用户名: 密码: 验证码:
K_4Nb_6O_(17)的制备及其光催化降解酸性红染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化氧化技术处理有机废水是一个具有价值的课题,该方法具有高效、节能、无二次污染等优点,引起了广大学者的关注。
     具有层状结构的化合物有很多有趣的化学性质,具体表现在插层、离子交换、光催化、电化学等方面,并且它们的活性也因层间的分子或离子的不同而改变。层状金属氧化物K_4Nb_6O_(17)是其中较为典型的一种,它可将水完全分解成H_2和O_2。本文采用同相法合成了K_4Nb_6O_(17)并研究了其对酸性红3B溶液的光催化降解性能。
     通过XRD和SEM对样品进行表征,发现该法合成的K_4Nb_6O_(17)均具有钙钛矿结构,样品的颗粒大小分布不均,但大多小于10μm,且合成的温度越高,颗粒粒径越大。
     利用自行设计的反应器,研究了K_4Nb_6O_(17)了对酸性红3B模拟染料废水的处理,取得了较好的去除效果。当酸性红3B浓度为30mg/L时,K_4Nb_6O_(17)对其降解两小时后的脱色率可达89%。实验表明,光催化剂的煅烧时间、煅烧温度、用量、反应物的初始浓度、pH等因素对光催化降解效率都有明显的影响。本实验条件下,催化剂的最佳合成条什是1000℃下煅烧2小时;当酸性红3B浓度为10mg/L时,催化剂的投加量对其脱色率影响不大,当酸性红3B浓度为30mg/L时,催化剂有一最佳投加量为2g/L;当溶液在偏酸或偏碱条件下的脱色率较高,且酸性条件下比碱性条件下好。对K_4Nb_6O_(17)悬浮体系的动力学研究表明,本实验条件下,K_4Nb_6O_(17)对酸性红3B的降解是一级反应,可以用L-H动力学方程描述。
     本文利用紫外-可见光谱扫描,红外光谱等分析方法,探讨了酸性红3B的降解机理。研究表明,酸性红3B的去除主要是K_4Nb_6O_(17)对其的光催化降解,而并非吸附作用,但酸性红3B自身也存在少量的光降解,约为5%,且强氧化基团首先进攻的是共轭基团。
Treating organic wastewater by photocatalytic oxidation is an important subject with practical value and it has attracted considerable attention.
    Compouds with a layered structure have interesting chemical properties in such fields as intercalation, ion-exchange, potocatalysis, electrochemical activity, and their properties change substantially with various kinds of molecules or ions existing in the interlayer. One of the layered metal oxides, K4Nb6O17, is known to be a typical photocatalyst for the overall decomposition of water into H2 and O2. In this paper, potassium niobate (K4Nb6O17) was prepared by solid reaction and its photocatalytic activities of acid red 3B degradation was studied.
    The crystal structure was perovskite-like type, as evidenced by the results of X-ray diffraction and scanning electron micrography. The distribution of K4Nb6O17 powder with particle size of less than 10 m, which would become larger as the calcining temperature grew.
    The photocatalytic degradation of acid red 3B with K4Nb6O17 in self-made photoreactor was investigated and got a successful removal in this work. When the concentration of acid red 3B solution was 30mg/L, color removal was 89% after two hours under irradiation of 20w UV germicidal lamp. Experiments indicated that parameters such as calcining temperature, calcining time, dosages of catalyst, initial concentration of wastewater, pH value have great influence in the photoreaction. In this study, the optimization of K4Nb6O17 synthesis was determined to be calcining 2 hours under 1000 C. When the concentration of acid red 3B solution was 10mg/L, the dosages of catalyst could affect decolorizing rate a little, but 2g/L was the best amount of K4Nb6O17 with the concentration of 30mg/L. It has higher color removal in acidic or alkalinous solution and the former was better than the latter. The kinetics of photocatalytic oxidation reaction for acid red 3B solution was studied in K4Nb6O17 catalyst suspension phase, the
    results showed that the reaction was first-order and was coincident with Langmuir-Hinsheluwood(L-H) equation.
    Through the analysis of UV-VIS and IR, the process of acid red 3B degradation was
    
    
    determined and mechanism of photocatalysis was deduced. Studies illustrated that though it could be decomposed under UV light by itself for about 5%, the decolouration of acid red 3B was due to the degradation of K4Nb6O17, but not to the adsorption on it. And the strong oxidic free radicals attracted the conjugated radical first.
引文
[1] 彭会清,许开.印染废水处理现状与进展.四川纺织科技,2003,(2):11~14
    [2] 顾鼎言,朱素芳.中国建筑工业出版社,1985.3~9
    [3] 叶玲,羟基铝交联蒙脱石净化染料废水研究,非金属矿,2002.25(2):46~48
    [4] 阎存仙,周红等.粉煤灰对染料废水的脱色研究.环境污染与防治,2000.22(5):3~9
    [5] 陈强等,烟道灰法处理印染废水的研究.山东环境,1998.(6):38~40
    [6] 洪爱真,魏燕芳等.磁性壳聚糖微球对酸性偶氮染料废水的脱色研究.福建轻纺,2003.(2):1~5
    [7] 黄兴华,王黎明等.电化学法处理染料废水的研究.高压电器,2002.38(50):22~26
    [8] 李海英,石宝龙,柳荣展.染料废水内电解脱色效率与染料结构的关系.青岛大学学报,1999.14(1):21~25
    [9] Simonsson D et al. Electrochemistry for cleaner envrironment. Chemical Society Reviews, 1997.26(3): 181~190
    [10] Lchikawa S, Komagsi N.Waste water treatment to decompose hardly decomposable organic substance by electrolysis, JP09103787, 1997
    [11] Nicla M. Waste water treatment using electrochemical oxidation of organic pollutants. Sci. Technol. Environ. Prot., 1996.3(1):35~40
    [12] 李峻雷,陈曙光等.活性染料废水絮凝脱色性能研究.浙江师大学报(自然科学版),2001.24(3):268~271
    [13] 杨智宽,袁扬等.羧甲基壳聚糖对水溶性染料废水的脱色研究.环境科学与技术,1999.2:8~10
    [14] Loyd C Kemper et al. Anaerobic/aerobic treatment of a textile dye wastewater. Hazard. Ind. Wastes, 1992.24
    [15] 闫庆松.厌氧+好氧+煤渣吸附处理偶氮染料废水研究.工业水处理,2000.20(7):19~22
    
    
    [16] 胡文容,高廷耀等.超声强化臭氧氧化偶氮染料的脱色效能.中国给水排水,1999.15(11):1~4
    [17] Tang W Z, Chen R Z. Decolorization Kinetic Sand Mechanisms of Commercial Dyes by Hydrogen Peroxide/Iron Powder System. Chemosphere, 1996.32(59):947~958
    [18] 雷乐成,汪大辉.湿式氧化法处理高浓度活性染料废水.中国环境科学,1999.19(1):79~84
    [19] 张宇峰,滕洁等.印染废水处理技术的研究进展.工业水处理,2003.23(4):23~27
    [20] 董丽丽.有机染料废水处理的新技术研究.云南环境科学,2002.21(3):49~51
    [21] 韩世同,习海玲等.半导体光催化研究进展与展望.化学物理学报,2003.16(5):339~349
    [22] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972.238:37~38
    [23] John H. Carey, et al. Photodechiorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxic, 1976.16(6): 697~710
    [24] Matthewsrw. Photocatalytic oxidation of organic contaminants in water: an aid to environmental preservation. Pure & Appl. Chem., 1992.64(9): 1285~1290
    [25] Mills A., Davies R. H., Worsley D.. Water parification by semiconductor photocatalysis. Chem. Soc. Rev., 1993.93:267~300
    [26] Kamatpv. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev., 1993.22(6):417~425
    [27] 董振海,胥维昌.光催化降解染料废水的研究现状及展望.染料与染色,2003.40(3):175~178
    [28] 张智宏,宋封琦.铁屑过滤光催化氧化处理染料废水.江苏工业学院学报,2003.15(3):27~29
    [29] 付川.铂修饰C-TiO_2复合催化剂光催化染料废水,重庆二峡学院学报,2003.19(5):119~122
    [30] 胡春,王怡中.凹凸棒负载TiO_2对偶氮染料和纺织废水光催化脱污.环境科学学报,2001.1(21):123~125
    [31] 田春荣,王怡中等.染料化合物光催化降解中氮元素行为分析.环境化学,2001.20(1):15~22
    
    
    [32] 郑巍,刘维屏等.附载TiO_2光催化降解咪蚜胺农药.环境科学,1999.20:73~76
    [33] Klopffer W. Photochemical degradation of pesticides and other chemicals in the environment: a critical asscment of the state of the art. Sci. Total. Environ., 1992.122/123:145~159
    [34] 陈士夫,赵梦月等.玻璃纤维负载光催化降解有机磷农药.环境科学,1996.17(4):33~35
    [35] 古凤才,王金明等.甲拌磷农药废水的光催化降解.化学工业与工程,1999.16(6):354~366
    [36] Hidaka H, Asai Y, Zhao Jet al. Photoelectrochemical decomposition of surfactants on a TiO_2/TCO particulate film electrode asscmbly. Physics Chemistry, 1995.99(20):8244~8248
    [37] Pelizzetti E, Minero C, Maurino Vet al. Photocatalytic degradation of nonylphenol ethoxylated surfactans. Environ. Sci. Technol., 1989.23(11):1380~1385
    [38] 赵文宽,方佑龄等.太刚能光催化降解水面石油的研究.武汉大学学报(自然科学版),2000.46(2):133~136
    [39] 杨阳,陈爱平等.以膨胀珍珠岩为载体的漂浮型TiO_2光催化剂降解水面浮油.催化学报,2001.22(2):177~180
    [40] 赵莲花,王国强等.水中有机氯化物的光催化降解去毒.延边大学学报(自然科学版),1994.22(2):54~57
    [41] 李太友,李华禄等.水中氯仿的非均相光催化降解反应动力学研究.湖北化工,1994.3:23~27
    [42] 李太友,刘琼玉等.氯仿在TiO_2悬浮液的光催化降解.江汉大学学报,2001.18(3):21~25
    [43] 王桂林,马俊华.光催化氧化技术的应用进展.环境技术,2003.1:32~35
    [44] 刘淼,董得明等.光催化法处理电镀含铬(Ⅵ)废液.吉林大学自然科学学报,1998.2(4):99~101
    [45] 王光辉。纳米TiO_2光催化技术及其在环境污染治理中的应用,环境科学与技术,1998,6:18~20
    [46] Hidaka H, Nakamura T.J.. Phtochem. Photobiol. A: Chem., 1992.66:367~374
    [47] 黄浪欢,曾令可等.TiO_2光催化脱除NO_x的研究进展.环境污染治理技术与设备,2001,2(4):60~64
    
    
    [48] 赵联芳,傅大放等.掺杂Fe的纳米TiO_2光催化降解氮氧化物研究.东南大学学报(自然科学版),2003.33(5):677~680
    [49] 袭著革,李官贤等.复合纳米TiO_2净化典型室内空气污染物初步研究.解放军预防医学杂志,2003.21(5):316~318
    [50] 杨秋华.纳米钙钛矿型ABO_3复合氧化物的光催化氧化还原活性:[博士学位论文].天津:天津大学,2002
    [51] 潘覆让.固体催化剂的设计与制备.天津:南开大学出版社,1993.173~178
    [52] 向得辉,翁玉攀等.崮体催化剂.北京:化学工业出版社,1983.69~72
    [53] 徐菁利,马建泰等.稀士过渡金属复合氧化物催化剂用于汽车尾气净化研究.环境化学,2003.22(2):177~181
    [54] 陈广新,余林等.贫燃条件下钙钛矿型催化剂上C_3H_6催化还原NO_x反应的研究.汕头大学学报(自然科学版),2003.18(1):24~30
    [55] 王宝辉,马春曦等.ABO_3/CaO的CO催化氧化特性与烧炭动力学,石油化工,1997.26:220~223
    [56] 刘源,秦永宁.钙钛矿型复合氧化物用作深度氧化催化剂.天然气化工,1997.22(6):47~51
    [57] 徐菁利,李树本等.La_(0.5)Sr_(0.5)Ni_(0.5)Cu_(0.5)O_3催化剂上的CO氧化反应动力学.兰州大学学报(自然科学版),2001.37(1):64~67
    [58] 薛屏,高玉琢.负载型La_(0.8)Sr_(0.2)MnO_(3+x)催化剂对CO氧化的催化活性.宁夏大学学报(自然科学版),1997.18(1):75~77
    [59] 陈铜,李文钊等.乙烷在钛酸盐复合氧化物上的氧化脱氢锂掺杂对催化性能的影响.催化学报,1997.18(2):120~124
    [60] Kutty T R N. Photocatalysis. Catalysis Review. 1992.34(4):373
    [61] L.M. Nunes, A.G. de Souza, R.F. de Farias. Synthesis of new compounds involving layered titanates and niobates with copper(Ⅱ). Journal of Alloys and Compounds. 2001.319:94-99
    [62] 杨娟.无机层状化合物及其柱撑产物光解水制氢.江苏大学学报(自然科学版),2003.24(4):53~56
    [63] L.M. Nunes, A.G. de Souza, R.F. de Farias. Synthesis of new compounds involving layered titanates and niobates with copper(Ⅱ). Journal of Alloys and Compounds. 2001.319:94-99
    
    
    [64] Sato T, Yamamoto Y, Fujishiro Y et al. Intercalation of iron oxide in layered H_2Ti_4O_9 and H_4Nb_6O_(17): visible-light induced photocatalytic properties. J Chem Soc, Faraday trans, 1996.92:5089-5092
    [65] Ikeda S., Tanaka A., Shinohara K., Domen K. et al. Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K_4Nb_6O_(17). Microporous Matiarials, 1997.9:253~258
    [66] Uchida S, Inoue Y, Fujishiro Y et al. Hydrothermal synthesis of K_4Nb_6O_(17). J Mater Sci, 1998.33:5125-5129
    [67] 上官文峰.太阳能光解水制氢的研究进展.无机化学学报,2001.17(5):619~626
    [68] 桑丽霞,傅希贤等.制备方法对LaFeO_3及掺杂LaFeO_3光催化活性的影响.化学工业与工程,2000.17(6):336~340
    [69] 林仁存,杨意泉等.钾促进钴钼耐硫CO变换催化剂的XPS和TPR表征.应用化学,2001.18(1):25~28
    [70] 纵秋云,余汉涛等.钾促进型Co-Mo系耐硫变换催化剂性能研究.催化学报,2002.23(6):521~524
    [71] 魏宏斌,徐迪民等.光催化氧化水中有机污染物机理探讨.同济大学学报,1997.25(5):553~558
    [72] Ollis D F. Contaminant degradation in water, Heterogenous photocatalysis degrades halogenated hydrocarbon contaminants. Environ. Sci. Technol., 1985. (19)6:480~484
    [73] 王凯雄.水化学.北京:化学工业出版社,2001:38~39
    [74] 郭建平,刘祖武等.纳米TiO_2光催化氧化机理及研究进展.天津化工,2003.17(4):1~3
    [75] 曾庆祸等.水溶性染料的光催化研究.整染技术,1999.21(2):1~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700