用户名: 密码: 验证码:
耐盐砧木嫁接提高番茄幼苗硝酸钙耐受性生理生化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国设施蔬菜栽培发展迅速,已成为农民增收的一条重要途径。然而,设施栽培是一种封闭的栽培方式,这不仅使设施内气温高于露地,而且由于失去了降雨对土壤的自然淋溶作用,导致了土壤水分向上运动较露地更为强烈,加之设施栽培偏施、重施化肥,土壤矿化作用明显加剧,土壤表层盐分浓度更易于升高。随着种植年限的增加,设施土壤次生盐渍化现象非常普遍,严重阻碍了设施蔬菜栽培的进一步发展。国内外的研究表明,嫁接可以提高蔬菜作物的抗逆性,是克服设施土壤盐害的一条有效途径。番茄是设施栽培的主要蔬菜之一,近年来关于番茄嫁接技术、嫁接提高番茄耐盐性方面进行了一定的研究,但均集中在NaCl胁迫方面。发生次生盐渍化的土壤中,阳离子主要以Ca~(2+)为主,占土壤盐分阳离子总量的60%以上,阴离子主要以NO_3~-为主,占土壤盐分阴离子总量的67%~76%,但在嫁接番茄对Ca(NO_3)_2耐受性方面的研究,国内外尚鲜有报道。本试验以日本设施栽培上专用的耐盐砧木‘影武者'为砧木,以南京当地主栽品种‘宝大903'为接穗,在营养液栽培条件下,比较80mmol·L~(-1) Ca(NO_3)_2胁迫下嫁接苗和自根苗有关生理生化特性变化。
     结果表明,Ca(NO_3)_2胁迫下,嫁接苗和自根苗叶片和根系SOD活性均呈显著上升的趋势,POD活性在胁迫2d时下降,之后显著上升,CAT活性呈显著下降的趋势,但嫁接苗各指标均显著高于自根苗,表现出较强的抗氧化能力。嫁接苗和自根苗叶片和根系O_2~-生成速率,H_2O_2和MDA含量显著增加,但嫁接苗各指标均显著低于自根苗,受到的氧化伤害较小。嫁接苗叶片和根系中脯氨酸、可溶性蛋白含量在胁迫期间显著上升,自根苗叶片和根系脯氨酸含量、根系可溶性蛋白含量显著上升,但其叶片可溶性蛋白含量变化不显著,嫁接苗与自根苗相比,不论叶片还是根系中,各指标均显著高于自根苗,表明嫁接苗渗透调节能力相对较强。
     Ca(NO_3)_2胁迫下,嫁接苗和自根苗叶片和根系APX、DHAR和GR活性均呈先上升后下降的趋势,但嫁接苗各酶活性显著高于自根苗,AsA和GSH的再生率显著高于自根苗;两者叶片和根系氧化还原力(AsA/DHA值和GSH/GSSG值)显著下降,但嫁接苗下降幅度显著小于自根苗,H_2O_2含量显著低于自根苗。表明Ca(NO_3)_2胁迫下,嫁接苗能保持良好的AsA-GSH循环效率,清除H_2O_2效率较高,细胞受氧化损伤程度较轻,表现出对Ca(NO_3)_2较强的耐受性。
     多胺是一类具有较强生理活性的低分子量脂肪族含氮碱,在植物的生长发育以及对环境的应激反应中发挥着重要作用。Ca(NO_3)_2胁迫下,嫁接苗叶片3种形态的腐胺、亚精胺和精胺含量均呈上升趋势;自根苗叶片3种形态的腐胺含量呈下降趋势,游离态、结合态亚精胺和精胺含量呈上升趋势,束缚态亚精胺含量呈下降趋势,束缚态精胺含量变化不显著。嫁接苗根系3种形态的腐胺、亚精胺和精胺含量均呈上升趋势;自根苗根系游离态腐胺、亚精胺和精胺含量呈上升趋势,结合态腐胺、亚精胺和精胺含量呈下降趋势,束缚态腐胺含量在胁迫前期变化不显著,胁迫后期下降,束缚态亚精胺和精胺含量变化不显著。嫁接苗与自根苗相比,整个胁迫期间,嫁接苗叶片和根系3种形态多胺总量均显著高于自根苗,精氨酸脱羧酶活性显著高于自根苗,多胺氧化酶活性则显著低于自根苗。表明Ca(NO_3)_2胁迫后,嫁接苗多胺合成能力较强且分解较少,表现出对Ca(NO_3)_2较强的耐受性。
     在离子吸收及分布特性方面,Ca(NO_3)_2胁迫后,嫁接苗植株各部分K~+含量显著升高,根系增长的幅度最大;自根苗植株各部分K~+含量显著下降,根系下降幅度最小。嫁接苗和自根苗植株各部分Ca~(2+)含量均显著升高,根系增长的幅度最大,但嫁接苗增长的幅度大于自根苗。嫁接苗和自根苗植株各部分Mg~(2+)含量均显著下降,功能叶下降的幅度最大,但嫁接苗下降的幅度小于自根苗。嫁接苗功能叶、老叶、叶柄和茎Fe~(2+)含量下降,下降幅度最大的部位为茎,新叶和根系变化不显著;自根苗植株各部分Fe~(2+)含量均显著下降,下降幅度最大的部位也是茎。嫁接苗植株各部分Mn~(2+)含量显著升高,茎增长的幅度最大;自根苗功能叶、老叶和叶柄Mn~(2+)含量降低,新叶、茎和根系Mn~(2+)含量升高,增长幅度最大的部位为茎。Ca(NO_3)_2胁迫下,嫁接苗植株各部分的离子含量均显著高于自根苗,离子分布的区域化也优于自根苗,表明嫁接苗耐Ca(NO_3)_2胁迫的能力强于自根苗。
     Ca(NO_3)_2胁迫下,嫁接苗和自根苗叶片和根系NO_3~-和NH_4~+含量均呈先上升后下降的趋势,但嫁接苗含量显著高于自根苗;两者叶片和根系的硝酸还原酶(NR)活性均呈先上升后下降的趋势,嫁接苗NR活性显著高于自根苗;嫁接苗叶片谷氨酰胺合成酶(GS)活性持续上升,嫁接苗根系、自根苗叶片和根系GS活性均呈先上升后下降的趋势。嫁接苗叶片、自根苗叶片和根系淀粉含量均呈显著下降的趋势,嫁接苗根系淀粉含量呈缓慢上升的趋势;嫁接苗叶片、根系和自根苗叶片可溶性糖含量均呈上升趋势,自根苗根系呈先上升后下降的趋势;嫁接苗和自根苗叶片淀粉酶活性均呈持续上升的趋势,嫁接苗根系淀粉酶活性变化不显著,自根苗根系呈显著上升趋势。Ca(NO_3)_2胁迫下,嫁接苗氮素同化能力较强,同时氮同化对碳同化的抑制程度较小,表现出对Ca(NO_3)_2较强的耐受性。
In recent years,protected cultivation of vegetables has expanded rapidly in China. However,due to the protected cultivation is a closed system,the temperature inside the greenhouse is higher than outside,in addition,because there is less rain rinsing,the upward movement of soil water inside the greenhouse is more greatly than outside.Protected cultivation usually bring excessive nitrogen fertilization into soil and the mineralization of soil inside the greenhouse is more greatly than outside,all these will make the salt concentration of soil surface increasing easily,which inhibits vegetable growth and development,causes decline of yield and quality,brings a negative effect on further development of protected cultivation of vegetables.It has been well documented that grafting can improve vegetable tolerance to environmental stresses,become an effective approach to overcome salt stress.Tomato(Lycopersicon esculentum Mill.) is one of the most important vegetables in protected cultivation,in recent years,researches on grafting techniques and grafting improving tomato salt tolerance have been carried out all over the world,but all these researches focused on NaCl stress.In greenhouse salt soil,the most cation is Ca~(2+),taking up about 60%of all cations,the most anion is NO_3~-,taking up 67%~76%of all anions,but few reports on physiological and biochemical changes in grafted tomatoes during Ca(NO_3)_2 have been published.In this study,we use hydroponically-grown grafted and own-root tomato(cvs.'Kagemusya' and 'Baoda 903' as rootstock and scion respectively) seedlings as experimental materials,comparisons of physiological and biochemical changes were made between grafted and own-root tomato seedlings under 80 mM Ca(NO_3)_2 stress.
     The results showed that under Ca(NO_3)_2 stress,superoxide dismutase(SOD) activities of both grafted and own-root tomato seedlings increased significantly,peroxidase(POD) activities decreased during the first 2 d,then increased significantly,catalase(CAT) activities decreased significantly,but every index of grafted seedlings was significantly higher than that of own-root seedlings.Under Ca(NO_3)_2 stress,O_2~- producing rate, contents of hydrogen peroxide(H_2O_2) and malondialdehyde(MDA) of both grafted and own-root tomato seedlings increased significantly,but every index of grafted seedlings was significantly lower than those of own-root seedlings.The proline and soluble protein contents of grafted tomato seedlings increased significantly,proline contents of own-root tomato seedlings and soluble protein content in own-root tomato roots increased significantly,however,no significant difference was observed in soluble protein content in own-root tomato leaves,but each index of grafted seedlings was significantly higher than that of own-root seedlings,exhibited that grafted seedlings have a stronger osmotic adjustment ability.
     Under Ca(NO_3)_2 stress,the activities of antioxidant enzymes(APX,DHAR and GR) were significantly higher,the regenerating rates of AsA and GSH were significantly higher, and redox statuses(ratios of AsA/DHA and GSH/GSSG) were also significantly higher in leaves and roots of grafted seedlings than those of own-root seedlings,and H_2O_2 content was significantly lower in leaves and roots of grafted seedlings than that of own-root seedlings.These results indicated that under Ca(NO_3)_2 stress grafted tomato seedlings had an efficient metabolism of ascorbate-glutathione cycle,which scavenged the H_2O_2 rapidly to alleviate the oxidative damage,thus grafted seedlings had a stronger tolerance to Ca(NO_3)_2 stress.
     Polyamines are low-molecular-weight biologically active compounds,play important roles in seedlings growth and development,configuration formation and response to environmental stresses.Under Ca(NO_3)_2 stress,contents of three forms of putrescine(Put), spermidine(Spd) and spermine(Spm) in leaves of grafted seedlings increased significantly in the whole process of stress,the contents of three forms of Put in leaves of own-root seedlings decreased significantly,the contents of free and conjugated Spd and Spm increased significantly,but the contents of bound Spd decreased significantly,however,no significant difference was observed in bound Spm after treatment.Under Ca(NO_3)_2 stress, contents of three forms of Put,Spd and Spm in roots of grafted seedlings increased significantly in the whole process of stress,the contents of free Put,Spd and Spm in roots of own-root seedlings increased significantly,the contents of conjugated Put,Spd and Spm in roots of own-root seedlings decreased significantly,no significant difference was observed in contents of bound Put at the early stage of stress,then decreased significantly, however,no significant difference was observed in bound Spd and Spm after treatment. During the whole course of stress,the contents of whole polyamines in grafted seedlings are significantly higher than those of own-roots seedlings,arginine decarboxylase(ADC) activities in grafted seedlings are significantly higher than those of own-roots seedlings,but polyamine oxidase(PAO) activities in grafted seedlings are significantly lower than those of own-roots seedlings.These results indicated that under Ca(NO_3)_2 stress,the synthesis of polyamines in grafted tomato seedlings is higher than that of own-root seedlings,but the degradation of polyamines in grafted tomato seedlings is lower than that of own-root seedlings,which showed the characteristics of stronger Ca(NO_3)_2 tolerance of grafted seedlings.
     In the aspect of characteristics of ion absorption and distribution,under Ca(NO_3)_2 stress,the contents of K~+ in grafted seedlings increased significantly and the increase in roots was most obvious,however,the contents of K~+ in own-root seedlings decreased significantly and the decrease in roots was least.The contents of Ca~(2+) in both grafted and own-root seedlings increased significantly and the increase in roots was most obvious, however,the increase in grafted seedlings was more significant than that in own-root seedlings.The contents of Mg~(2+) in both grafted and own-root seedlings decreased significantly and the decrease in functional leaves was most obvious,however,the decrease in own-root seedlings was more significant than that in grafted seedlings.The contents of Fe~(2+) in functional leaves,old leaves,petiole and stem of grafted seedlings decreased significantly and the decreased in stem was most obvious,however,no significant difference was observed in the Fe~(2+) contents in young leaves and roots,the contents of Fe~(2+) in all parts of own-root seedlings decreased significantly and the decreased in stem was most obvious.The contents of Mn~(2+) in grafted seedlings increased significantly and the increase in stem was most obvious,contents of Mn~(2+) in functional leaves,old leaves and petiole of own-root seedlings decreased significantly,but Mn~(2+) contents in young leaves, stem and root of own-root seedlings increased significantly and the increase in stem was most obvious.All these results indicated that the selective absorption,transportation of ion in grafted seedlings were stronger and the compartmentalization of ion was better than those in own-root seedlings,thus had a stronger tolerance to Ca(NO_3)_2 stress.
     Nitrogen metabolism and carbon metabolism are the most important two metabolic processes in crops,during the development of crops they must keep homeostasis in order to achieve maximal yield.Under Ca(NO_3)_2 stress,the contents of NO_3~- and NH_4~+ increased significantly at the early stage of stress,then decreased significantly,each index of grafted seedlings was significantly higher than that of own-root seedlings.Nitrate reductase(NR) activities of both grafted and own-root seedlings increased significantly at the early stage of stress,then decreased and the activity of NR in grafted seedlings was significantly higher than that of own-root seedlings.Glutamine synthetase(GS) activities in leaves of grafted seedlings increased significantly during the whole stress,GS activities in own-root seedlings and roots of grafted seedlings increased significantly at the early stage of stress, then decreased significantly.The contents of starch in own-root seedlings and leaves of grafted seedlings decreased significantly,however,the starch content in roots of grafted seedlings increased slowly.The contents of soluble sugar in grafted seedlings and leaves of own-root seedlings increased significantly,the contents of soluble sugar in roots of own-root seedlings increased significantly at the early stage of stress,then decreased. Amylase activities in grafted seedlings and roots of own-root seedlings increased significantly in the whole process of stress,however,no significant difference was observed in amylase activities in roots of grafted seedlings.All these results indicated that under Ca(NO_3)_2 stress,nitrogen metabolism in grafted seedlings were stronger than that of own-root seedlings and the inhibition of nitrogen metabolism to carbon metabolism was less than that in own-root seedlings,thus grafted seedlings were more tolerant to Ca(NO_3)_2 stress.
引文
1.艾天成,李方敏,黄志新.设施土壤盐分组成特征分析.湖北农业科学,2006,45(3):316-317
    2.曹翠玲,李生秀.氮素水平对冬小麦分蘖期某些含氮化合物及生物量的影响.西北农林科技大学学报(自然科学版),2002,30(6):11-15
    3.曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展.西北农业大学学报,1999,27(4):96-101
    4.柴小清,印莉萍,刘祥林,等.不同浓度的NO_3~-和NH_4~+对小麦根谷氨酰胺合成酶及其相关酶的影响.植物学报,1996,38(10):803-808
    5.陈贵林,包春兰,李建文,等.低温胁迫对西葫芦嫁接苗光合特性的影响.上海农业学报,2000,16:42-45
    6.陈火英,张建华,钟建江,等.野生番茄耐盐性研究及其利用.华东理工大学学报,2001,27(1):51-55
    7.陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002.120-121
    8.陈锦强,李明启.不同氮素营养对黄麻叶片的光合作用、光呼吸的影响及光呼吸与硝酸还原的关系.植物生理学报,1983,9(3):251-259
    9.陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报,2004,24(2):329-336
    10.陈沁,刘友良.谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用.作物学报,2000,26(3):365-371
    11.陈淑芳,朱月林,胡春梅.NaCl胁迫对嫁接番茄生长和光合特性的影响.江苏农业学报,2006,22(2):145-149
    12.陈淑芳,朱月林,刘友良,等.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005,32(4):609-613
    13.陈淑芳,朱月林,刘友良,等.NaCl胁迫对番茄嫁接苗叶片ABA和多胺含量的影响.园艺学报,2006,33(1):58-62
    14.陈相波.丝瓜砧嫁接苦瓜.中国蔬菜,1998,3:19-21
    15.陈相波,袁卫红.苦瓜与丝瓜嫁接试验简报.江西农业学报,1997,9(4):87-90
    16.陈新平.生物自由基与植物逆境伤害.张福锁.环境胁迫与植物营养.北京:北京农业大学出版社,1993,76-80
    17.程美延.温室土壤盐分积累、盐害及其防治.土壤肥料,1990,1:1-4
    18.崔秀敏,王秀峰.基质供水状况对番茄穴盘苗碳氮代谢及生长发育的影响.园艺学报,2004, 31(4):477-481
    19.丁飞,王秀峰,史庆华,等.缺铁胁迫对小白菜光合特性及品质的影响.山东农业科学,2007,6:51-53
    20.丁国强.设施蔬菜土壤盐渍化的成因及防治.长江蔬菜,2005,1:32-33
    21.董彩霞,赵世杰,田纪春,等.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响.作物学报,2002,28(1):59-64
    22.董玉梅,焦自高,王崇启,等.低温弱光胁迫对网纹甜瓜嫁接苗与自根苗某些物质含量的影响.山东农业大学学报(自然科学版),2005,36(1):67-69
    23.董园园,董彩霞,卢颍林,等.NH_4~+-N部分代替NO_3~--N对番茄生育中后期氮代谢相关酶活性的影响.土壤学报,2006,43(2):261-266
    24.段九菊,郭世荣,康云艳,等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响.应用生态学报,2008,19(1):57-64
    25.范媛媛,袁妙淼,邓梅峰,等.高浓度氮、磷胁迫对伊乐藻SOD、POD和CAT活性的影响.氨基酸和生物资源,2007,29(3):38-41
    26.房云波,孟春玲.保护地内土壤次生盐渍化对土壤性状的影响及对策.辽宁农业科学,2006,6:40-41
    27.冯永军,陈为峰,张蕾娜,等.设施园艺土壤的盐化与治理对策.农业工程学报,2001,17(2):111-114
    28.龚明,李英,曹宗撰.植物体内的钙信使系统.植物学通报,1990,7(3):19-29
    29.Gething PA,张福锁,刘全清.主要作物的推荐施钾技术.北京:北京大学出版社,1993.5-6
    30.郭德发,王庆.新疆灌区防治土壤次生盐渍化的主要措施.西北水资源与水工程,1996,7(3):58-63
    31.郭世荣.无土栽培学.北京:中国农业出版社,2003.59-60,114
    32.郭文忠,刘声锋,李丁仁,等.硝酸钙和氯化钠不同浓度对番茄苗期光合生理特性的影响.中国农学通报,2003,19(5):28-31
    33.郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36(1):25-29
    34.郭亚芬,米国华,陈范骏,等.硝酸盐供应对玉米侧根生长的影响.植物生理与分子生物学学报,2005,31(1):90-96
    35.何冬兰,石其德.La(NO_3)_3对猴头菌生长的影响.中草药,2001,32(3):261-263
    36.何莉莉,侯丽霞.嫁接番茄抗叶霉病效果与植株体内同工酶的关系.辽宁农业科学,2001,1:16-18
    37.黄锦法,李艾芬,马树国,等.浙江嘉兴保护地土壤障碍的农化形状指标研究.土壤通报,2001, 32(4):160-162
    38.朗漫.不同氮肥用量下镁对大豆碳氮代谢的影响.东北农业大学硕士论文,2006.18-19
    39.李宝栋,冯东听.蔬菜病虫害的综合治理(十一):蔬菜作物的嫁接技术及作用.中国蔬菜,1998,5:50-52
    40.李东坡,武志杰,梁成华,等.设施土壤生态环境特点与调控.生态学杂志,2004,23(5):192-197
    41.李海云,孟凡珍,张复君.Ca(NO_3)_2对黄瓜幼苗生长及光合色素含量的影响.聊城大学学报,2005,18(1):52-53
    42.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000.123-127,260-261
    43.李娟,章明清,林琼,等.钾、钙、镁交互作用对烤烟生长和养分吸收的影响.安徽农业大学学报,2005,32(4):529-533
    44.李能芳,荀琳,郭学君,等.嫁接对茄子植株过氧化物酶同工酶的影响.西南园艺,1999,4:24-25
    45.李廷轩,张锡洲,王昌全,等.保护地土壤次生盐渍化的研究进展.西南农业学报,2001,14(增刊):103-107
    46.李文庆,李光德,骆洪义.大棚栽培对土壤盐分状况影响的研究.山东农业大学学报,1995,26(2):165-169
    47.李文庆,骆洪义,丁方军,等.大棚栽培后土壤盐分的变化.土壤,1995,4:203-205
    48.李文一,徐卫红,胡小凤,等.Zn胁迫对黑麦草幼苗生长、生理生化及Zn吸收的影响.农业工程学报,2007,23(5):190-194
    49.李延,马居米·让德迪优,秦遂初.缺镁对水稻生理代谢的影响及诊断指标研究.浙江农业大学学报,1995,2(3):279-283
    50.李延,张建丽,陈秋,等.缺镁对龙眼碳氮代谢若干生理指标的影响.福建农业学报,1998,13:48-52
    51.李源龙.油菜耐盐性的基因型差异.浙江大学硕士论文,2007.10-11
    52.李志英,卢育华,徐立.土壤低温对嫁接黄瓜生理生化特性的影响.园艺学报,1998,25(3):258-263
    53.梁洁,严重玲,李裕红,等.Ca(NO_3)_2对NaCl胁迫下木麻黄扦插苗生理特征的调控.生态学报,2004,5(24):1073-1077
    54.林葆,周红,谢哓红.钙肥品种及施用方法对花生肥效的影响.土壤通报,1997,28(4):172-174
    55.林葆,朱海州,周卫.硝酸钙对蔬菜产量与品质的影响.土壤肥料,2000,2:20-22
    56.林栖凤.耐盐植物研究.北京:科学出版社,2004.11-64
    57.林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H_2O_2的积累与膜脂过氧化的关系.植物 生理学报,1988,14(1):12-16
    58.刘凤荣,陈火英,刘杨,等.盐胁迫下不同基因型番茄可溶性物质含量的变化.植物生理与分子生物学报,2004,30(1):99-104
    59.刘慧敏,朱月林,陈磊.组培条件下不同番茄品种及砧木自交系幼苗期硝酸盐耐性的比较.植物研究,2007,27(3):175-181
    60.刘俊,游绍阳.Ni(NO_3)_3对‘籼优13'水稻幼苗中过氧化氢酶活性的影响.中草药,2001,32(3):261-263
    61.刘伟,徐坤,王惠林,等.氮素用量对菠菜生长及产量和品质的影响.中国蔬菜,2007,1,21-23
    62.柳勇,许润生,孔国添,等.高强度连作下露天菜地土壤次生盐渍化及其影响因素研究.生态环境,2006,15(3):620-624
    63.刘友良,汪良驹.植物对盐胁迫的反映和耐盐性.见:余叔文,汤章诚主编.植物生理与分子生物学(第二版).北京:科学出版社.1998:752-769
    64.刘正鲁,朱月林,胡春梅,等.NaCl胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响.应用生态学报,2006,18(3):537-541
    65.刘正鲁,朱月林,魏国平,等.NaCl胁迫对茄子嫁接幼苗叶片抗坏血酸和谷胱甘肽代谢的影响.西北植物学报,2007,27(9):1795-1800
    66.刘志华,时丽冉,白丽荣,等.盐胁迫对獐毛叶绿素和有机溶质含量的影响.植物生理与分子生物学学报,2007,33(21):165-172
    67.刘志媛,朱祝军,钱亚榕,等.等渗Ca(NO_3)_2和NaCl对番茄幼苗生长的影响.园艺学报,2001,28(1):31-35
    68.马博英,徐礼根.供氮水平对香根草光合特性和抗氧化酶活性的影响.园艺学报,2007,34(2):469-472
    69.马艳,常志州,朱万宝,等.土壤硝态氮含量对辣椒疫病的影响及机理的初步研究.土壤肥料,2004,2:12-14
    70.莫开菊,汪兴平.钙与果实采后生理.植物生理学通讯,1994,30(1):44-47
    71.宁运旺,张永春.设施土壤次生盐渍化的发生与防治.江苏农业科学,2001,4:49-50
    72.欧毅,陶利春,王银合,等.采前喷钙和IAA对甜柿细胞质膜相对透性及果实品质的影响.西南园艺,2003,31(3):1-3
    73.钱琼秋,宰文珊,朱祝军,等.外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响.植物生理与分子生物学报,2006,32(1):107-112
    74.钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响.植物营养与肥料学报,2006,12(6):875-880
    75.钱晓晴,王娟娟,周明耀,等.不同水、氮供应条件下水稻锰素营养状况研究.作物学报,2006, 32(11):1689-1694
    76.秦巧燕,贾陈忠,同延安,等.设施农业表层土壤盐分状况分析.现代农业科技,2006,12:87-89
    77.冉邦定,刘敬业,李天福.烤烟成熟期五种酶动态的研究.中国烟草学报,1993,1(4):13-19
    78.申丽霞,王璞,兰林旺,等.施氮对夏玉米碳氮代谢及穗粒形成的影响.植物营养与肥料学报,2007,13(6):1074-1079
    79.史庆华,朱祝军,Khalida Al-aghabary,等.等渗Ca(NO_3)_2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191
    80.史庆华,朱祝军,KhaiidAl-aghabary,等.等渗盐胁迫对番茄抗氧化酶和ATP酶及焦磷酸酶活性的影响.植物生理与分子生物学学报,2004,30(3):311-316
    81.施益华,刘鹏.锰在植物体内生理功能研究进展.江西林业科技,2003,2:26-31
    82.史跃林,刘佩瑛,罗庆熙,等.黑籽南瓜砧对黄瓜抗盐性的影响研究.西南农业大学学报,1995,17(3):232-236
    83.孙松发,陈剑中,盛正国,等.温室土壤次生盐渍化的研究.上海农学院学报,1992,10(2):132-140
    84.孙兴祥,曹坚,丁立彤,等.沿海保护地土壤次生盐渍化原因及防治措施.长江蔬菜,2001,3:41-42
    85.童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    86.王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57
    87.王长泉,赵吉强,陈敏,等.过氧化氢参与了黑暗诱导的盐地碱蓬叶片甜菜红素积累.植物生态学报,2007,31(4):748-752
    88.汪洪,金继运.铁、镁、锌营养胁迫对植物体内活性氧代谢影响机制.植物营养与肥料学报,2006,12(5):738-744
    89.王明香,聂俊华.钾素营养研究及钾胁迫下植物应激蛋白研究进展.江西农业大学学报,2000,22(3):415-418
    90.汪天,郭世荣,刘俊,等.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用.植物生理学通讯,2004,40(3):358-360
    91.王学征,韩文灏,高春艳,等.哈尔滨市郊设施土壤次生盐渍化状况分析.北方园艺,2004,4:62-63
    92.王遵亲.中国盐渍土.北京:科学出版社,1993.134
    93.魏国平,朱月林,刘正鲁,等.NaCl胁迫对茄子嫁接苗生长和离子分布的影响.西北植物学 报,2007,27(6):1172-1178
    94.吴凤芝,刘德,栾非时,等.大棚蔬菜连作年限对土壤主要理化形状的影响.中国蔬菜,1998,4:5-8
    95.吴忠红,刘凤兰.设施土壤养分和盐分累计状况研究.中国农学通报,2007,23(4):237-240
    96.西北农业大学.基础生物化学实验指导.西安:陕西科学技术出版社,1986.83-85
    97.夏立忠,杨林章,王德建.苏南设施栽培中旱作人为土养分与盐分状况的研究.江苏农业科学,2001.6:43-46
    98.项玉英,杨祥田,张光华.设施栽培土壤次生盐渍化的调查及防治对策.浙江农业科学,2006,1:17-19
    99.谢苏婧.原子吸收光谱法测定翅果油树体内的八种无机元素.光谱学与光谱分析,2006,26(1):54-55
    100.邢禹贤.温室西瓜栽培.山东农学院科研资料汇编,1977.6-7
    101.薛继澄,毕德义,李家金,等.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994,1:4-9
    102.薛继澄,李家金,毕德义,等.保护地栽培土壤硝酸盐积累对辣椒生长和锰含量的影响.南京农业大学学报,1995,18(1):53-57
    103.颜昌宙,曾阿妍,金相灿,等.不同浓度氨氮对轮叶黑藻的生理影响.生态学报,2007,27(3):1050-1055
    104.闫国华,陈云昭,王玉国,等.Ca(NO_3)_2对盐胁迫下大豆离体胚再生植株保护系统的影响.山西农业大学学报,1996,16(3):222-225
    105.杨方云,魏朝富,刘英.干旱胁迫下甜橙叶片保护酶体系的变化研究.植物营养与肥料学报,2006,12(1):119-124
    106.杨凤娟,王秀峰,魏珉,等.NO_3~-胁迫下K~+、Ca~(2+)对黄瓜幼苗膜质过氧化及活性氧清除酶系统的影响.农业工程学报,2005,21(增刊):155-158
    107.杨凤娟,王秀峰,魏珉,等.NO_3~-胁迫及恢复对黄瓜幼苗叶片叶绿素荧光参数及ATPase活性的影响.应用生态学报,2006,17(4):403-407
    108.杨立飞.嫁接提高黄瓜耐盐性的生理生化机制.南京农业大学博士论文,2007.21-22
    109.杨立飞,朱月林,胡春梅,等.NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响.西北植物学报,2006,26(6):195-200
    110.杨利华,郭丽敏,博万鑫.玉米施镁对氮磷钾肥料利用率及产量的影响.中国生态农业学报,2003,11(1):78-80
    111.姚春霞,陈振搂,许世远.上海市郊保护地土壤盐分研究.环境科学,2007,28(6):1372-1376
    112.余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响.土壤,2005,37(6): 581-586
    113.余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究.土壤学报,2006,43(4):571-576
    114.于文进,杨尚东.嫁接对苦瓜在水渍条件下的产量及某些生理特性的影响.中国蔬菜,2001,5:7-10
    115.于贤昌,王立江.蔬菜嫁接的研究与应用.山东农业大学学报,1998,29(2):249-256
    116.于贤昌,刑禹贤,马红,等.黄瓜嫁接苗抗冷特性研究.园艺学报,1997,24(4):348-352
    117.于贤昌,邢禹贤,马红,等.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响.中国农业科学,1998,31(2):41-47
    118.于贤昌,邢禹贤,马红,等.低温胁迫下黄瓜嫁接苗和自根苗内源激素的变化.园艺学报,1999,26(6):406-407
    119.袁琳,克热木·伊力,张利权.NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响.植物生态学报,2005,29(6):985-991
    120.袁祖华,蔡雁平.盐胁迫下嫁接黄瓜幼苗有机渗透调节物质含量及膜脂过氧化水平研究.湖南农业大学学报(自然科学版),2007,33(2):180-182
    121.曾希柏,谢德体,青长乐.氮肥施用量对莴笋光合特性影响的研究.植物营养与肥料学报,1997,3(4):323-327
    122.张承林.果实品质与钙素营养.果树科学,1996,13(2):119-123
    123.张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法.植物生理学通讯,1990,26(4):62-65
    124.张古文,朱月林,杨立飞,等.NaCl胁迫对番茄嫁接苗生物量及离子含量的影响.西北植物学报,2006,26(10):2069-2074
    125.张古文,朱月林,杨立飞,等.NaCl胁迫对番茄嫁接苗根系多胺含量的影响.园艺学报,2007,34(4):1011-1014
    126.张含彬,伍晓燕,杨文钮.氮肥对套作大豆干物质积累与分配的影响.大豆科学,2006,25(4):404-409
    127.张健,刘美艳.丝瓜做砧木在夏秋黄瓜栽培中的应用研究.北方园艺,2002,1:46-47
    128.张建华,刘凤荣,陈火英.野生番茄和栽培番茄的耐盐差异性比较研究.上海交通大学学报(农业科学版),2006,24(6):533-540
    129.张金盛,任顺荣,赵振达.蔬菜保护地土壤硝酸盐积累及盐分变化.天津农业科学,1998,4(4):36-39
    130.张俊侠,孙德平,司友斌.设施土壤蔬菜栽培德障碍因子研究.安徽农学通报,2001,7(4):52-53
    131.张明方,蒋有条.番茄不同分化潜力愈伤组织中内源多胺比较及外源多胺对分化的影响.浙江农业大学学报,1997,23(6):677-681
    132.张瑞朋,杨德忠,傅连舜,等.氮素对不同来源大豆氮代谢相关指标的影响.大豆科学,2007,26(5):718-722
    133.张衍鹏,于贤昌,张振贤,等.日光温室嫁接黄瓜的光合特性和保护酶活性.园艺学报,2004,31(1):94-96
    134.张毅功,李春俭,张福锁,等.不同硼浓度及不同硼、钙处理对苹果组培苗生长的影响.河北林果研究,1998,13(2):152-156
    135.张英鹏,林咸永,章永松.供氮水平对菠菜营养品质和体内抗氧化酶活性的影响.应用生态学报,2005,16(3):519-523
    136.张云起,刘世琦,杨凤娟,等.耐盐西瓜砧木筛选及其耐盐机理的研究.西北农业学报,2003,12(4):105-108
    137.张真和,李伟建.我国设施蔬菜产业的发展态势及可持续发展对策探讨.沈阳农业大学学报,2000,31(1):4-8
    138.张振华,姜泠若,胡永红,等.设施栽培大棚土壤养分、盐分调查分析及其调控技术.江苏农业科学,2003,1:73-75
    139.赵福庚,何龙飞,罗庆云.植物逆境生理生态学.北京:化学工业出版社,2004.140-148
    140.赵福庚,刘友良.高等植物体内特殊形态多胺的代谢及调节.植物生理学通讯,2000,36(1):1-6
    141.赵福庚,孙诚,章文华,等.盐胁迫对大麦叶片类囊体膜上两种形态多胺含量和膜蛋白合成的影响.植物生态学报,2003,27(1):137-140
    142.郑少清,谢永萍,曾吉凡.不同钙源及钙浓度对烤烟品种发芽率和发芽势的影响.耕作与栽培,2001,2:23-24
    143.郑兴莲,申书兴,王彦华,等.硝酸钙胁迫对茄子幼苗生长及生理生化指标的影响.河北农业大学学报,2006,29(6):17-20
    144.周宝利,林桂荣,付亚文,等.嫁接茄子防病增产效果与PPO,SOD,EST同工酶关系的初步研究.园艺学进展(Ⅱ),1998,425-428
    145.周宝利,林桂荣,高新艳,等.不同茄子砧木防病增产效果与POD同工酶的关系.北方园艺,1998,3:14-15
    146.周宝利,林桂荣,高新艳,等.嫁接茄子黄萎病抗性与苯丙烷类代谢的关系.沈阳农业大学学报,2000,31(1):57-60
    147.周宝利,王月英.以‘托鲁巴姆'为砧木的茄子嫁接苗耐低温特性研究.辽宁农业科学,1999,1:5-8
    148.朱祝军,喻景权.氮素形态和光照强度对烟草生长和H_2O_2清除酶活性的影响.植物营养与肥料学报,1998,4(4):379-385
    149.邹邦基,何雪晖.植物的营养.北京:农业出版社,1985.219-228
    150.Aber J D,Magill A,Mcnulty S G,et al.Forest biogeochemistry and primary production altered by nitrogen saturation.Water Air and Soil Pollution,1995,85:1665-1670
    151.Ahmed S,Nawata E,Hosokawa M,et al.Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging.Plant Science,2002,163:117-123
    152.Ahn S J,Im Y J,Chung G C,et al.Physiological responses of gratfed-cucumber levaes and rootstock affected by low temperature.Scientia Horticulturae,1999,81:397-408
    153.Ana S C,Maria M M,Francisco P A.The rootstock effect on the tomato salinity response depends on the shoot genotype.Plant Science,2002,162:825-831
    154.Asada K.The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons.Annual Review Plant Physiology and Plant Molecular Biology,1999,50:601-639
    155.Asao T,Shimizu N,Ohta K,et al.Effect of rootstocks on the extension of harvest period of cucumber(Cucumis sativus L.) growth in non-renewal hydroponics.Journal of the Japanese Society for Horticultural Science,1999,68:598-602
    156.Ashraf M,Ahmad S.Influence of sodium chloride on ion accumulation,yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton(Gossypium hirsutum L.).Field Crops Research,2000,66:115-127
    157.Aslam M,Travis R L,Huffaker R C.Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley seedlings.Plant Physiology,1992,99:1124-1133
    158.Aslam M,Travis R L,Rains D W.Evidence for substrate induction of a nitrate efflux system in barley roots.Plant Physiology,1996,112:1167-1175
    159.Azevedo N A D,Tarquinio P J,Eneas F J,et al.Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes.Environmental and Experimental Botany,2006,56:87-94
    160.Bagni N,Tassoni A.Biosynthesis,oxidation and conjugation of aliphatic polyamines in higher plants.Amino Acids,2001,20:301-317
    161.Balakrishnan K,Rajendran C,Kulandaivelu G.Differential responses of iron,magnesium,and zinc deficiency on pigment composition,nutrient content,and photosynthetic activity in tropical fruit crops.Photosynthetica,2000,38:477-479
    162. Ballesteros E, Blumwalt E, Donaire J P, et al. Na~+/H~+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCI stress. Plant Physiology, 1997,99: 328-334
    
    163. Behboudian M H, Walker R R, Torokfalvy E. Effects of water stress and salinity on photosynthesis of Pistachio. Scientia Horticulturae, 1986,29: 251-261
    
    164. Berthomieu P, Conejero G, Nublat A, et al. Fountional analysis of AtNKTl in Arabidopsis shows that Na~+ recirculation by the phloem is crucial for salt tolerance. EMBO Journal, 2003, 22:2004-2014
    
    165. Besford R T, Richardson C M, Campos J L, et al. Effects of polyamines on stabilization of molecular complexes of thylakoid membranes of osmotically stressed oat leaves. Planta, 1993, 189:201-206
    
    166. Bohnert H J, Cushman J C. The ice plant cometh: lessons in abiotic stress tolerance. Journal of Plant Growth Regulation, 2000, 19: 334-346
    
    167. Borrell A, Besford R T, Altabella T, et al. Regulation of arginine decarboxylase by spermine in osmotically-stressed oat leaves, Physiologia Plantarum, 1996, 98: 105-110
    
    168. Bowler C, Van M M, Inze D. Superoxide dismutase and stress tolerance. Annual Review Plant Physiology and Plant Molecular Biology, 1992,43: 83-116
    
    169. Briskin D P, Reynolds-Niesman I. Determination of H~+-ATP stoichiometry for the plasma membrane H~+-ATP from Red Beet (Beta vulgaris L.) storage tissue. Plant Physiology, 1991,195:242-250
    
    170. Bush D S. Calcium regulation in plant cells and its role in signalling. Annual Review Plant Physiology and Plant Molecular Biology, 1995,46: 95-112
    
    171. Cakmak I, Romheld V. Boron deficiency-induced impairments of cellular function in plants. Plant and Soil, 1997,193:71-83
    
    172. Chapin F S. Effects of nutrient deficiency on plant growth: Evidence for a centratied stress system.In: Damies W J and Jeffcoat eds. Importance of Root to Shoot Communication in the Response to Environment Stress. 1990, 135-138
    
    173. Cheeseman J M. Mechanism of salinity tolerance in plants. Plant Physiology, 1988,87:547-550
    
    174. Chen Q, Zhang W H, Liu Y L. Effect of NaCl, glutathione and ascorbic acid on function of tonoplast vesicles isolated form barley leaves. Journal of Plant Physiology, 1999,155: 685-690
    
    175. Chen T H, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology, 2002, 5: 250-257
    
    176. Claussen W. Growth, water use efficiency, and proline content of hydroponically grown tomato plants as affected by nitrogen source and nutrient concentration. Plant and Soil, 2002, 247: 199-209
    
    177. Corey K A, Barker A V. Ethylene evolution and polyamine accumulation by tomato subjected to interactive stresses of ammonium toxicity and potassium deficiency. Journal of the American Society of Horticultural Science, 1989, 114: 651-655
    
    178. Dasgan H Y, Aktas H, Abak K, et al. Detemiantion of screening techniques to salinity tolerance in tomates and investigation of genotype responses. Plant Science, 2002, 163: 695-703
    
    179. Drolet G, Dumbroff E B, Legge R L, et al. Radical scavenging properties of polyamines.Phytochemistry, 1986, 25: 367-371
    
    180. Dure L S. Developmental biochemistry of cotton seed embryogenesis and germination: changing mRNA populations as shown in vitro and in vivo protein synthesis. Biochemistry, 1981, 20:4162-4168
    
    181.Eran R, Yoseph L. Analysis of xylem water as an indicator of current chloride uptake status in citrus trees. Scientia Horticulturae, 2005,103: 317-327
    
    182. Erisson A, Norde L G, Nasholm T, et al. Mineral nutrient imbalances and arginine concentrations in needles of Picea abies (L.) Karst. from two areas with different levels of airborne deposition. Trees,1993, 8: 67-74
    
    183. Estafi M T, Martinez-Rodriguez M M, Perez-Alfocea F, et al. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 2005, 56: 703-712
    
    184. Evans R J. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L). Plant Physiology, 1983, 72(2): 297-302
    
    185. Ferguson I B. Calcium and the regulation of plant growth and senesence. HortScience, 1998, 32:262-271
    
    186. Fisarakis I, Chartzoulakis K, Stavrakas D. Response of sultana vines (Vitis vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 2001, 51:13-27
    
    187. Flowers T J. Improving crop salt tolerance. Journal of Experimental Botany, 2004, 55: 307-319
    
    188. Foolad M R. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome, 1999, 42: 727-734
    
    189. Ford C W. Accumulation of low molecular weight solutes in water-stress tropical legumes.Phytochemistry, 1984,23: 1007-1015
    
    190. Foyer C H, Halliwell B. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role on ascorbic acid metabolism. Planta, 1976,133: 21-25
    191. Frey-Wyssling A. Crystallography of the two hydrates of crystalline calcium oxalate in plants.American Journal of Botany, 1981,68: 130-141
    
    192. Gao Z F, Loeseher W H. Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant and Cell Environment, 2003,26: 275-283
    
    193. Gassmann W, Schroeder J I. Inward-rectifying K~+ channels in root hairs of wheat: A mechanism for aluminum-sensitive low-affinity K~+ uptake and membrane potential control. Plant Physiology,1994, 105: 1399-1408
    
    194. Gaxiola R A, Rao R, Sherman A, et al. The Arabidopsis thaliana proton transporters, AtNhxl and Avpl, can function in cation detoxification in yeast. Proceedings of the National Academy of Science of USA, 1999, 96: 1480-1485
    
    195.Gaymard F, Cerutti M, Horeau C, et al. The baculovirus/insect cell system as an alternative to Xenopus oocytes: First characterization of the AKT1 K~+ channel from Arabidopsis thaliana.Journal of Biological Chemistry, 1996, 271: 22863-22870
    
    196. Gilroy S, Bethke P C, Jones R L. Calcium homeostasis in plants. Journal of Cell Science, 1993,106: 453-462
    
    197. Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 1994, 34: 706-714
    
    198. Greenway H, Munns R. Mechanisms of salt tolerance in non-halophytes. Annual Review Plant Physiology and Plant Molecular Biology, 1980, 31: 149-190
    
    199. Grouzis J P, Pouliquin P, Rigaud J, et al. In vitro study of passive nitrate transport by native and reconstituted plasma membrane vesicles from corn root cells. Biochimica and Biophysica Acta,1997,1325:329-342
    
    200. Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium binding protein SOS1. Proceedings of the National Academy of Science of USA, 2000,97: 3735-3740
    
    201. Hamdia M, Shaddad MAK, Doaa M M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation, 2004,44: 165-174
    
    202. Haro R, Baneulos M A, Quintero F J. Genetics basis of sodium exclusion and sodium tolerance in yeast. A model for plants. Physiologia Plantarum, 1993, 89: 868-874
    
    203. Harper D B, Harvey B M R. Mechanisms of paraquat tolerance in perennial ryegrass II. Role of superoxide dismutase, catalase, and peroxidase. Plant and Cell Environment, 1978,1: 211-215
    
    204. Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for deltal-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Molecular Biology, 1997, 33: 857-565
    
    205. Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires myristoylatio and calcium binding. Plant Cell, 2000, 12: 1667-1677
    
    206. Iyengar E R R, Reddy M P. Photosynthesis in highly salt tolerant plants. In: Pesserkali M (Ed.),Handbook of photosynthesis. Marshal Dekar, Baten Rose, USA, 1996: 897-909
    
    207. Jenns A E, Kuc J. Graft transmission of systemic resistance of cucumber to anthracnose induced by Colletorichum lagenarium and tobacco necrosis virus. Phytopathology, 1979, 69: 753-756
    
    208. Jin Y H, Tao D L, Hao Z Q, et al. Environmental stresses and redox status of ascorbate. Acta Botanica Sinina, 2003, 45: 795-801
    
    209. Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain.Environmental Pollution, 2007, 145: 497-506
    
    210. Kashyap V, Kumar S V, Collonnier C, et al. Biotechnology of eggplant. Scientia Horticulturae,2003, 97: 1-25
    
    211. Katiyar S, Dubey R S. Changes in polyamine titer in rice seedlings following NaCl salinity stress.Journal of Agronomy and Crop Science, 1990,165: 19-27
    
    212. Kaur-Sawhney R, Shih L, Flores H E, et al. Relation of polyamines synthesis and titer to aging and senescence in oat leaves. Plant Physiology, 1982, 69: 405-410
    
    213. Khan M H, Panda S K. Induction of oxidative stress in roots of Oryza sativa L. in response to salt stress. Biologia Plantarum, 2002, 45: 625-627
    
    214. Kim H T, Kang N J, Kang K Y. Selection of 'Pusan Daemok l'for high yield and quality in rootstock of cucumber. Journal of Horticultural Science, 1998, 40: 158-161
    
    215. Kitamura Y, Yano T, Honna T, et al. Causes of farmland salinization and remedial measures in the Aral Sea basin: research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agricultural Water Management, 2006, 85: 1-14
    
    216. Kjshitani S, Takanami T, Suzuki M, et al. Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant and Cell Environment, 2000, 23: 107-114
    
    217. Knight H. Calcium signaling during abiotic stress in plants. Internatioal Review of Cytlogy-A Survey of Cell Biology, 2000, 195: 269-324
    218. Kochian L V, Garvin D F, Shaff J E, et al. Towards an understanding of the molecular basis of K~+ transport: Characterization of cloned K~+ transport cDNAs. Plant and Soil, 1993, 156: 115-118
    
    219. Kononowicz A K, Nelson D E, Singh N K, et al. Regulation of the osmotin gene promoter. Plant Cell, 1992,4:513-524
    
    220. Konigshofer H, Lechner S. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress. Plant Physiology and Biochemistry, 2002, 40: 51-59
    
    221. Kotsiras A, Olympios C M, Drosopoulos J, et al. Effects of nitrogen form and concentration on the distribution of ions within cucumber fruits. Scientia Horticulturae, 2002, 95: 175-183
    
    222. Krivosheeva A, Tao D L, Ottander C, et al. Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta, 1996,200:296-305
    
    223. Kronzucker H J, Siddiqi M Y, Glass A D M. Kinetics of NO3" influx in spruce. Plant Physiology,1995,109:319-326
    
    224. Langebartels C, Kerner K, Leonardi S, et al. Biochemical plant response to ozone. I: Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiology, 1991,91: 882-887
    
    225. Larosa P R, Hasegawa P M, Rhodes D, et al. Abscisic acid simulated osmotic adjustment and its involvement in adaptation of tobacco cell to NaCl. Plant Physiology, 1987, 85:174-185
    
    226. Lee J M. Cultivation of gratfed vegetables I: Current status, gratfing methods and benefits.Horticultural Science, 1994, 29: 235-239
    
    227. Lefevre I, Gratia E, Lutts S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Science, 2001, 161: 943-952
    
    228. Leigh R A, Storey R. Intercellular compartmentation of ions in barley leaves in relation to potassium nutrition and salinity. Journal of Experimental Botany, 1993,44: 755-762
    
    229. Lersten N R. Crystals of calcium compounds in gramineae. New Phytologist, 1983,93: 633-637
    
    230. Liao C T, Lin C H. Photosynthetic responses of graft bitter melon seedlings to flood stress.Environmental and Experimental Botany, 1996, 36: 167-172
    
    231. Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280:1943-1945
    
    232. Liu J H, Nada K, Honda C, et al. Polyamine biosynthesis of apple callus under salt stress:Importance of the argirnine decarboxylase pathway in stress response. Journal of Experimental Botany, 2006, 57: 2589-2599
    
    233. Lowry O H, Rosenbrough N J, Farr A L, et al. Protein measurement with a Folin reagent. Journal of Biological Chemistry, 1951, 193:265-275
    
    234. Marschner H. Mineral nutrition of higher plants. London, UK: Academic Press, 1995,48-51
    235.Marschner H, Cakmak I. High light intensity enhances chlorosis and necrosis in leaves of zinc,potassium, and magnesium deficient bean (Phaseolus vulgaris L.) plant. Journal of Plant Physiology, 1989,134: 308-315
    
    236. Martin-Tanguy J. Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiologia Plantarum, 1997,100: 675-688
    
    237. Masuda M, Gomi K. Mineral absorption and oxygen consumption in gratfed and nongratfed cucumber. Journal of the Japanese Society for Horticultural Science, 1984, 52(4): 414-419
    
    238. Matoh T, Watanabe J, Takahashi E. Sodium, potassium, chloride and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. Plant Physiology, 1987, 84: 173-177
    
    239. Maurel C. Aquaporins and water permeability of plant membranes. Annual Review Plant Physiology and Plant Molecular Biology, 1997, 48: 399-429
    
    240. Medici L 0, Azevedo R A, Smith R J, et al. The influence of nitrogen supply on antioxidant enzymes in plant roots. Functional Plant Biology, 2004, 31:1-9
    
    241.Mengel K, Planker R, Hoffmann B. Relationship between apoplast pH and iron chlorosis on sunflower (Helianthus annusL.). Journal of Plant Nutrition, 1994, 17: 1053-1065
    
    242. Miller A J, Smith S J. Nitrate transport and compartmentation in cereal root cells. Journal of Experimental Botany, 1996, 47: 843-854
    
    243. Minocha R, Long S. Msgill A H, et al. Foliar free polyamine and inorganic ion content in relation to soil and soil solution chemistry in two fertilized forest stands at the Harvard Forest,Massachusetts. Plant and Soil, 2000, 222: 119-137
    
    244. Munns R. Comparative physiology of salt and water stress. Plant and Cell Environment, 2002, 25:239-250
    
    245. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate: specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22: 867-880
    
    246. Nakamura Y, Kasamo K, Shimosato N, et al. Stimulatio of the extrusion of protons and H~+-ATPase activities with the decline in pyrohosphatase acoivity of the tonoplast in intact mung bean roots under high-NaCI stress and its relation to external levels of Ca~(2+) ions. Plant and Cell Physiology,1992,33: 139-149
    
    247. Navari-Izzo F, Meneguzzo S, Loggini B. The role of the glutathione system during dehydration of Boea hygroscopia. Physiologia Plantarum, 1997, 99: 23-30
    248.Negrel J, Lherminier J. Peroxidase-mediated integration of tyramine into xylem cell walls of tobacco leaves. Planta, 1987,72:494-501
    
    249. Niu X M, Narasimhan M L, Salzman R A, et al. NaCl regulation of plasma membrane H~+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiology, 1993,103: 713-718
    
    250. Oeda K, Salinas J, Chua N H. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO Journal, 1991,10:1793-1802
    
    251. Omran R G. Peroxide levels and the activities of catalase, peroxidase and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology, 1980,65: 407-408
    
    252. Panda S K, Khan M H. Antioxidant efficiency in rice (Oryza sativa L.) leaves under heavy metal toxicity. Journal of Plant Biology, 2003, 30: 23-29
    
    253. Parida A, Das A B, Das P. NaCI stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove Bruguiera parviflora in hydroponic cultures. Journal of Plant Biology, 2002, 45: 28-36
    
    254. Picchioni G A, Miyamoto S, Storey J B. Salt effects on growth and ion uptake of pistachio rootstock seedlings. Journal of the American Society of Horticultural Science, 1990,115: 647-653
    
    255. Polesskaya O G, Kashirina E I, Alekhina N D. Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply. Russian Journal of Plant Physiology, 2004, 51: 689-691
    
    256. Poovaish B W. Molecular and cellular aspects of calcium action in plants. HortScience, 1998, 29:267-271
    
    257. Poovaish B W. Biochemical and molecular aspects of calcium action. Acta Horticulturae, 1993,326:139-145
    
    258. Pukacka S, Ratajczak E. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. Journal of Plant Physiology,2006, 163: 1259-1266
    
    259. Rathinasabapathi B, Bumet M, Russell B L, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in Plants: Prosthetic group characterization and cDNA cloning. Proceedings of the National Academy of Science of USA, 1997,94: 3454-3458
    
    260. Reddy M P, Sanish S, Iyengar E R R. Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb under saline conditions. Photosynthetica, 1992, 26:173-179
    
    261.Reggiani R, Bozo S, Bertani A. Changes in polyamine metabolism in seedlings of three wheat (Triticum aestivum L.) cultivars differing in salt sensitivity. Plant Science, 1994, 102: 121-126
    
    262. Rivero R M, Ruiz J M, Romero L M. Importance of N source on heat stress tolerance due to the accumulation of proline and quaternary ammonium compounds in tomato plants. Plant Biology,2004, 6: 702-707
    
    263. Rochat C, Boutin J P. Carbohydrates and nitrogenous compounds changes in the hull and in the seed during the pod development of pea. Plant Physiology and Biochemistry, 1989, 67: 10-15
    
    264. Romero L, Belakbir A, Ragala L, et al. Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstock in melon plants (Cucumis melon L.). Soil Science and Plant Nutrition, 1997,43: 855-862
    
    265. Rubio F, Gassmann W, Schroeder J I. Sodium driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995, 270:1660-1663
    
    266. Ruiz J M, Romero L. Cucumber yield and nitrogen metabolism inresponse to nitrogen supply.Scientia Horticulturae, 1999, 82: 309-316
    
    267. Ruiz J M, Rios J J, Rosales M A, et al. Grafting between tobacco plants to enhance salinity tolerance. Journal of Plant Physiology, 2006,163: 1229-1237
    
    268. Sanchez E, Rivero R M, Ruiz J M, et al. Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH_4NO_3 application rates. Scientia Horticulturae, 2004, 99: 237-248
    
    269. Sanchez E, Ruiz J M, Romero L. Proline metabolism in response to nitrogen toxicity in fruit of French Bean plants (Phaseolus vulgaris L.cv Strike). Scientia Horticulturae, 2002, 93: 225-233
    
    270. Santa-Cruz A, Martinez-Rodriguez M M, Perez-Alfocea F, et al. The rootstock on the tomato salinity response depends on the shoot genotype. Plant Science, 2002,162: 825-831
    
    271. Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system.Physiologia Plantarum, 2001, 112: 487-494
    
    272. Shannon M C, Grieve C M. Tolerance of vegetable crops to salinity. Scientia Horticulturae, 1999,78: 5-38
    
    273. Shi H, Ishitani M, Wu S J, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Proceedings of the National Academy of Science of USA, 2000, 97:6896-6901
    
    274. Shi H, Xiong L, Stevenson B, et al. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell, 2002,14: 575-588
    275. Siddiqi M Y, Glass A D M, Ruth T J, et al. Studies of the uptake of nitrate in barley. Plant Physiology, 1990, 93: 1426-1432
    
    276. Singh N K, Handa A K, Hasegawa P M, et al. Protein associated with adaptation of cultured tobacco cells to salt. Plant Physiology, 1985,79:174-181
    
    277. Smith T A. Plant polyamines-metabolism and functions. In: Flores H E, Arteca R N, Shannon J C (eds) Polyamines and Ethylene: Biochemistry, Physiology and Interactions, American Society of Plant Physiologists, New York, 1990,1-23
    
    278. Song J J, Nada K, Tachibana S. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant and Cell Physiology, 2002,43: 619-627
    
    279. Speer M, Kaiser W M. Ion relations of symplastic and apoplastic spaces in leaves from Spinacia oleracea L. and Piswn sativum L. under salinity. Plant Physiology, 1991, 97: 990-997
    
    280. Spychalla J P, Desborough S L. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiology, 1990, 94: 1214-1218
    
    281. Strizhov N, Abraham E, Okresz L, et al. Differential expression of two PSCS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidposis. Plant Journal, 1997,12: 557-569
    
    282. Suga S, Komatsu S, Maeshima M. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant and Cell Physiology, 2002,43: 1229-1237
    
    283. Sun C, Liu Y L, Zhang W H. Mechanism of the effect of polyamines on the activity of tonoplasts of barley roots under salt stress. Acta Botanica Sinina, 2002, 44: 1167-1172
    
    284. Tang W, Newton R J. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation,2005,46:31-43
    
    285. Uno Y, Urao T, Yamaguchi-Shinozaki K, et al. Early salt-stress effects on expression of genes for aquaporin homologues in the halophyte sea aster {Aster tripolium L). Journal of Plant Research,1998,1:411-419
    
    286. Van Heerden P D R, Kr(?)ger G H J. Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. Journal of Plant Physiology, 2002,159:1077-1086
    
    287. Verbruggen N, Villarroel R, Montagu M V. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidposis thaliana. Plant Physiology, 1993,103: 771-778
    288. Vogel G, Aeschbacher R A, M(?)ller J, et ah Trehalose-6-phosphate phosphatases from Aiabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant Journal,1998, 13: 673-653
    
    289. Walch-Liu P, Neumann G, Bangerth F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany, 2000, 51: 227-237
    
    290. Wu S J, Ding L, Zhu J K. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8: 617-627
    
    291. Xu D P, Duan X L, Wang BY, et ah Expression of a late embryogenesis abundant protein gene,HVAI, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 1996,110: 249-257
    
    292. Yamada S, Katsuhara M, Kelly W B. A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell, 1995, 7: 1129-1142
    
    293. Yancey P, Clark M E, Had S C, et al. Living with water stress: evolution of osmolyte system.Science, 1982,217: 1214-1222
    
    294. Yu S W, Tang K X. Map Kinase cascades responding to environmental stress in plants. Acta Botanica Sinica, 2004,46: 127-136
    
    295. Zaiffiejad M, Clark R B, Sullivan C Y. Aluminum and water stress effects on growth and proline of sorghum. Journal of Plant Physiology, 1997,150: 338-344
    
    296. Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 2000, 124:941-948
    
    297. Zhu J K. Salt and drought stress signal transduction in plants. Annual Review Plant Physiology and Plant Molecular Biology, 2002, 53: 247-273
    
    298. Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 5:441-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700