用户名: 密码: 验证码:
环境中Cr(Ⅲ)的MnO_2氧化以及光化学氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属元素铬(Cr)常见于土壤和水环境中,有些源于自然的作用,有些来自人为的排放。铬有多种氧化态,但主要以Cr(Ⅵ)和Cr(Ⅲ)两种形态存在于自然环境中。在土壤和水环境中,Cr(Ⅲ)通常以氢氧化物形态沉淀或以配合离子形态吸附于矿物质表面;在生物体系中,Cr(Ⅲ)是葡萄糖耐量因子的重要组分,可加强胰岛素的作用而成为维持正常的血糖和血脂代谢的必须微量元素。而Cr(Ⅵ)在环境中的溶解性、迁移性大,并且具有高毒性,对人体、动物和植物均有危害性。所以,目前国内外对铬污染控制措施研究主要集中在Cr(Ⅵ)的还原作用上,而对Cr(Ⅲ)在土壤中可能存在的再氧化途径及其反应机理仍缺乏较全面的了解和深入的研究。事实上,土壤中Cr(Ⅲ)转化为Cr(Ⅵ)的现象确实是存在的,人们应该引起足够的重视并去关注它。到目前为止氧化锰矿物是已知唯一可氧化Cr(Ⅲ)的天然氧化剂,是将土壤环境中的Cr(Ⅲ)氧化为Cr(Ⅵ)的重要途径。本研究选择人工合成的水钠锰矿(6-Mn02)对水溶态的Cr(Ⅲ),有机结合态的Cr(Ⅲ)以及沉淀态的Cr(Ⅲ)的氧化做了全面的研究。除了氧化锰矿物之外,揭示了光照下诱发的氧化反应可能是Cr(Ⅲ)转化为Cr(Ⅵ)另一条潜在途径。很多研究证实了Fe(Ⅲ)-OH配合物(尤其是Fe(OH)2+)在光照下通过有机基团向金属的电子转移的方式(LMCT)断裂生成活性中间体-OH和Fe(Ⅱ),·OH可氧化降解多种有机物,同时Fe(Ⅱ)被氧化成Fe(Ⅲ),Fe(Ⅲ)和Fe(Ⅱ)之间的循环在Fe(Ⅲ)-有机配体体系中更为高效。与Fe(Ⅲ)类似,Cr(Ⅲ)可与EDTA、柠檬酸、酒石酸等有机配体配合。柠檬酸和酒石酸常用来还原Cr(Ⅵ),随即与还原生成的Cr(Ⅲ)形成可溶性的Cr(Ⅲ)-柠檬酸和Cr(Ⅲ)-酒石酸配合物,文献表明以前的研究主要是关于前期有机酸对Cr(Ⅵ)的还原,很少涉及后期Cr(Ⅲ)-柠檬酸和Cr(Ⅲ)-酒石酸配合物的再氧化动力学研究。本研究选择Cr(Ⅲ)-柠檬酸和Cr(Ⅲ)-酒石酸配合物作为模型深入研究其中Cr(Ⅲ)的光化学氧化机制。本论文共分为两部分:
     第一部分:在15℃,25℃,35℃和pH 2-8条件下,通过批式试验研究了δ-Mn02对水溶态的Cr(Ⅲ),有机结合态的Cr(Ⅲ) (Cr(Ⅲ)-EDTA, Cr(Ⅲ)-柠檬酸和Cr(Ⅲ)-酒石酸)以及沉淀态的Cr(Ⅲ)(Cr(OH)3, CrFe(OH)6和CrP04)的氧化。结果表明δ-Mn02对水溶态Cr(Ⅲ)的氧化遵循先快后慢的规律;温度的升高能使其氧化反应速率增加而并不改变其反应机制;氧化反应速率和氧化程度受不断还原出的Mn(Ⅱ)在δ-Mn02表面吸附覆盖因素的限制;pH值的降低以及初始δ-Mn02浓度的增加能有效地提高Cr(Ⅲ)的反应速率以及氧化程度,当pH值上升到8时,Cr(Ⅲ)的氧化量受溶液中其他离子影响比较大,NH4+的存在能显著提高δ-Mn02对Cr(Ⅲ)的氧化速率和氧化量;P043-的存在会与Cr(Ⅲ)形成更为稳定的CrP04,对Cr(Ⅲ)的氧化有抑制作用。δ-Mn02对Cr(Ⅲ)-EDTA的氧化与Cr(Ⅲ)和EDTA的配位比,配合时间以及配位温度有关。相对于水溶态的Cr(Ⅲ),Cr(Ⅲ)-EDTA配合物难于被Mn02氧化,当pH值达到5时就没有Cr(Ⅵ)的生成;温度的升高使得Cr(Ⅲ)/EDTA配位更完全,不利于δ-Mn02对Cr(Ⅲ)的氧化。δ-MnO2对三种有机结合态的Cr(Ⅲ)的氧化量的大小顺序为Cr(Ⅲ)-酒石酸>Cr(Ⅲ)-柠檬酸>Cr(Ⅲ)-EDTA。在pH 2-4条件下,δ-Mn02对Cr(OH)3和CrFe(OH)6的氧化速率和氧化量都随pH的上升而有所降低。当pH上升到4,CrFe(OH)6体系就检测不到Cr(Ⅵ)的生成。而在CrPO4的体系中始终没有检测到Cr(Ⅵ)的生成。表明δ-Mn02存在下,这三种沉淀态铬的溶解度遵循CrPO4> CrFe(OH)6> Cr(OH)3的顺序。
     第二部分:在接近自然环境的条件下制备出Cr(Ⅲ)-柠檬酸和Cr(Ⅲ)-酒石酸配合物,使用732型阳离子交换树脂提纯了这两种配合物,并用高效液相色谱法分离检测出配合物在不同pH条件下的存在形态。结果表明,Cr(Ⅲ)与柠檬酸配位摩尔比为1:1,而Cr(Ⅲ)与酒石酸配位摩尔比为1:2。HPLC图谱显示在pH 3-5范围内,Cr(Ⅲ)-柠檬酸配合物主要以[Cr(Ⅲ)-cit-H]+和[Cr(Ⅲ)-cit]这两种形态存在;在pH 6-8之间仅以[Cr(Ⅲ)-cit]形态存在;在pH 9-11之间的形态为[Cr(Ⅲ)-cit]和[Cr(Ⅲ)-cit-OH]-;当pH达到12的时候,Cr(Ⅲ)-柠檬酸配合物仅以[Cr(Ⅲ)-cit-OH]-形态存在。Cr(Ⅲ)-酒石酸配合物在pH 3时以[Cr(III)-tar2-H], [Cr(III)-tar2]和[Cr(III)-tar2-OH]2三种形态共存于溶液中;在pH 4-10之间的形态为[Cr(Ⅲ)-tar2]-和[Cr(III)-tar2-OH]2-;当pH达11时仅以[Cr(III)-tar2-OH2]3形态出现。25℃和pH 5-12条件下,在不同功率的中压汞灯以及氙灯照射下,研究了无机Cr(Ⅲ)和Cr(Ⅲ)-柠檬酸/酒石酸配合物光照引发的Cr(Ⅲ)光化学氧化的动力学。结果表明在不同光源照射下,Cr(Ⅲ)-柠檬酸/酒石酸配合物光解产生的Cr(Ⅱ)和柠檬酸自由基结合溶解氧生成羟基自由基(·OH),双氧水(H202)等氧化物可实现Cr(Ⅱ)的逐步氧化到Cr(Ⅵ),Cr(Ⅲ)-酒石酸配合物中Cr(Ⅲ)的氧化量略高于Cr(Ⅲ)-柠檬酸中的。光照同样能引发无机Cr(Ⅲ)断裂生成Cr(Ⅱ)和羟基自由基(·OH)实现自身氧化,但其氧化速率和氧化程度均远远低于Cr(Ⅲ)-柠檬酸/酒石酸配合物的。Cr(Ⅲ)-柠檬酸配合物中Cr(Ⅲ)的氧化过程符合零级反应动力学规律;Cr(Ⅲ)-酒石酸配合物中Cr(Ⅲ)的氧化可进行分段拟合,第一阶段遵循一级反应动力学规律,第二阶段遵循零级反应动力学规律。光照强度的增加和pH的升高均有利于不同形态Cr(Ⅲ)的氧化。pH决定了无机Cr(Ⅲ)和Cr(Ⅲ)-柠檬酸/酒石酸配合物的存在形态,从而决定了各自的光化学活性的大小,并最终决定了其中Cr(Ⅲ)的氧化速率及氧化量。pH 7-9时变化不敏感,但在pH>9时,三者的氧化速率和氧化量都随pH的升高而大幅提升。苯作为捕获剂确证了Cr(Ⅲ)和Cr(Ⅲ)-柠檬酸/酒石酸配合物光解均能产生羟基自由基,并且[Cr(III)-OH2-tar2]3这种形态的光化学活性最强,能够释放出更多的羟基自由基(·OH), [Cr(Ⅲ)-cit-OH]形态次之。厌氧条件下不同形态Cr(Ⅲ)的氧化都大大减弱,低pH条件下检测不到Cr(Ⅵ)的生成,高pH条件下存在的[Cr(III)-OH-tar2]2-、[Cr(III)-OH2-tar2]3和[Cr(III)-cit-OH]-光照直接断裂生成的·OH,可实现部分Cr(Ⅲ)的氧化。H202结合紫外光照可快速实现Cr(Ⅲ)-柠檬酸/酒石酸配合物的氧化;TiO2, Fe(Ⅲ),苯酚,甲醇,异丙醇对Cr(Ⅲ)-柠檬酸/酒石酸配合物的氧化有不同程度的抑制;Ti02在预吸附了磷酸根基团之后对Cr(Ⅲ)-酒石酸配合物的氧化显示出极强的催化加速作用。
Chromium is commonly found in soil and water from both natural sources and anthropogenic discharge. Although chromium has multiple oxidation states, Cr(Ⅲ) and Cr(Ⅵ) are the two most stable states in natural environments. In soils and aquatic environments, Cr(Ⅲ) can be readily precipitated as hydroxide solids or adsorbed onto mineral surfaces as complex ions. In biological systems, Cr(Ⅲ) is an important component of glucose tolerance factor and is considered a necessary micro-nutrient in normal carbohydrate and lipid metabolism by potentiating the action of insulin. In contrast, most Cr(Ⅵ) compounds are highly toxic, soluble, and mobile, posing as hazards to plants, animals, and humans. As a result, reduction of Cr(Ⅵ) has been widely investigated. But, there is an increasing concern about Cr(Ⅲ) because of the threat of its reoxidation to Cr(Ⅵ) in the presence of certain oxidants. Manganese oxides are considered to be the only one nature oxidants resulting in transformation of Cr(Ⅲ) to Cr(Ⅵ) in soils. So, oxidation of aqueous Cr(Ⅲ), chelated Cr(Ⅲ) and insoluble Cr(Ⅲ), such as Cr(OH)3 byδ-MnO2 were investigated in this study to predict the potential for Cr(Ⅲ) oxidation in soil environment. Photo-oxidation is another potential pathway to transform Cr(Ⅲ) to Cr(Ⅵ). Many studies have recognized that the photoexcitation of Fe(Ⅲ)-OH complexes (especially Fe(OH)2+) can lead to the formation of·OH and Fe(Ⅱ) through a ligand-to-metal charge-transfer path. Then, OH causes decomposition of organic compounds as well as reoxidation of Fe(Ⅱ) to Fe(Ⅲ), respectively. This cycling of Fe(Ⅲ) to Fe(Ⅱ) is even faster in Fe(Ⅲ)-organic systems. Similar to Fe(Ⅲ), Cr(Ⅲ) can be chelated with many kinds of organic ligands, such as EDTA, citric acid and tartrate acid. Also citric acid and tartaric acid are often used as reductants for Cr(Ⅵ) with subsequent formation of Cr(III)-cit complexes during the reduction process. Past investigations reported in the literature primarily focused on Cr(Ⅵ) reduction, and few attempts have been made to study the kinetics of Cr(Ⅲ)-cit reoxidation. In this study, we selected Cr(Ⅲ)-cit and Cr(Ⅲ)-tar as the model complexes for further investigation of their photoredox behavior. The thesis includes two parts.
     In PartⅠ:at 15℃,25℃,35℃and pH 2-8, oxidation of aqueous Cr(Ⅲ), chelated forms of Cr(Ⅲ), such as Cr(Ⅲ)-EDTA, Cr(Ⅲ)-cit and Cr(III)-tar, and insoluble forms of Cr(Ⅲ), such as Cr(OH)3, CrFe(OH)6 and CrPO4, byδ-MnO2 were investigated in batch reaction systems to predict the potential for Cr(Ⅲ) oxidation in soil environment. Results indicate that Cr(Ⅲ) can be rapidly oxidized to Cr(Ⅵ) at the beginning of the reaction. However, Mn(II) is produced and fills the adsorption sites on the manganese oxide surface. As a result, produced Mn(Ⅱ) greatly slows Cr(Ⅲ) oxidation byδ-MnO2. Lower pH, higher temperature and higher concentration ofδ-MnO2 markedly enhance the rate and extent of aqueous Cr(Ⅲ) oxidation. When pH value raised to 8, the oxidation of Cr(Ⅲ) is greatly affected by the other ions that co-existed in the reaction system. NH4+can significantly enhance the oxidation rate and extent of Cr(Ⅲ), H2PO4- restrained the oxidation of Cr(Ⅲ) due to the formation of CrPO4.The oxidation of Cr(Ⅲ)-EDTA byδ-MnO2 is significantly affected by the chelating time between Cr(Ⅲ) and EDTA and the molar ratio of EDTA to Cr(Ⅲ). The formed complex ions of Cr(Ⅲ)-EDTA are hardly oxidized byδ-MnO2 and no Cr(VI) was detected at all when pH was above 5. Raising temperature is benefit to the chelation between Cr(Ⅲ) and EDTA and causes the decrease of Cr(III) oxidation. The oxidation extent order of three chelated forms of Cr(Ⅲ) byδ-MnO2 is Cr(Ⅲ)-tar> Cr(Ⅲ)-cit> Cr(Ⅲ)-EDTA. The rate and extent of oxidation of Cr(OH)3 and CrFe(OH)6 byδ-MnO2 decrease with pH increasing from 2 to 4. No release of Cr(Ⅵ) was observed in the suspension of CrFe(OH)6 andδ-MnO2 at pH 4 and in the suspension of CrPO4 andδ-MnO2 at all pH levels tested. The results demonstrate that the order of stability of Cr(Ⅲ) in these precipitates is CrPO4> CrFe(OH)6> Cr(OH)3 in the presence ofδ-MnO2.
     In PartⅡ:Cr(Ⅲ)-citrate (Cr(Ⅲ)-cit) and Cr(Ⅲ)-tartrate (Cr(Ⅲ)-tar) complexes were prepared and purified by 732 cation innovatively. Results indicate that the mole ratio of Cr(Ⅲ)/citrate in Cr(Ⅲ)-cit complex was 1:1 and the mole ratio of Cr(Ⅲ)/tartrate in Cr(Ⅲ)-cit complex was 1:2. Their forms were analyzed by HPLC. The analyses show that Cr(Ⅲ)-cit exists in [Cr(Ⅲ)-H-cit]+and [Cr(Ⅲ)-cit] forms in a pH range of 3 to 5, in [Cr(Ⅲ)-cit] only from pH 6-8, in [Cr(III)-cit] and [Cr(Ⅲ)-OH-cit]- from pH 9-11, and only in [Cr(Ⅲ)-OH-cit]-at pH 12. And Cr(Ⅲ)-tar exists in [Cr(Ⅲ)-H-tar2], [Cr(Ⅲ)-tar2]- and [Cr(Ⅲ)-OH-tar2]2- forms at pH 3, in [Cr(Ⅲ)-tar2]- and [Cr(Ⅲ)-OH-tar2]2-in a pH range of 4 to 10, and the formation of [Cr(Ⅲ)-OH2-tar2] 3- has been established when pH reaches 11. In the batch reaction systems at pHs of 5 to 12 and 25℃, aqueous Cr(Ⅲ), Cr(Ⅲ)-cit and Cr(Ⅲ)-tar with different initial concentrations were fully exposed to light from medium pressure mercury lamps or a xenon lamp to mimic solar light irradiation. It appears that the innersphere electron transfer happens to Cr(Ⅲ)-cit/tar complexes after irradiation, resulting in the generation of Cr(Ⅱ) and cit·/tar-by a ligand-to-metal charge-transfer (LMCT) pathway. The accompanied decomposition of cit·/tar-, together with O2, lead to the formation of hydroxyl radical (·OH), hydrogen peroxide (H2O2) and other reactive oxygen species, and ultimately realizes the oxidation of Cr(Ⅱ) to Cr(Ⅵ) step by step. Both dissolved oxygen and the hydroxyl radical (·OH), an intermediate, serves as oxidants, and Cr(Ⅱ) was a precursor of oxidation of Cr(Ⅲ) to Cr(Ⅵ). The oxidation of Cr(Ⅲ) in Cr(Ⅲ)-cit is a little slower than that in Cr(Ⅲ)-tar but is much faster than that of aqueous Cr(Ⅲ). The oxidation rate of Cr(Ⅲ) increases with the initial concentration. The oxidation of Cr(Ⅲ) in Cr(Ⅲ)-cit obeyed to zero order kinetics; piecewise fitting method was adopted in the oxidation of Cr(Ⅲ) in Cr(Ⅲ)-tar, the initial stage obeyed to first order kinetics, and the later stage obeyed to zero order kinetics. In general, higher pH enhance the rates of Cr(Ⅲ) oxidation. In aqueous Cr(Ⅲ), Cr(Ⅲ)-cit and Cr(Ⅲ)-tar, photo-oxidation rates of Cr(Ⅲ) oxidation are not sensitive to pH in the range of 7 to 9, but increase significantly as pH further ascends, which is highly consistent with the distributions of Cr(Ⅲ) forms. It appears that both [Cr(Ⅲ)-OH2-tar2]3- and [Cr(Ⅲ)-cit-OH]-are photochemically active form. The photoproduction of·OH was determined by HPLC using benzene as a probe to support the reaction mechanism. Exposure of aqueous Cr(Ⅲ), Cr(Ⅲ)-cit and Cr(Ⅲ)-tar to full light of a 500 W mercury lamp in the absence of O2 was also investigated. Results demonstrate that dissolved oxygen plays an important role in the photo-oxidation of Cr(Ⅲ). The oxidation rates of Cr(Ⅲ), Cr(Ⅲ)-cit and Cr(Ⅲ)-tar under anoxic conditions are all slower than those under oxic conditions. Aqueous Cr(Ⅲ) oxidation rate under anoxic conditions is slightly slower than that under oxic conditions. But, the discrepancy is obviously enlarged in Cr(Ⅲ)-cit and Cr(Ⅲ)-tar, where Cr(Ⅵ) is not even detected until the forms [Cr(Ⅲ)-OH-tar2]2-, [Cr(Ⅲ)-OH2-tar2]3- and [Cr(Ⅲ)-cit-OH]-appeared. That is to say [Cr(Ⅲ)-OH-tar2]2-, [Cr(Ⅲ)-OH2-tar2]3- and [Cr(Ⅲ)-cit-OH]-can yield·OH directly and result in Cr(Ⅲ) oxidation even under anoxic conditions. It is affirmed that the generation of hydroxyl radical (·OH) is the key step, which is further affirmed by the result of obvious increase of Cr(Ⅲ) oxidation when H2O2 was introduced into the reaction system. However, some organic compounds, such as methanol,2-propanal, benzene, phenol, naphthaline and semiconductors, such as TiO2, and Fe(Ⅲ) resulted are·OH scavengers or electron donors, resulting in a decrease of Cr(Ⅲ) oxidation and an increase of Cr(Ⅵ) reduction simultaneously. However, a strong promotion of Cr(Ⅲ) oxidation occurred when TiO2 pre-adsorbed PO43-.
引文
[1]汤克勇.环境中的铬与铬的生理意义[J].皮革科学与工程,1996,6(3):41-45
    [2]房兴堂,张彩荣,陈宗方.有机铬的研究进展及应用前景[J].饲料与畜牧,1998,(5):15-17
    [3]江澜,王小兰.铬的生物作用及其污染治理[J].重庆工商大学学报,2004,21(4):325-327
    [4]王夔.生命科学中的微量元素[M].北京:中国计量出版社,1992,355
    [5]梁爱琴,匡少平,白卯娟.铬渣治理与综合利用[J].中国资源综合利用,2003,1:15-18
    [6]韩怀芬,黄玉柱,金漫彤.铬渣水泥固化及固化体浸出毒性研究[J].环境污染治理技术与设备,2002,3(7):9-12
    [7]汤克勇.铬的污染源及其危害[J].皮革科学与工程,1997,7(1):33-37
    [8]李爱琴,夏诗坂.环境中的铬[J].内蒙古科技与经济,1998,2:16-17
    [9]张宝莉主编.农业环境保护[M].化学工业出版社,2002,176
    [10]赵振新.六价铬径门摄入的动物慢性毒性买验研究[J].环境与健康杂志,1988,2:28-30
    [11]蔡宏道.环境污染与卫生检测[M].人民卫生出版社,1981,67-72
    [12]《三废治理与利用》编委会.三废治理与利用[M].冶金工业出版社,1995,131-156
    [13]陆昌森,马世豪,张忠祥.污水综合排放标准详解[M].北京:中国标准出版社,1991:55-56
    [14]赵振新.六价铬径门摄入的动物慢性毒性买验研究[J].环境与健康杂志,1988,2:28-30
    [15]曹仁林.土壤添加铬对农作物生长及铬残留量的影响[J].中国环境科学,1988,2:27-33
    [16]张义资.三价铬和六价铬对大麦害效应的比较[J].中国环境科学,1997,17(6):565-568
    [17]用易勇.高浓度铬对风眼莲的伤害及膜脂过氧化作用的影响[J].环境科学,1993,14(3):60-61
    [18]兰嗣国,殷惠民,狄一安,等.浅谈铬渣解毒技术[J].环境科学研究,1998,11(3):53-56
    [19]龙腾发,柴立元,郑粟,等.生物法解毒六价铬技术的应用现状与进展[J].安全与环境工程,2004,11(3):22-25
    [20]刘云惠,魏显有,王秀敏.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20
    [21]陈英旭,何增耀,吴建平.外源铬在土壤中的形态转化[J].农业环境保护,1995,14(3):105-110
    [22]柴立元,王云燕,邓荣.水环境中铬的存在形态及迁移转化规律[J].工业安全与环保,2006,8(32):1-3
    [23]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72-76
    [24]韩怀芬,黄玉柱,金漫彤.铬的固化/稳定化研究[J].环境污染与防治,2002,24(4):199-200
    [25]Meegoda J N. Practice Periodical of Hazardous, toxic, and radioactive waste [J]. Management, 1999,3(3):124-131
    [26]王代芝.铬渣和含铬废水的处理综述[J].辽宁化工,2004,33(10):616-619
    [27]Pichtel J, Pichtel T M. Comparison of solvents for ex situ removal of chromium and lead from contaminated soil [J]. Environ. Eng. Sci.,1997,14(2):97-104
    [28]McKinley W S, Pratt R C, McPhillips L C. Cleaning up chromium [J]. Civil. Eng.,1992,62(3): 69-71
    [29]Thornton J S. Gas treatment of Cr(Ⅵ)-contaminated sediment samples from the North 60'spits of the chemical waste landfill [J]. PNNL-11634, Pacific Northwest National Laboratory, Richland, Washington,1997
    [30]Thornton E C, Amdnette J E. Hydrogen sulfide gas treatment of Cr(Ⅵ) contaminated sediment samples from a plating-waste disposal site-implications for in situ-remediation [J]. Environ. Sci. Technol.,1999,33:4096-4101
    [31]Kim C, Zhou Q, Deng B, et al. Chromium (Ⅵ) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics [J]. Environ. Sci. Technol.,2001,35:2219-2225
    [32]杨俊香,兰叶青.硫化物还原Cr(Ⅵ)的反应动力学研究[J].环境科学学报,2005,25(3):356-360
    [33]周加祥,刘铮.铬污染土壤修复技术研究进展[J].环境污染治理技术与设备,2000,1(4):52-56
    [34]Lytle C M, Lytle F M, Yang N, et al. Reduction of Cr(Ⅵ) to Cr(Ⅲ) by wetland plants:potential for in situ heavy metal detoxification [J]. Environ. Sci. Technol.,1998,32:3087-3093
    [35]Micera G, Dessl A J. Chromium adsorption by plant-roots and formation of long-lived Cr(Ⅴ) species-an ecological hazard. Inorg. Biochem.1988,34:157-166
    [36]Reeves R D, Baker A J M, Brooks R R. Abnormal accumulation of trace metals by plants [J]. Mining Environ. Management,1995,9:4-8
    [37]汪小勇,张超兰,姜文.污染土的修复技术研究进展[J].安徽农业科学,2005,33(1):128-129
    [38]韩怀芬,蒲凤莲,裘娟萍.生物法修复铬污染土壤的研究[J].能源环境保护,2003,17(2):7-9
    [39]吴淑杭,周德平,吕卫光,等.硫酸盐还原菌修复铬(Ⅵ)污染土壤研究[J].农业环境科学学报,2007,26(2):467-471
    [40]Ribeiro A B, Mateus E P, Ottosen L M. Electrodialytic removal of Cu, Cr, and As from Chromated Copper Arsenate-Treated Timber Waste [J]. Environ. Sci. Technol.,2000,34(5):784-788
    [41]常文越,陈晓东,王磊.土著微生物修复铬(Ⅵ)污染土壤的条件实验研究[J].环境保护科 学,2007,33(1):42-44
    [42]Westheimer F H. The mechanisms of chromic acid Chromium(Ⅵ) biosorption and bioaccumulation oxidations [J]. Chem. Rev.,1949,45(3):419-451
    [43]Stewart R. Oxidation Mechanisms:Application to Organic Chemistry. W. A. Benjamin Inc, New York,1964:58-76
    [44]Cainelli G, Cardillo G. Chromium Oxidations in Organic Chemistry [J]. Springer-Verlag:Berlin, 1984:118-128
    [45]Deng B, Stone A. Surface-catalyzed chromium(Ⅵ) reduction:reactivity comparisons of different organic reductants and different oxide surfaces [J].Environ. Sci. Technol.,1996,30:2484-2494
    [46]Elovitz M S, Fish W. Redox Extraction of Cr(Ⅵ) and substituted phenols:kinetic investigation [J]. Environ. Sci. Technol.,1994,28:2161-2169
    [47]Nakayama E, Kuwamoto T, Tsurubo S, et al. Chemical speciation of chromium in seawater. Part 3. The determination of Chromium species [J]. Anal. Chim. Acta.,1981,130:401-404
    [48]王应红,陈武勇,辜海彬.葡萄糖和没食子酸与Cr(Ⅵ)氧化还原反应动力学特性比较研究[J].中国皮革,2005,34(3):30-32
    [49]Deng B, Stone, A T. Surface-catalyzed Chromium (Ⅵ) reduction:the TiO2-Cr(Ⅵ)-Mandelic acid system [J]. Environ. Sci. Technol.,1996(a),30:463-472
    [50]Ross D S, Sjogren R E, Bartlett R J. Behavior of chromium in soils and Cr(Ⅵ) toxicity to microorganisms [J]. J. Environ. Qual.,1981,10:145-148
    [51]王立军,章中.土壤水介质中Cr(Ⅵ)和Cr(Ⅲ)形态的转化[J].环境科学,1982,3(4):38-41
    [52]James B R, Bartlett R J. Behavior of chromium in soils Ⅶ. Adsorption and reduction of hexavalent form [J]. J. Environ. Qual.,1983,12 (2):177-181
    [53]陈静生,张国梁,穆岚.土壤对六价铬的还原容量初步研究[J].环境科学学报,1997,17(3):334-339
    [54]黄启飞,高定,丁德蓉.垃圾堆肥对铬污染土壤的修复机理研究[J].土壤与环境,2001,110(3):176-180
    [55]张亚丽,沈其荣,王兴兵.猪粪和稻草对铬污染黄泥土生物活性的影响[J].植物营养与肥料学报,2002,8(4):488-492
    [56]Burge I J, Hug S J. Influence of organic ligands on chromium(Ⅵ) reduction by iron(Ⅱ) [J]. Environ. Sci. Technol.,1998,32:2092-2099
    [57]Wittbrodt P R, Palmer C D. Reduction of Chromium(Ⅵ) in the presence of excess soil fulvic acid [J]. Environ. Sci. Technol.,1995,29:255-263
    [58]李琳.多相光催化在水污染治理中的应用[J].环境科学进展,1994,2(6):23-31
    [59]Chen D, Ray A K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis [J]. Chem. Eng. Sci.2001,56,1561-1570
    [60]Dhananjay S B, Vishwas G P. Photacatalytic degradation for environmental applicatons a review [J]. J. chem. Technol. Biotechnol.,2001,77:102-116
    [61]何怀平,谭欣,马红饮,等.Ti02光催化膜的应用研究[J].天津师范大学学报(自然科学版),2002,22(1):186-188
    [62]徐明芳,陈心满,徐开强,等.光催化反应器中光降解重金属Cr(Ⅵ)的研究[J].现代化工2005,25(3):30-33
    [63]汤心虎,韦朝海,龙保根,等.稀水溶液中Cr(Ⅵ)的光催化还原研究[J].环境化学,2006,25(1):20-23
    [64]付宏祥,吕功煊,李树本,等.Cr(Ⅵ)离子在TiO2表面的光催化还原机理研究[J].化学物理学报,1999,12(1):112-115
    [65]Khalil L B, Rophael M W, Mourad W E. The removal of the toxic Hg(Ⅱ) salts from water by photocatalysis [J]. Appl. Catal., B,2002,36:125-130
    [66]刘国光,丁雪军,张学治.光催化氧化技术的研究现状及发展趋势[J].环境污染治理技术与设备,2003,8(4):65-69
    [67]史载锋,范益群,徐南平,等.不同光源对光催化降解亚甲基蓝的影响[J].南京化工大学学报,2000,22(1):31-34
    [68]刘俊渤,吴景贵,刘景华.纳米Fe203光催化还原Cr(Ⅵ)的研究[J].吉林农业大学学报,2005,27(1):83-85,91
    [69]Yurkow E J, Hong J, Min S, et al. Photochemical reduction of hexavalent chromium in glycerol containing solutions [J]. Environ. Pollut.,2002,117:1-3
    [70]Piotr M, Andrzej K, Zofia S. Mechanism of photochemical reduction of chromium(Ⅵ) by alcohols and its environmental aspects [J]. J. Photochem. Photobiol., A,2003,160:163-170
    [71]Bruce R, James. Iron catalyzed Photochemical Reduction of Chromium(VI) by Oxalate and Citrate in solution [J]. Environ. Sci. Technol.,1997,31:160-170
    [72]Rai D, Sass B M, Moor D A. Chromium hydrolysis constants and stability of chromium(Ⅲ) hydroxide [J]. Inorg. Chem.,1987,26:345-349.
    [73]Milacictt R, Stupar J. Fractionation and oxidation of chromium tanney waste and sewage sludg-amended soils [J]. Environ. Sci. Technol.,1995,29:506-514
    [74]Chattopadhayay B, Datta S, Chattergi A, Mukhopadhyay S K. The environmental impact of waste chromium of tanney agglomerates in the East Calcutta Wetland Ecosystem [J]. J. Soc. Leath. Technol. Chem.,1999,84:94-100
    [75]Schroeder D C, Lee G F. Potential transformations of chromium in natural waters [J]. Water, Air, Soil Pollut,1975,4:355-365
    [76]Rai D, Zachara J M, Eary L E, et al. Geochemical behavior of chromium species [J]. No.EPRI-4544, Battelle, Pacific Northwest Laboratories, Washington.1986
    [77]董长勋,兰叶青,潘根兴.儿种晶形氧化锰对Cr(Ⅲ)氧化作用的研究[J].哈尔滨商业大学学报(自然科学版),2006,22(6):44-47
    [78]Eary L E, Rai D. Kinetics of chromium(Ⅲ) oxidation to chromium(Ⅵ) by reaction with manganese dioxide [J]. Environ. Sci. Technol.,1989,21:1187-1193
    [79]Johnson C A, Xyla A G. The oxidation of chromium(Ⅲ) to chromium(Ⅵ) on the surface of manganite (y-MnOOH) [J]. Geochim. Cosmochim. Acta,1991,55:2861-2866
    [80]Zhang H. Light and Iron(Ⅲ)-induced oxidation of chromium(Ⅲ) in the presence of organic acids and manganese(Ⅱ) in simulated atmospheric water [J]. Atmos. Environ.,2000,34:1633-1640
    [81]陈英旭,朱荫湄,袁可能,等.土壤中铬的化学行为研究Ⅰ:儿种矿物对Cr(Ⅵ)的吸附作用[J]. 浙江农业大学学报,1990,16(2):119-124
    [82]陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究[J].环境科学学报,1993,13(1):45-50
    [83]Bartlett R J, James B R. Behavior of chromium in soils Ⅲ. Oxidation [J]. J. Environ. Qual.,1979, 8(1):31-35
    [84]刘桂秋,冯雄汉,谭文峰,等.几种土壤铁锰结核对Cr(Ⅵ)的氧化动力学特性.华中农业大学学报[J],2002,21(5):450-454
    [85]刘桂秋,张鹤飞,刘凡,等.不同土壤锰结核对Cr(Ⅲ)的氧化比较[J].陕西师范大学学报(自然科学版).2003,31(3):110-114
    [86]刘桂秋,刘凡,谭文峰.几种土壤锰结核对Cr(Ⅲ)的氧化与锰矿物类型[J].土壤与环境.2002,11(3):241-244
    [87]Oscarson D W, Huang P M, Hammer U T. Oxidation and sorption of As by MnO2 as influenced by surface coationgs of iron and aluminum oxides and calcium carbonate [J]. Water, Air and Soil Pollut,1983,20:233-244
    [88]Chen Y X, Chen Y Y, Liu Q. Factors Affecting Cr(Ⅲ) Oxidation by manganese oxides [J]. Pedosphere,1997,7 (2):185-192
    [89]Amacher M C, Baker D A. Redox reactions involving chromium. Plutonium and manganese in soils. Institute for research on land and water resources [J]. Pennsylvania State University,1982
    [90]Weaver R M, Hochela M F, Ilton E S. Dynamic processes occurring at the Cr(Ⅲ) aq (y-MnOOH) interface:Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution [J]. Geochim. Cosmochim. Acta,2002,66:4119-4132
    [91]Malati M A, Sear A. Oxidations by manganese(Ⅲ)-Oxidation of chromium(Ⅲ) [J]. Polyhedron, 1989,8:1874-1875
    [92]庄源益,袁有才,张青,等.海水中Cr(Ⅲ)的沉淀和吸附作用[J].环境化学,1985,4(6):61-65
    [93]陈英旭.铬的土壤化学[J].土壤学进展,1992,(5):8-13
    [94]罗勤慧,沈孟长,丁益,等.Cr(Ⅲ)离子在水溶液中的状态[J].中国科学,B辑,1986,(2):137-145
    [95]Bartlett R J, Kimble J M. Behavior of chromium in soils I:Trivalent form [J]. J. Environ. Qual., 1976,5:379-383
    [96]Rengasonry P, Quade J M. Interaction of monomeric and polymeric species of metal ions with clay surfaces III. Alumiunum(Ⅲ) and chromium(Ⅲ) [J]. Aust. J. Soil Res.,1978,16:53-56
    [97]James B R, Bartlett R J. Behavior of chromium in soils V. Fate of organically complexed Cr(Ⅲ) added to soil [J]. J. Environ. Qual.,1983a,12(2):169-172
    [98]Grove J H, Ellis B G. Extractable chromium as related to soil pH and applied chromium [J]. S. S. S. A. J.,1980,44:238-242
    [99]Nakayama E, Tokoro H, Kumsmoto T, et al. Dissolved state of chromium in seawater [J]. Nature, 1981,290:768-770
    [100]朱月珍.影响土壤中铬迁移转化的几个因素[J].土壤学报,1985,22(4):390-393
    [101]夏增禄.北京地区铬的土壤化学地理[J].地理学报,1989,44(4):449-458
    [102]Artiole J, Wallance H F. Effect of crushed limestone barrier of Cr attenuation in soil [J]. J. Environ. Qual.,1979,8(4):503-509
    [103]Cotton F A, Wilkinson G. Advanced inorganic chemistry 4th ed [M]. p.727, John Wiley & Sond, New York.1980
    [104]Stumm W, Morgan J J. Aquatic Chemistry [M].p.471, Wiley-Interscience, New York.1970
    [105]Jane T K, Young D R. Chromium speciation in municipal wastewaters and seawater [J]. J. Water Pollut. Controll Fed.,1978,50:2327-2336
    [106]Ahern F J M, Payne N C. Speciation of chromium in sea water Anal [J]. Chim. Acta,1985,175: 147-151
    [107]陈英旭,骆永明,朱永官,朱祖祥,何增耀.土壤中铬的化学行为研究Ⅴ.土壤对Cr(Ⅲ)吸附和沉淀作用的影响因素[J].土壤学报,1994,1(31):77-85
    [108]Bartlett R J, Kimble J M. Behavior of chromium in soils Ⅱ. Hexavalent form [J]. J. Environ. Qual., 1976b,5:383-386
    [109]Mortrede J J. Response of corn to zinc and chromium in municipal waste applied to soil [J]. J. Environ. Qual.,1975,4:170-174
    [110]沈伟韧,赵文宽,贺飞,等.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,27(4):349-361
    [111]刘冬莲,黄艳斌.·OH的形成机理及在水处理中的应用[J].环境科学与技术,2003,26(1):44-46
    [112]郑红,汤鸿宵,王怡中.有机污染物半导体多相光催化机理及动力学研究进展[J].环境科学进展,1996,4(3):1-171
    [113]杨合,薛向欣,左良,等.二氧化钛光催化机理在建材领域的应用[J].低温建筑技术,2003,(4):75-77
    [114]Miner C. Kinetic analysis of photoinduced reactions at the water semiconductor interface [J]. Catalysis Today,1999,54 (223):205-216
    [115]张万忠,乔学亮,邱小林.纳米二氧化钛的光催化机理及其在有机废水处理中的应用[J].2006,35(5):1026-1031
    [116]李金田,耿世彬.纳米二氧化钛光催化机理及应用分析[J].洁净与空调技术,2006,(1):23-25
    [117]Fujishima A, Honda K. Electrochemical potolysis of water at a semicoductor electrode [J]. Nature, 1972,238 (5338):38-45
    [118]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB'S in the presence of titanium dioxide in aqueous suspension [J]. Bull. Environ. Contain. Toxicol.,1976,16(6):697-701
    [119]李戎,宋阳,王建庆.Fenton试剂处理模拟活性染色废水[J].印染,2009,(2):13-15
    [120]李彩霞,丁光月,樊彩梅Photo-Fenton反应处理各种难降解有机废水的研究进展[J].山西化工,2008,(26):26-30
    [121]Hoigne J, Zuo Y, Nowell L. Photochemical reactions of in atmospheric waters:Role of dissolved iron species [C].//Helz G R, Zepp R G, Crosby D G (Eds.):Aquatic and Surface Photochemistry. Lewis Publishers Boca Raton:CRC Press,1994,75-84
    [122]Faust B C, Zepp R G. Photochemistry of aqueous iron(Ⅲ)-polycarboxylate complexes:roles in the chemistry of atmospheric and surface waters [J]. Environ.Sci.Tec.,1993, (27):2517-2522
    [123]Deng N S, Wu F, Luo F, et al. Photodegradation of dyes in aqueous solutions containing Fe(Ⅲ)-oxalato complexes [J]. Chemosphere,1997,35 (11):2697-2706
    [124]Hug S J, Laubscher H, Burge I J. Iron(Ⅲ) catalyzed photochemical reduction of chromium(Ⅵ) by oxalate and citrate in aqueous solutions [J]. Environ. Sci. Technol.,1997,31:160-170
    [125]Deng N S, Wu F, Luo F. et al. Ferric citrate-induced photodegraduation of dyes in aqueous solutions [J]. Chemosphere,1998,36 (15):3101-3112
    [126]Ou X X, Quan X, Chen S. Photocatalytic reaction by Fe(Ⅲ)-citrate complex and its effect on the photodegradation of atrazine in aqueous solution[J]. J. Photochem. Photobiol.,2008,197:382-388
    [127]罗凡,吴峰,邓南圣,等.铁(Ⅲ)-羧酸配合物对水溶性染料的光化学脱色动力学的比较研究[J].环境科学与技术,1998,2:1-4
    [128]Ciesla p, Karocki A, Stasicka Z. Photoredox behavior of the Cr-EDTA complex and its environmental aspects [J]. J. Photochem. Photobiol.,2004,162:537-544
    [1]Deng B, Stone A T. Surface-catalyzed chromium (Ⅵ) reduction:the TiO2-CrVI-mandelic acid system [J]. Environ. Sci. Technol.,1996,30:463-472
    [2]Wittbrodt P R, Palmer C D. Reduction of Cr (Ⅵ) in the presence of excess soil fulvic acid [J]. Environ. Sci. Technol.,1996,29:255-263
    [3]Wittbrodt P R, Palmer C D. Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances [J]. Environ. Sci. Technol.,1996,30:2470-2477
    [4]Hug S J, Laubscher H U. Iron (Ⅲ) catalyzed photochemical reduction of chromium (Ⅵ) by oxalate and citrate in aqueous solutions [J]. Environ. Sci. Technol.,1997,31:160-170
    [5]Kabir-ud-Din, Hartani K, Khan Z. Unusual rate inhibition of manganese (Ⅱ) assisted oxidation of citric acid by chromium (Ⅵ) in the presence of ionic micelles [J]. Transition Met. Chem.,2000,25: 478-484
    [6]Li C, Lan Y Q, Deng B. Catalysis of Mn2+on the reduction of Cr6+by Citrate [J]. Pedosphere, 2007,17:318-323
    [7]Lan Y, Li C, Mao J, et al. Influence of clay minerals on the reduction of Cr6+by citrate acid [J]. Chemosphere,2008,71:781-787
    [8]Thornton E C, Amonette J E. Hydrogen sulfide gas treatment of Cr(Ⅵ)-contaminated sediment sample from a plating waste disposal site. Implications for in-situ remediation [J]. Environ. Sci. Technol.,1999,33:4096-4101
    [9]Kim C, Zhou Q H, Deng B L, et al. Chromium (Ⅵ) reduction by hydrogen sulfide in aqueous media:Stoichiometry and kinetics [J]. Environ. Sci. Technol.,2001,35:2219-2225
    [10]Lan Y, Deng B, Kim C, et al. Catalysis of elemental sulfur nanoparticles on chromium(Ⅵ) reduction by sulfide under anaerobic conditions [J]. Environ. Sci. Technol.,2005,39:2087-2094
    [11]Lan Y, Yang J, Deng B. Catalysis of dissolved and adsorbed iron in soil suspension on the reduction of Cr(Ⅵ) by sulfide [J]. Pedosphere,2006,16:572-578
    [12]Lan Y, Deng B, Kim C, et al. Influence of soil minerals on chromium(Ⅵ) reduction by sulfide under anoxic conditions [J]. Geochem. Trans.,2007,8:4 doi:10.1186/1467-4866-8-4
    [13]Blowes D W, Ptacek C J, Jambor J L. In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls:laboratory studies [J]. Environ. Sci. Technol.,1997,31:3348-3357
    [14]Buerge I J, Hug S J. Kinetics and pH dependence of chromium (Ⅵ) reduction by Iron (Ⅱ) [J]. Environ. Sci. Technol.,1997,31:1426-1432
    [15]Buerge I J, Hug S J. Influence of organic ligands on chromium (Ⅵ) reduction by iron (Ⅱ) [J]. Environ. Sci. Technol.,1998,32:2092-2099
    [16]Buerge I J, Hug S J. Influence of mineral surfaces on chromiumⅥ) reduction by iron(Ⅱ) [J]. Environ. Sci. Technol.,1999,33:4285-4291
    [17]Puls R W, Paul C J, Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater:a field test [J]. Appl. Geochem.,1999,14:989-1000
    [18]Melitas N, Chuffe-Moscoso O, Farrell J. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media:corrosion inhibition and passive oxide effects [J]. Environ. Sci. Technol.,2001,35:3948-3953
    [19]Wilkin R T, Su C M, Ford R G, et al. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier [J]. Environ. Sci. Technol.,2005,39: 4599-4605
    [20]Milacictt R, Stupar J. Fractionation and oxidation of chromium tanney waste and sewage sludg-amended soils [J]. Environ. Sci. Technol.,1995,29:506-514
    [21]Chattopadhayay B, Datta S, Chattergi A, Mukhopadhyay S K. The environmental impact of waste chromium of tanney agglomerates in the East Calcutta Wetland Ecosystem [J]. J. Soc. Leath. Technol. Chem.,1999,84:94-100
    [22]Fendorf S E, Fendorf M, Sparks D R, et al. Inhibitory mechanism of Cr(Ⅲ) oxidation [J]. J. Colloid. Interface. Sci.,1992,148:37-54
    [23]Fendorf S E, Zasosky R J. Chromium(Ⅲ) oxidation by δ-MnO2:Ⅰ. Characterization [J]. Environ. Sci. Technol.,1992,26:79-85
    [24]Manceau A A, Charlet L. X-ray absorption spectroscopic study of the sorption of Cr(Ⅲ) at the oxide-water interface:Ⅱ. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide [J]. J. Colloid. Interface. Sci.,1992,148:443-458
    [25]Schroeder D C, Lee G F. Potential transformations of chromium in natural waters [J]. Water Air Soil Pollut.,1975,4:355-365
    [26]Eary L E, Rai D. Kinetics of chromium(Ⅲ) oxidation to chromium(Ⅵ) by reaction with manganese dioxide [J]. Environ. Sci. Technol.,1987,21:1187-1193
    [27]陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究[J].环境科学学报,1993,13(1):45-50
    [28]刘桂秋,张鹤飞,刘凡,等.不同土壤锰结核对Cr(Ⅲ)的氧化比较[J].陕西师范大学学报(自然科学版),2003,31(3):110-114
    [29]Fendorf S E, Zasoski R J, Burau R G. Competing Metal iron influnences on chromium(Ⅲ) oxidation by birnessite [J]. Soil. Sci. Soc.Am.,1993,57:1508-1515
    [30]Johnson C A, Xyla A G. The oxidation of chromium(Ⅲ) to chromium(Ⅵ) on the surface of manganite (y-MnOOH) [J]. Geochim. Cosmochim. Acta,1991,55:2861-2866
    [31]Zhang H. Light and Iron(Ⅲ)-induced oxidation of chromium(III) in the presence of organic acids and manganese(II) in simulated atmospheric water [J]. Atmos. Environ.,2000,34:1633-1640
    [32]Fendorf S E, Fendorf M, Gronsky R, et al. Surface precipitation reactions on oxide surfaces [J]. J. Colloid. Interface. Sci.,1992,148:295-298
    [33]Johnson C A, Xyla A G. The oxidation of chromium(Ⅲ) to chromium(Ⅵ) on the surface of manganate(y-MnOOH) [J]. Geochim. Cosmochim. Acta,1991,55:2861-2866
    [34]Palmer C D, Wittbrodt P R. Processes affecting the remediation of chromium-contaminated sites [J]. Environ. Health Perspect.,1991,92:25-40
    [35]Bartkett R J, James B R. Behavior of chromium in soils. III. Oxidation [J]. J. Environ. Qual.,1979, 8:31-35
    [36]Kim J G, Dixon J B, Chusei C C, et al. Oxidation of chromium(Ⅲ) to (Ⅵ) by manganese oxides [J]. Soil Sci. Soc.Am. J.,2002,66:306-315
    [37]Stepniewska Z, Bucior K, Bennicelli R P. The effects of MnO2 on sorption and oxidation of Cr(Ⅲ) by soils [J]. Geoderma,2004,122:291-296
    [38]Negra C, Ross D S, Lanzirotti A. Oxidizing behavior of soil manganese:Interactions among abundance, oxidation state, and pH [J]. Soil Sci. Soc. Am. J.,2005,69:87-95
    [39]Apte A D, Tare V, Bose P. Extent of oxidation of Cr(Ⅲ) to Cr(Ⅵ) under various conditions pertaining to natural environment [J]. J. Hazard. Mater., B 2006,128:164-174
    [40]Feng X H, Zhai L M, Tan W F, et al. The controlling effect of pH on oxidation of Cr(Ⅲ) by manganese oxide minerals [J]. J.Colloid Interface Sci.,2006,298:258-266
    [41]Oze C, Bird D K, Fendorf S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc [J]. Natl. Acad. Sci. USA.,2007,104:6544-6549
    [42]Bartlett R J. Chromium cycling in soils and water:links, gaps and methods [J]. Environ. Health Perspect.,1991,92:31-34
    [43]Wu Y, Deng B, Xu H, Kornishi H. Chromium(Ⅲ) oxidation coupled with microbially mediated Mn(II) oxidation [J]. Geomicrobiol. J.,2005,22:161-170
    [44]Murray K J, Tebo B M. Cr(Ⅲ) is indirectly oxidized by the Mn(Ⅱ)-oxidizing bacterium bacillus sp. Strain SG-1 [J]. Environ. Sci. Technol.,2007,41:528-533
    [45]Mckenzie R M. The Synthesis of Birnessite, Cryptomelane and Some other oxides and Hydroxides of Manganese [J]. Mineral Magazine,1971,38:493-502
    [46]Tzou Y M, Wang M K, Loeppert R H. Sorption of phosphate and Cr(Ⅵ) by Fe(Ⅲ) and Cr(Ⅲ) hydroxides. Arch [J]. Environ. Contam. Toxicol.,2003,44:445-453
    [47]Mustafa S, Murtaza S, Naeem A, et al. Sorption of divalent metal' ions on CrPO4 [J]. J. Colloid Interface Sci.,2005,283:287-293
    [48]Bartlett R J, James B R. Behavior of chromium in soils III. Oxidation [J]. J. Environ. Qual.,1979, 8(1):31-35
    [49]刘桂秋,刘凡,谭文峰.几种土壤锰结核对Cr(Ⅲ)的氧化与锰矿物类型[J].土壤与环境.2002,11(3):241-244
    [50]Chen Y X, Chen Y Y, Liu Q. Factors Affecting Cr(Ⅲ) Oxidation by manganese oxides [J]. Pedosphere,1997,7 (2):185-192
    [51]Jeffrey A R, George W B. Spectroscopic study of surface redox reactions with manganese oxides [J]. Soil Sci. Soc. Am. J.,1992,56:82-88
    [52]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1988,162-208
    [53]董长勋,兰叶青,潘根兴.几种晶形氧化锰对Cr(Ⅲ)氧化作用的研究[J].哈尔滨商业大学学报(自然科学版),2006,22(6):44-47
    [54]Oscarson D W, Huang P M, Hammer U T. Oxidation and sorption of As by MnO2 as influenced by surface coationgs of iron and aluminum oxides and calcium carbonate [J]. Water, Air and Soil Pollut.,1983,20:233-244
    [55]Amacher M C, Baker D A. Redox reactions involving chromium. Plutonium and manganese in soils. Institute for research on land and water resources [J]. Pennsylvania State University,1982
    [56]Ross D S, Bartlett R J. Evidence for non-microbial oxidation of manganese in soil [J]. Soil Sci., 1981,132:153-160
    [57]Kellner R, Mermet J-M, Otto M, et al. Analytical Chemistry (Second Edition). Weinheim, Wiley-VCH.2004.
    [58]Nakayama E H, Tiloro T, Kumsmoto, et al. Dissoved state of chromium in sea water [J]. Nature, 1981,290:768-770
    [59]Weaver R M, Hochella M F, Ilton E S. Dynamic processes occurring at the Cr(Ⅲ)-manganite (γ-MnOOH) interface:simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution [J]. Geochim. Cosmochim. Acta,2002,66:4119-4132
    [60]Rai D, Sass B M, Moore D A. Cr(Ⅲ) hydrolysis constants and solubility of Cr(Ⅲ) hydroxide [J]. Inorg. Chem.,1987,26:345-349
    [1]Tokalioglu S, Arsav S, Delibas A, Soykan C. Indirect speciation of Cr(Ⅲ) and Cr(Ⅵ) in water samples by selective separation and preconcentration on a newly synthesized chelating resin [J]. Anal. Chim. Acta,2009,645:36-41
    [2]Dos S C F, Ardisson J D, Moura F C C, Lago R M, Murad E, Fabris J D. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(Ⅵ) environmental contaminants [J]. Chemosphere,2008,71:90-96
    [3]Puls R W, Paul C J, Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater:A field test [J]. Appl. Geochem.,1999,14:989-1000
    [4]Melitas N, Moscoso O C, Farrell J. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media:Corrosion inhibition and passive oxide effects [J]. Environ. Sci. Technol.,2001,35:3948-3953
    [5]Fendorf S E, Li G. Kinetics of chromate reduction by ferrous iron [J]. Environ. Sci. Technol.,1996, 30:1614-1617
    [6]Seaman J C, Bertsch P M, Schwallie L. In situ Cr(Ⅵ) reduction with coarse-textured, oxide-coated soil and aquifer systems using Fe(Ⅱ) solution [J]. Environ. Sci. Technol.,1999,33:939-944
    [7]Thornton E C, Amonette J E. Hydrogen sulfide gas treatment of Cr(Ⅵ)-contaminated sediment sample from a plating waste disposal site:Implications for in-situ remediation [J]. Environ. Sci. Technol.,1999,33:4096-4101
    [8]Lan Y, Deng B, Kim C, Thornton E C, Xu H. Catalysis of elemental sulfur nanoparticles on chromium(Ⅵ) reduction by sulfide under anaerobic conditions [J]. Environ. Sci. Technol.,2005, 39:2087-2094
    [9]Lan Y, Yang J, Deng B. Catalysis of dissolved and adsorbed iron in soil suspension on the reduction of Cr(Ⅵ) by sulfide [J]. Pedosphere,2006,16:572-578
    [10]Kabir-ud-Din, Hartani K, Khan Z Unusual rate inhibition of manganese (Ⅱ) assisted oxidation of citric acid by chromium (Ⅵ) in the presence of ionic micelles [J]. Transit. Metal Chem.,2000,25: 478-484
    [11]Li, C, Lan Y, Deng B. Catalysis of Mn2+ on the reduction of Cr6+ by citrate [J]. Pedosphere,2007, 17:318-323
    [12]Lan Y, Li C, Mao J, Sun J. Influence of clay minerals on the reduction of Cr6+ by citric acid [J]. Chemosphere,2008,71:781-787
    [13]Bartlett R J, James B R. Behavior of chromium in soils. Ⅲ. Oxidation [J]. J. Environ. Qual.,1979, 8:31-35
    [14]Eary L E, Rai D. Kinetics of Cr(Ⅲ) oxidation by manganese dioxide [J]. Environ. Sci. Technol., 1987,21:1187-1193
    [15]王立军,章中.土壤水介质中Cr(Ⅵ)和Cr(Ⅲ)形态的转化[J].环境科学,1982,3(4):38-41
    [16]董长勋,兰叶青,潘根兴.几种晶形氧化锰对Cr(Ⅲ)氧化作用的研究[J].哈尔滨商业大学学报(自然科学版),2006,22(6):44-47
    [17]Bartlett R J. Chromium cycling in soils and water:links, gaps and methods [J]. Environ. Health Persp.,1991,92:31-34
    [18]Dai R, Liu J, Yu C, Sun R, Lan Y, Mao J. A comparative study of oxidation of Cr(Ⅲ) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite) [J]. Chemosphere,2009,76:536-541
    [19]Schroeder D C, Lee G F. Potential transformations of chromium in natural waters [J]. Water Air Soil Poll.,1975,4:355-365
    [20]Eary L E, Rai D. Kinetics of Cr(Ⅲ) oxidation by manganese dioxide [J]. Environ. Sci. Technol., 1987,21:1187-1193
    [21]Ciesla P, Karocki A, Stasicka Z. Photoredox behaviour of the Cr-EDTA complex and its environmental aspects [J]. J. Photoch. Photobio. A:Chem.,2004,162:537-544
    [22]Zhang H, Bartlett R J. Light-induced oxidation of aqueous chromium(Ⅲ) in the presence of iron(Ⅲ) [J]. Environ. Sci. Technol.,1999,33:588-594
    [23]Zou Y, Hoigne J. Formation of hydrogen perodxide and depletion of oxalic acid in atmospheric water by photolysis of iron-oxalato complexes [J]. Environ. Sci. Technol.,1992,26:1014-1022
    [24]Liu Y X, Deng L, Chen Y, Wu F, Deng N S. Simultaneous photocatalytic reduction of Cr(Ⅵ) and oxidation of bisphenol:A induced by Fe(Ⅲ)-OH complexes in water [J]. J. Hazard. Mater.,2007, 139:399-402
    [25]Hug S J, Laubscher H, James B R. Iron(Ⅲ) catalyzed photochemical reduction of chromium(Ⅵ) by oxalate and citrate in aqueous solutions [J]. Environ. Sci. Technol.,1997,31:160-170
    [26]陈英旭,骆永明,朱永官,朱祖祥,何增耀.土壤中铬的化学行为研究Ⅴ.土壤对Cr(Ⅲ)吸附和沉淀作用的影响因素[J].土壤学报,1994,1(31):77-85
    [27]Puzon G J, Tokala R K, Zhang H, David Y, Peyton B M, Xun L. Mobility and recalcitrance of organo-chromium(Ⅲ) complexes. Chemosphere,2008,70:2054-2059
    [28]James B R and Bartlett R J. Behavior of chromium in soils V. Fate of organically complexed Cr(Ⅲ) added to soil[J]. J. Environ. Qual.,1983a,12(2):169-172
    [29]Cotton F A and Wilkinson G. Advanced inorganic chemistry 4th ed [M]. p.727, John wiley & Sond, New York.1980
    [30]Faust B C, Zepp R G. Photochemistry of aqueous iron(III)-polycarboxylate complexes:roles in the chemistry of atmospheric and surface waters [J]. Environ.Sci.Tec.,1993, (27):2517-2522
    [31]吴峰,朱凡,邓南圣.铁(Ⅲ)-柠檬酸盐配合物光解引发橙黄Ⅱ的脱色[J].应用化学,2004,21(6):546-550
    [32]付宏祥,吕功煊,张宏,李树本.Cr(Ⅵ)离子在TiO2表面的吸附与光催化还原消除[J].环境科学,1998,3:80-83
    [33]Sun J, Mao J D, Gong H, Lan Y. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with α-OH [J]. J. Hazard. Mater.,2009,168:1569-1574
    [34]Zhang H, Bartlett R J Light-induced oxidation of aqueous chromium(III) in the presence of iron(III) [J]. Environ. Sci. Technol.,1999,33:588-594

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700