用户名: 密码: 验证码:
超声(磁化)TiO_2光催化降解酸性红染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料废水是染料生产及其它相关工业生产中最常见的污水。常规处理方法是生物氧化和进行物理化学方法处理,由于染料具有较大的分子量及较强的水溶性,使得这些处理方法效果并不理想,且存在复杂的后续处理工艺。因此,对染料废水的非常规技术处理的理论基础、技术和方法的研究已成为众多该领域学者关注的焦点。本文选用酸性红3B为降解对象,使用TiO_2为催化剂,在自行设计的光催化反应器、超声波紫外光催化反应器、及磁化装置联合光催化反应器中,研究了不同降方式降解有色废水的可行性。主要在以下几个方面取得了一定的进展:
     采用溶胶凝胶法制备了纳米TiO_2,并用XRD进行表征,考察了各种因素对光催化降解速率影响。用Langmuir-hinshelwood方程描述酸性3B光催化动力学行为,结果表明,初始浓度增加,反应由一级向零级过渡;催化剂投加量在0.5-2.5g/L时,30mg/L酸性红3B反应速率常数呈一级且与投加量成线性关系:五种溶解性无机盐对光催化降解酸性红B存在抑制作用,阴离子影响大于阳离子;通入空气影响动力学行为,改变了反应级数:本实验在pH值为3时光催化降解效果最佳,且酸性条件下比碱性下条件效果更好:光催化效果在50—60℃之间出现峰值。
     采用不同粒径TiO_2进行超声联合光催化,实验结果表明:45W/59KHZ超声波对催化剂粒径最人的市售TiO_2微粉的光催化协同效果最佳;TiO_2投加量为30mg/L时比光催化效果提高了43.57%;实验室制备的粒径为11nm催化剂TiO_2在超声紫外联合作用下降解酸性红3B效果不如光催化效果;超声与光催化最佳协同效果同催化剂量有关,试验结果显示大至在0—0.3g/L之间;协同机理主要为超声碎裂、清洗提高传质和催化活性及超声产生自由基.因素试验表明:催化剂TiO_2最大投加量为0.3g/L;反应物初始浓度在45mg/L时的降解速率比28mg/L时大,均为零级反应;一定量NaCI能促进降解速率;通入1.25L/min空气时反应速率略有提高;光照强度减小,脱色率增大的趋势小;超声时间越长降解效果越好。
     首次将磁化与光催化结合对酸性红3B溶液进行降解。结果表明,磁化可以提高酸性红3B溶液对紫外光的吸收;影响光催化过程。通过合理实验设计,研究了磁化时间、磁场强度对光催化的影响,讨论了磁化对光催化过程的作用机理,提出磁化对光催化存在协同作用。
Organic dyes are the largest group of pollutants in wastewater produced from textile and other industrial process. The conventional methods used for textile wastewater
    purification are biologic oxidation and physical-chemical treatment (e.g., coagulation-flocculation, activated carbon adsorption). These processes are not sufficiently efficient since dyes are hardly removable due to their large molecular weight and high water solution. Moreover after their treatment sophisticated subsequent processes are still needed. Therefore, attention has been paid on exploring non-conventional technique to degrade dye wastewater by scholars in this field. A new method for dye wastewater degradation was studied in the current dissertation. For convenient, dye red 3B solution was taken as representative of dye wastewater. Varied degradation methods were studied in self-made US/TiO2 apparatus , UV/US/TiO2 apparatus , magnetizing associated US/TiO2 apparatus with TiO2 as catalyst. The main results were as follows:
    The TiO2 catalyst was prepared and used for photocatalytic degradation with sol-gel method, the particle were characterized by X-ray diffraction (XRD). Effects of dye red B initial concentration, catalyst quantity, inorganic salts, aeration amount, pH value were discussed in detail and the reaction was described by Langmuir-Hinshelwood (L-H) equation. The results showed that increasing the initial concentration of dye red 3B, the rate constants changed from fist-order reaction model to zero-order reaction. The apparent rate constant linearly increased with increasing the TiO2 amount in the range of 2.5g/L. Both anions (Cl-, SO42-) and cations (Na+, K+, Ca2+, Mg2+) retart the rate though and the former is the major factor. Aeration quantity made the adsorption rate constant changed thus affect the kinetic behavior. The efficiency of decolorization in acid is better than in alkali and the reaction has an optimum pH value (pH=3). While pH keeps increasing, adsorption of dye red B reduced. Optimal reaction tempe
    rature is during 50-60 C.
    The photocatalytic degradation of dye red 3B by variant particle size of TiO2 combined with ultrasound. The use of ultrasound had a pronounced effect on the rate and efficiency of dye red 3B destructions as compared with UV-light degradation. The combination of action of ultrasonic wave and UV assisted photocatalysis yielded synergistic effect for the catalysts with the smaller particle size (TiO2-A, with average size of 110nm), degradation efficiency increased 43.57% compared with UV-light photocatalytic degradation alone, while no enhancement was observed for the smallest particle size photocatalysis (TiO2-E, with average size of 11nm). Catalyst quantity of the optimal synergistic effect was 0-0.3g/L.
    
    
    The possible reason of increased activity under ultrasonication were proposed: aggregate breakage and scavenging increase the mass transfer and activity catalyst in addition to free radical formation produced by ultrasound. The results of factor test showed that the maximum concentration site of catalyst is 0.3g/L; increasing the initial concentration of dye
    red 3B, the rate and zero-order rate constants increased; a certain mount of NaCl promote the degradation efficiency; the rate of decolorization in aeration is better than in non-aeration; the efficiency of the degradation depends on light intensity and ultrasonic time in some degree.
    The photocatalytic degradation of dye red 3B using suspended TiO2 combined with magnetization was studied in this paper. Compared with the unmagnetized sample, the strength of UV absorption of magnetized sample increased. The magnetic field affects the process of photocatalytic reaction. Through a series of experiments that were carefully designed, the different magnetization time and magnetic field strength made photocatalytic reaction change in varying degrees. This research will play important role for the study of possible mechanism of magnetic field effect on photocatalytic reaction.
引文
[1] 张洪林.难降解有机物的处理技术进展[J].水处理技术,1998,24(5):259—164
    [2] L.A. Castillo, Sillet A., Roussy J.,et al.,Treatment of high organic-Loaded industrial effluents rivera[J]. Water Science and Technology, 2000, (11): 115-118
    [3] 孙晓君,冯玉杰,蔡伟民,周德瑞,井立强,王志平.废水中难降解有机物的高级氧化技术[J].化工环保,2001,21(5):259-262
    [4] 杜鸿章,房廉清.焦化污水催化湿式氧化净化技术[J].工业水处理,1996,16(16):11-13
    [5] Vedprakash S. Mishra. Wet Air Oxidation[J]. Ind.Eng.Chem.Res., 1995, (34): 472-480
    [6] 张秋波,等.酚水及煤气化废水的湿式氧化处理[J].环境科学学报,1987,3(7):305-311
    [7] James D. Rodgers, Wojciech Jedral, Nigel J. Bunce. Electrochemical Oxidation of Chlorinated Phenols[J]. Environ. Sci. &Technol, 1999, (33): 1453-1457
    [8] C H. Cominellis. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochim Acta., 1994, (39): 1857-1862
    [9] Yu Jian li,Savage Phillip E. Kinetics of catalytic superitical water oxidation of phenol over TiO_2[J]. Environ. Sci. Technol., 2000,34(15):3191-3198
    [10] 时桂杰.光催化氧化处理水中污染物的研究现状及发展趋势[J].环境科学于技术,1998,82(3):1-4
    [11] 张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5(3):1-10
    [12] 孙振世,陈英旭.非均相光催化氧化研究进展[J].环境保护科学,1999,25(6):8-11
    [13] 货北平,王占生,张锡辉.半导体光催化氧化有机物的研究现状及发展趋势[J].环境科学,1994,15(3):80-82
    [14] DFOllis, Contaminant degradation in water: heterogenous phtocatalytsis degrades halogenated hydrocarbon contaminants[J]. Eviron, Sci. Technol. 1985,19(6):480-484
    [15] Chia-Swee hong, Yongbing Wang and Brian Bush, Kinetics and products of the TiO_2 photocatalytic degradation of 2-chlorobiphenyl in water[J]. Chemosphere, 1998, 36(6): 1653-1667
    [16] 陈士夫,梁新,陶跃武,赵梦月.空心玻璃微球附载TiO_2光催化降解有机磷农药感[J],光科学与光化学,1999,17(2):91-92
    [17] 王怡中,符雁,汤鸿霄.二氧化钛悬浆体系太阳光催化甲基橙研究[J].环境科学学报,1999,19(1):63-66
    [18] 唐玉朝,胡春,王怡中.无机阴离子对TiO_2/SiO_2光催降解酸性红B的影响[J].环境化学,2002,21(4):376-379
    [19] DiongsiOu D D, Suidam M T, Bekou E. Effect of ionic strength and hydrogen peroxide on the photocatalytic of 4-Chlorobenzoic Acid in water [J]. Appl. Catal. B: Environ., 2002, 26(3): 153-171
    [20] 王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解[J].催化学报,2000,21(4):327-331
    
    
    [21] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconducter photocatalysis[J]. Chem Rev, 1995, 95(1):69-96
    [22] 李旦振,郑宜,傅贤智.微波法制各催化剂及其光催化氧化性能[J].物理化学学报,2001,17(3):270-272
    [23] Marston A, Hostettmann K. Plant Mollu scicides. Phydop titania semicon-doctors[J]. J.P.hotochem. Photobio A: Chem1996, 98(3): 171-181
    [24] Choi W K, Terrain A, Hoffmann M R. The Role of metal Ion dopants in quantu-sized TiO_2: correlation between photo reactivity charge carrier recombination dynamics[J]. J Phys Chem., 1994, 98(51): 13669-13679
    [25] 安立超,曾桁,李海燕等.载银TiO_2催化剂的制备与性能研究[J].环境污染治理技术与设备,2001,2(4):30-33
    [26] 席北斗,孔欣等.加铂修饰催化剂光催化氧化五氯苯酚[J].环境化学,2001,20(1):27-30
    [27] Kang M G, Han HE. Enhanced photodecomposition 4-Chlorophenol in aqueous solution by deposition of CdS on TiO_2[J]. J Photochem Photobiol A: Chem, 1999, 125(1): 119-125
    [28] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WO_3/TiO_2 under Visi -bie Light Irradiation[J]. J Photochem Photobiol A: Chem, 2001,141(2): 209—217
    [29] Kay A, Grtzel M. Artificial Photosynthesis I. Phtosensitization of TiO_2 Solar Cells with Chlorophyll Derivatives And Related Natural Phrphyrins[J]. J Physchem, 199 3, 97:6272-6277
    [30] 岳林海,徐铸德.半导体的表面修饰与其光电化学作用[J].化学通报,1998,64(9):28
    [31] 王振领,李敏,刘天学等,TiO_2膜的光敏化及其灭菌活性研究[J].陕西师范大学学报(自然科学版),2002,30(3):87-89
    [32] 付贤智,李旦振.提高多相光催化氧化过程效率的新途径[J].福州大学学报2001,29(6):104-114
    [33] Zheng Y, L D Z, Fu X Z. Microwave-assisted heterogenous photocatalytic oxi- dation of ethylenep[J].Chem J Chin Univ, 2001, 22(3): 443-445
    [34] 姚清照,刘正宝.光电催化降解染料废水[J].工业水处理,1999,19(6):15—25
    [35] 吴合进,吴鸣,谢茂松,等.增强型电场协同助光催化降解有机物[J].催化学报,2000,21(5):399-403
    [36] Kang M, Kim B J,Cho S M,etal. Decomposition of toluene using an press plasma/TiO_2 catalytic system[J]. J Mol Cata A: Chem, 2002, 180(1/2): 125-132
    [37] An Tc, Gu H F, Zhu X H, er al. Decolorization and COD removal from reactivated dye containing wastewater using sonopotocatalytic technonogy[J]. J Chem Technol Biotechnol Accepted, 2003 (inpress)
    [38] 顾浩飞,安太成等.超声协同纳米TiO_2光催化降解活性染料的初步研究[J].中山大学学报,2001,40(5):131-132
    [39] 王君,韩健涛等.TiO_2催化超声降解的甲基橙溶液[J].应用化学,2004,21(1):32—35
    [40] 白波,赵景联,冯宵.超声光催化降解酸性粒子元青染料的研究.化工环保,2002,22(6):319-323
    [41] 顾浩飞,安太成等.超声光催化降解苯胺及其衍生物研究[J].环境科学学报,2003,23(5):593-597
    
    
    [42] 葛建团,曲久辉.超声—MnO_2协同降解偶氮染料酸性红B[J].高技术通讯,2003,4:92-94
    [43] Z. Zou*. Preparatio structural and photophysical properties of Bi_2 In NbO_7 com-pound[J]. Journal of Materials Science Letters
    [44] S.Gura M. Kohno, S. Ogura, K. Sato and Y. Inoue. A tracer study of a radical produced by UV irradiation on BaTi_4O_9 photocatalyst surface. CHEMICAL PHYSICS LETTERS
    [45] 郭银松.磁化处理对水体的复氧速率及生物效应影响的研究[J].重庆环境科学,1996,18(3):20-23
    [46] Euhcnc J Kelly. Magnetic field effects on electrochemical reactions occurring at metal flowing-electrolyte Interfaces[J]. J. Electrochem. Soc,, 1977, 124(7): 987-994
    [47] 蒋秉植.磁场对某些化学反应的影响[J].化学通报,1991,(10):11-15
    [48] 程华.磁场影响化学反应[J].化学通报,1989,(5):35-38
    [49] D F Ollis. Contaminant degradation in water: Heterogenous phtocatalytsis degra -des halogenated
    [50] Chia-Swee hong, Yong-bing Wang and Brian Bush. Kinetics and products of the TiO_2 photocatalytic degradation of 2-chlorobiphenyl in water[J]. Chemosphere, 1998, 36 (6): 1653-1667
    [51] Xu Y M, LandfordC H. Kinetics analysis of photocatalytic degradation of acce-tophenone[J], J. Photochem. Photobio. A: Chem., 2000, 133:125-132
    [52] 佟玉衡.适用水处理技术[M].化学工业出版社,1998
    [53] Davis R J, et al. Photocatalytic decolorization ofwastewatrr dyes[J]. Water Evir onment Reseach, 1994, 60(1): 55-53
    [54] 王怡中.光催化氧化与生物氧化组合技术对染料化合物降解研究[J].环境科学学报,2000,20(6):772-776
    [55] 岳林海.半导体复合体系光催化降解水溶性染料研究[7].环境污染与防治,1994,16(4):225
    [56] Ellis T Getal. Activated sludge and other suspende cuttre precess[J]. Water Evironment Reseach, 1998, 70(4): 473-495
    [57] 安虎仁,钱易,顾夏声.厌氧过程在厌氧—好氧工艺处理染料废水中的作用[J].环境学科研究,1994,7(3):36—39
    [58] D F Ollis, E.Pelizzetti and N.Serpone. Destruction of water contaminants[J]. Eviron. Sci. Technol, 1991, 25:1523
    [59] D. F Ollis, E.Pelizzetti and N.Serpone. In photocatalsis-fundamental and applications[M]. New York Inc, 1989, 603-637
    [60] Hoffmann M R, Martin S T, Choi W. Evironmental applications of semiconducter photocatalysis[J]. Chem Rev, 1995, 95(1): 69-96
    [61] Lars Baetz Reutergardh, Mallika Langhasuk. Photocatalytic decoloouration of reactive azo dye: a comparison between TiO_2 and Cds photocatalysis [J]. Chemosphere, 1997, 35(3): 585-596
    [62] D F Ollis, Contaminant degradation in water: Heterogenous phtocatalytsis degrades halogenated hydrocarbon contaminants [J]. Eviron, Sci. Technol. 1985, 19(6): 480-484
    [63] Chia-Swee hong, Yongbing Wang and Brian Bush, Kinetics and products of the TiO_2 photocatalytic
    
    degradation of 2-chlorobiphenyl in water[J]. Chemosphere, 1998, 36(6): 1653-1667
    [64] Beata Zielinska, Joanna Grzechulska, Antoni W. Morawski. Photocatalytic decomposition of textile on TiO_2 Tytanpol All and TiO_2-Degussa P-25[J]. Journal Photochemistry and Photo biology, 2003, 15(7): 65-70
    [65] P.Zhang, R. Scrudato, J. Pagane and R. Roberts. Photodecomposition of PCBs in aqueous using titanium dioxide as catalyst[J]. Chemosphere, 1993, 26(6): 1213-1223
    [66] 王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究[J].环境科学,1998,19(1):1-4
    [67] 李小娥,陈绣娟,张森等.醇盐水解制备纳米及二氧化钛[J].稀有金属材料与工程,1995,24(5):65-70
    [68] Lars Baetz Reutergardh, Mallika Langhasuk. Photocatalytic decoloouration of reactive azo dye: a comparison between TiO_2 and Cds photocatalysis[J]. Chemosphere, 1997, 35(3): 585-596
    [69] 唐玉朝,胡春,王怡中.无机阴离子对TiO_2/SiO_2光催话降解酸性红B的影响[J].环境化学,2002,21(4):376-379
    [70] Diongsiou D D, Suidam M T, Bekou E. Effect of ionic strength and hydrogen per-oxide on the photocatalytic of 4-Chlorobenzoic Acid in water[J]. Appl. Catal. B: Environ., 2002, 26(3): 153-171
    [71] Lars Baetz Reutergardh, Mallika Langhasuk. Photocatalytic decoloouration of re-active azo dye: a comparison between TiO_2 and Cds photocatalysis[J]. Chemosphere, 1997, 35(3): 585-596
    [72] Bengtsson and T. Triet, Tapioca-starch wastewater toxicity characterized by microtox and ducweed test [J]. Ambio, 1994, 28(8): 473-477
    [73] E. Naffrechoux, S. Chanoux, C. Petrier, J. Suptil. Sonochemical and photo- chemical oxidation of organic matter[J]. Ultrasonic Sonochemistry, 2000, 7:255-259
    [74] Lev Davydov, Ettiredddy P. Reddy et al. Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO_2 powders[J]. Applied Catalysis B: Environmental, 2001, 32:95-105
    [75] Yoshifumi Kado, Mahito Atobe, Tsutomu nonaka. Altrasonic effects on electrooganic process Part 20. Photocatalytic oxidation of aliphatic in aqueous suspention of TiO_2 powder[J]. Ultrasonic Sonochemistry, 2001, 8:67-74
    [76] 华彬,陆永生等.超声技术降解酸性红B废水[J].环境科学.2000,21(2):88-90
    [77] 李春喜,李玉同,王子镐.超声波—光催化联合降解苯酚废水研究[J].环境污染治理技术与设备[J].2002,3(8):48-51
    [78] 华彬,陆永生等.超声技术降解酸性红B废水[J].环境科学,2000,21(2):88-90
    [79] 白波,赵景联,冯霄.超声光催化降解酸性粒子元青染料的研究[J].化工环保2002,22(6):319-323
    [80] 程华.磁场影响化学反应[J].化学通报,1989,(5):35-38
    [81] 施其宏,于洋,高菲.饮用水与矿化水溶液的磁光协同技术研究[J].水处理技术,2001,27(6):326-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700