用户名: 密码: 验证码:
铁屑法对染料配制废水除色试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对印染废水污染问题,论述了我国印染废水的治理现状,并分析了印染废水的来源、组成及水质特征和危害,同时详细地介绍了国内外印染废水的处理方法及优缺点。采用不同种类的染料配制成模拟印染废水,进行了混凝脱色烧杯试验和铁屑过滤脱色实验。
     混凝实验表明,常用的铝盐和铁盐混凝剂对疏水性染料(如硫化黑、直接黑、分散黑)的除色率可达到90%以上;对水溶性较好的染料(如活性红、酸性蓝),铝盐的除色率只有50%左右,三价铁盐对活性红的脱色率可达95%,而对酸性蓝的除色率只能达到65%;二价铁盐对实验的各种染料几乎无处理效果。
     铁屑静态烧杯脱色实验表明,影响脱色的主要因素有:废水pH值、铁水投配比、反应时间、曝气、原水色度和染料种类。pH值对除色的影响在烧杯试验刚开始阶段较大,但随着反应时间的延长,其影响逐渐减少;pH降至3.0时,溶出的铁粒子大幅度增加;增大铁水投配比可显著提高除色率,但增加到0.5g铁/ml废水以上后,对除色率的提高已不显著;曝气时可将除色率提高10%左右;对高色度废水的除色效果要比低色度废水差;铁屑法对活性染料、酸性染料、分散染料均有较好的除色效果,但染料种类不同除色规律不一样,处理原水色度300倍的各种染料配制废水达到90%的除色率时,活性红、活性蓝、酸性蓝需8min左右,酸性红需12min左右,而分散黑则需要20min;用粒径为1.0~2.5mm的海绵铁除色可获得与0.5~0.6mm的均匀细铁砂相同的效果。
     采用pH值、铁水投配比、反应时间,以及曝气与否对染料配制废水脱色的正交试验表明,影响脱色效果的因素重要性是:反应时间>铁水投配比>PH值>曝气。
     对酸性蓝染料废水的铁屑过滤试验表明,用细铁砂作滤料极易导致下层压实结块,在工程应用中是不可行的。改装海绵铁后,在装料初期对低色度(300倍)原水在滤速5m/h、pH5.0条件下过滤时可获得93%的脱色率,而对色度较高(500倍)原
    
    西安建筑科技大学硕士论文
    水除色效果较差,在滤速sm/h、pHS.O下除色率只有77%;出水色度达到平衡时,
    pH对除色影响明显,PH越低除色效果越好;滤速的影响对除色效果的影响很大,
    低滤速时除色率高;原水pH对过滤周期的影响很大,PH越低过滤周期越长:重复
    性实验表明,在原水PH值较高时会产生铁屑表面钝化现象而导致除色效果显著下
    降,因此不适宜在中性条件下运行;采用静态活化方式并不能恢复铁屑至装料初期
    的脱色性能;用强度为251/5,扩的反洗水对铁屑层反冲20min可获得较好的冲洗效
    果,海绵铁不会压实结块也没产生沟流现象,实际应用时选用1.0佗.5~的铁屑为
    宜;该法在pHS.o一6.0滤速5一10nl/l1运行时,出水pH在中性左右,总铁少于6.Omg/1。
As for pollution of printing and dyeing wastewater, this thesis describe the status quo of its treatment in China, analyze the source, component, characteristics and contamination, introduce a variety of treatment technology as well as their advantages and disadvantages, subsequently decolorization experiment was conducted by using coagulation-flocculation and Iron filtration process with simulated printing and dyeing wastewater.
    Coagulation-flocculation experiment showed that regular aluminum and ferrous coagulation is very effective in removing hydrophobic dyes, with 90% decolorization efficiency for sulfuric black, direct black and disperse black, while coagulation is less effective in removing hydrophilic dyes, only 50% decolorization efficiency was achieved by aluminum for reactive and acid dyes. Ferric coagulation is a exception for decolorization of hydrophilic dyes, in the experiment color removal efficiency reached as high as 95% and 65% for reactive red and acid blue, respectively.
    Jar test for color removal of printing and dyeing wastewater with iron particle showed that main factor connecting with color removal are raw wastewater pH, dosage ratio of iron to water, reaction time, aeration, raw wastewater color and type of dye. The effect of pH value is much greater during the earlier time of reaction, while decreasing gradually with reaction time. Ferric ion increase dramatically when raw wastewater pH is 3.0. High color removal efficiency was achieved when dosage ratio of iron to water was increased, however, there is no distinction between high and low dosage ratio of iron to water when it increased to 0.5gram iron per ml wastewater. Color removal efficiency can be increased by 10% when wastewater is aerated. Low color wastewater is more easily
    
    
    decolorized than high color wastewater. This process is effective in removing color caused by reactive dye, acid dye and disperse dye, but different dye is decolorized with different mechanism, for different simulated dye wastewater with 300 dilution multiple, when 90% color removal efficiency was achieved, reactive red, reactive blue and acid blue needed 8minutes, acid red and disperse black needed 12 minutes, 20 minutes respectively. With 1.0 mm to 2.5 mm sponge iron, decolozation curve is much same as with 0.5鈥?.6 mm regular iron particle.
    Orthogonal experiment was conducted by using pH value, dosage ratio of iron to water, reaction time as three pitch, aeration or not as two pitch. The result showed that factor affecting magnitude of decolorization efficiency was reaction time, dosage ratio of iron to water, pH value and aeration in sequence.
    Pilot-scale experiment showed that fine iron particle as filter sand can easily be compressed and blocked, and it is nonfeasible for application. For low color raw wastewater(300 dilution multiple), 93% color removal efficiency was achieved with sponge iron as filter sand at 5 m/h filtration rate and pH5.0, while for high color raw wastewater(500 dilution multiple), it is only 77%. When effluent color is constant, the effect of pH for color removal is obvious, the lower pH was, the higher color removal efficiency was. Filtration rate has a significant effect on decolorization efficiency, low filtration rate is more effective. Raw wastewater pH value play an important role in lengthening filtration period. Repeative experiment indicated that high pH value can easily result in inactivity of iron particle with decolorazation efficiency decreasing dramatically, and this process can't be operated under neutral conditions. Static regeneration couldn't restore its decolorization performance to that of the very begi
    nning of the experiment. When the system was backwashed 20 minutes with intensity of 251/s.m2 , sponge iron can not be compressed, and no gap flow was observed, the optimum size of iron particle is 1.0-2.5mm. When the system was operated at pH5.0~6.0 with filtration rate 5~10m/h, the effluent pH was neutral around, and total ferrous was less than 6.0mg/l.
引文
[1] 李颖,张统.印染废水治理技术的探讨[J].黑龙江纺织,[总第75期].
    [2] 戴日成,张统等.印染废水水质特征及处理综述[J].给水排水,2000,26(10)32-34.
    [3] 张统主编.污水处理工艺及工程方案设计[M].建筑工业出版社,2000年4月.
    [4] 朱月海.印染废水处理工艺及浅析[J].给水排水,1999,25(10):34.
    [5] 李家珍主编.染料、染色工业废水处理[M],化学工业出版社,1997年6月.
    [6] 周明耀编.环境有机污染物与致癌物质[M],四川大学出版社,1992年.
    [7] Roberts, Michael. Indian government may ban production of certain azo dyes[J].Chemical Week, 1996, (158): 15.
    [8] Vaidya, A.A. Datye, K.V., Environmental pollution during chemical processing of synthetic fibres[J]. Colorage, 1982, (14): 3-10.
    [9] 张林生,蒋岚岚.染料废水的脱色方法[J].化工环保,2000,20(1):14-18.
    [10] 余刚等.染料废水物理化学脱色技术的现状与进展[J].环境科学,1994,15(4):75-79.
    [11] 汪凯民等.印染废水治理技术进展[J].环境科学,1991,12(4):62-67.
    [12] Michaels, Bahorshy. Textiles[J].Water Environment Research, 1997,169(4): 658-662.
    [13] 姜方新,兰尧中.印染废水处理技术研究进展[J].云南师范大学学报,2002,22(2):24-27.
    [14] 宫克.改性膨润土对工业废水的脱色[J].沈阳大学学报,2002,14(4):104-105.
    [15] 石宝龙,李海英.PVAF交换纤维对酸性染料的脱色性能研究[J].青岛大学学报,1997,12(4):9-13.
    [16] 彭书传.硅藻土复合净水剂处理印染废水[J].环境科学与技术,1998,(1):24-26.
    [17] 沈东升,冯孝善.我国印染废水处理技术的现状和发展趋势[J].环境污染与防治,1996,18(1):26-28.
    [18] 朱建平等.吸附—气浮法脱除染料离子的研究[J].环境工程,1993,11(1):10-12.
    [19] 乌锡康等.镁盐对水溶性阴离子染料废水的脱色研究,中国环境科学[J],1994,14(5):359-360.
    [20] 张林生,B.Dobias.染料废水综合混凝-电气浮脱色处理[J].给水排水,1993,(6):22-26.
    [21] Getoff, N. Butz. Radiation[J]. Physical Chemistry, 1985,25(1)21-26.
    [22] 顾平,刘奎,杨造燕.Fenton试剂处理活性黑KBR染料废水研究[J].中国给水排水,1997,25(6):31-33.
    [23] W.T. Tang, R.Z. Chen. Decolorization kinetics and mechanisms of commercial dyes by Hydrogen peroxide/Rron powder system[J]. Chemosphere, 1996, 32(59): 947-958.
    [24] 杨晶,施利毅等.活性艳红X-3B氧化脱色的研究[J].上海大学学报,1998,4(5):586-590.
    
    
    [25] 陈银生等.印染废水处理技术[J].化工进展,2001,(5):40.
    [26] Asya, Uygur. An overview of oxidative and photoxidative decolorization Treatments of textile wastewater[J].JSDC. 1997,113:211-217.
    [27] Rott. U, Minke. R. Overview of wastewater treatment and recycling in the textile processing industry[J]. Water Sci. Technol. 1999, 40(1): 137-144.
    [28] Ince. NH, Gnenc DT. Treatability of a textile azo dye by UV/H202[J]. Environ Technol, 1997, 18: 179-185.
    [29] W.T. Tang, H. Anu. UV/TiO_2 photo-catalytic oxidation of Commercial dyes in aqueous solution[J]. Chemosphere, 1995, 31(9): 4157-4170.
    [30] 吴峰等.铁草酸盐络合物的光解对水溶性染料脱色作用的研究[J].环境污染与防治,1998,20(1):17-20.
    [31] H.Y. She, C.R. Huang. Degradation of commercial azo dyes in water using ozonation processes[J].Chemosphere, 1995,31(8):3813-3825.
    [32] 张桂兰等.染料废水在旋转式催化反应器的降解研究[J].环境科学,1999,20(3):79-81.
    [33] 岳海林,樊邦棠.半导体复合材料光催化降解水溶性染料的研究[J].环境污染与防治,1994,16(4):2-5.
    [34] 吴文军.用超声波气振技术处理染料废水[J].污染防治技术,1994,7(1):26-27.
    [35] 贾金平,杨骥等.活性炭纤维电极法处理染料废水机理初探[J].环境科学,1997,18(6)31-34.
    [36] 刘梅红,姜坪.膜法染料废水处理试验研究[J].膜科学与技术,2001,21(3):50-52.
    [37] 黄长盾,杨西昆,汪凯民编.印染废水处理[M].纺织工业出版社,1987年2月.
    [38] 李亚新等.塑料孔板波纹填料厌氧生物滤池法处理印染废水试验的研究[J].中国给水排水,1995,11(5):16-19.
    [39] 戚新.气浮-厌氧—好氧工艺处理高浓度印染废水[J].环境污染与防治,1997,19(1):16-19
    [40] 娄金生等.水解酸化-接触氧化生物炭法处理印染废水的应用[J].给水排水,1997,23(2):28-31.
    [41] 李树斌,高爱梅.染色废水中BOD_5与CODcr相关性及其应用[J].黑龙江环境通报,1997,21(01):15-18
    [42] 郑永东,白瑞超.A/O工艺中水解(酸化)系统的微生物及其在印染废水处理中的作用[J].工业水处理,1998,18(2):33.
    [43] 周培国等.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4):18-23.
    [44] 王永广,杨剑峰.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备,2002,3(4):69-72.
    
    
    [45] 张亚静,应金英,陈晓峰.铁炭内电解法处理印染废水[J].环境污染与防治,2000,22(5):33-36.
    [46] 姚培正,岳贝贝.铁屑-活性炭内电解法处理废水研究[J].环境科学研究,1994,7(3):54-59.
    [47] 韩洪军等.铁屑-炭粒法处理纺织印染废水[J].工业水处理,1997,17(6)5-6.
    [48] 肖语堂.铁屑强化传统工艺处理难讲解印染废水实践[J].给水排水,1998,24(4):37-39.
    [49] 郝瑞霞,程永源,黄群贤.铁屑过滤法预处理可生化性差的印染废水[J].化工环保,1999,19(3):135-137.
    [50] 蔡固平,葛晓霞,张蕴辉.新型内电解铁屑过滤塔在印染废水工业规模处理中的应用[J].环境工程,2003,21(3):21-22.
    [51] 蔡天明.微电解-水解酸化/接触氧化工艺处理染料废水的研究[J].环境工程,1999,17(4):27-30.
    [52] 祁梦兰.铁屑过滤法-混凝组合工艺处理印染废水[J].环境工程,1993,11(3):3-6.
    [53] 吴金义.铁碳还原法处理乡镇企业电镀综合污水.环境污染与防治[J].1989,11(1):32-35.
    [54] 张守健,聂文超,王少慧.铁床-气浮-活性炭吸附法处理染料废水[J].中国给水排水,2001,17(11):43-45.
    [55] 范炳均,庞术龙等.微电解-生物滤塔法预处理含腈废水[J].给水排水,2002,28(8):31-33.
    [56] 詹朝辉,杨晓松等.转动式微电解方法处理染料废水的研究[J].湖南有色金属,2001,17(2):39-41.
    [57] 王强,沈晓南,彭忠.铁屑微电解法处理带色城市污水和印染废水机理的探讨[J].山东环境,2001,(2):19-20.
    [58] 徐根良.微电解处理分散染料废水的研究[J].水处理技术,1999,25(4):235-238.
    [59] 国家环保局编.水和废水检测分析方法[M].中国环境科学出版社,1989,5.
    [60] Cao J, Wei L, Huang L and Han S. Reducing degradation of Azo dyes by zero-valent iron in aqueous solution[J]. Chemosphere, 1999. 38(3): 565-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700