染废水的应用研究[J].上海环境科学,1997,16(5):24-27
    
    
    [41] 贾金平,杨骥,廖军,王文华,王子健.活性炭纤维电极法处理染料废水机理初探[J].环境科学,1997,18(6):89-93
    [42] Jinping Jia, Ji Yang, Jun Liao, Wenghua Wang, Zijian Wang. Treatment of dyeing wastewater with ACF electrodes [J]. Water Research, 1999, 33: 881-884
    [43] Zhemin Shen, Wenhua Wang, Jinping Jia, Jianchang Ye, Xue Feng, An Peng. Degradation of dye solution by an activated carbon fiber electrode electrolysis system [J]. Journal of Hazardous Materials, 2001, 84: 107-116
    [44] 林海,菅小东,李天昕,活性炭纤维电化学处理染料废水[J].北京科技大学学报,2003,25(2):124-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700