用户名: 密码: 验证码:
红壤水分条件对柑橘生理生态要素影响及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国红壤地区季节性干旱非常严重,土壤水分条件是制约该地区作物和果树生长发育的主要环境因子之一。柑橘在中国栽培面积居世界前列,是中国红壤地区栽培面积最大的水果,是该地区农业的支柱产业和优势产业之一。为探索柑橘在不同红壤水分状况下的生理生态要素变化特征和机理,或为减轻红壤干旱对柑橘生长的伤害和对产量、品质的负面影响,或为红壤地区柑橘果园节水灌溉提供理论依据,本文结合国家“863”高技术研究发展计划农业节水专项(2002AA2Z4331)的实施,于2003-2004年在中国典型红壤地区(江西鹰潭)进行了不同红壤水分条件下柑橘的生理生态反应试验。实验以第四纪红黏土发育的红壤、2年生宫川温州蜜柑(Citrus unshiu Marc.cv.Miyagawa Wase)盆栽幼树(中国科学院红壤生态实验站玻璃温室内)和9龄成年树(中国科学院红壤生态实验站试验示范柑橘园内)为对象,采用土壤水分探头(FDR)实时监测红壤水分含量,控制红壤含水量5个处理:SWC30、SWC45、SWC60、SWC75和SWC90(分别代表红壤相对含水量30%、45%、60%、75%和90%),对柑橘在不同红壤水分条件下的根系、茎和叶生长发育、根系和叶片主要营养元素含量、叶片光合特性、脯氨酸、多胺、活性氧代谢和保护酶活性、果实产量和品质等一系列主要生理生态指标进行实验测定,并对柑橘这些生理生态指标与红壤含水量之间的关系进行了分析。最后,对不同红壤水分条件下柑橘生理生态要素值进行主成分分析,并简要讨论了柑橘生长和生理要素与红壤地区气候环境因子之间的关系。
     主要结果如下:
     1.红壤在一定的含水量范围内(SWC≤75%),柑橘根系的鲜重、干重、根尖数、总根长、主根长、根平均直径、根体积、根上下扫描面积、根表面积、根不同区域(直径)的总根长和根表面积等根系生长参数以及叶面积、叶周长、叶宽值、树高、新梢长度和横径等根、茎和叶生长指标均随红壤水分增加而增加。其中,依据模拟函数式计算结果,柑橘根体积、总根长、根上下扫描面积、根表面积等生长指标在红壤相对含水量75.5%-79.6%时达最大值。根系和树体高度在红壤相对含水量低于30%、梢长和横径在红壤相对含水量低于45%时受到显著抑制。红壤水分增加(在SWC30%-75%范围内)促进了柑橘根系氮、钾的积累,而降低了磷的含量。其中,根系磷含量与SWC呈显著线性负相关,钾含量与SWC呈显著线性正相关;红壤水分在亏缺或盈余下,柑橘叶片氮含量显著下降;磷、钾含量随红壤水分增加而增加;当SWC≤30%,钙、镁和铁的积累受到了显著抑制。
     2.红壤水分影响柑橘叶片叶绿素含量和光合特性。在SWC75处理时,柑橘叶片叶绿素a、叶绿素b、类胡萝卜素含量、净光合速率(Pn)、气孔导度(Gs)、进出气室CO_2的浓度差(△ca)和羧化效率(CE)最高,胞间CO_浓度(Ci)最低。在SWC≤75%时,Pn、△Ca均随红壤水分的增加而显著增加,Pn、△Ca均与SWC呈显著线性正相关,相关系数分别为R~2=0.938 8~*(n=60)和R~2=0.907 2~*(n=60),而Ci变化趋势恰好相反。蒸腾速率(Tr)与SWC(30%-90%)呈极显著线性正相关(R~2:0.9625~(**),n=75)。综合分析Ci、Pn和Gs与红壤水分之间的关系,不同红壤水分条件所引起的柑橘叶片光合速率的变化,在红壤相对含水量低于30%时主要是由非气孔因素所引起的,而高于45%时主要是由气孔因素所引起的。比较光合速率Pn和蒸腾速率Tr与红壤水分含量之间的关系,在红壤相对含水量75%以上时,柑橘叶片蒸腾作用有部分并没有充分用于光合,属无效的奢侈蒸腾。在红壤相对含水量45%-60%时,柑橘水分利用效率(WUE)最高。干旱的SWC30和多水的SWC90处理,WUE则显著降低。
     3.红壤水分严重亏缺或盈余影响到柑橘叶片氮代谢次生产物的变化,造成柑橘体内脯氨酸(Pro)和多胺(PAs)等在柑橘体内的积累,使柑橘形成对红壤水分亏缺或盈余等逆境环境的适应性。柑橘叶片游离氨基酸总量和Pro含量随红壤水分的减少而显著增加,游离氨基酸总量(y)与SWC(x)之间呈显著负相关(y=-0.0282x+12.049;R~2=0.852 4~*;n=50),Pro含量(y)在红壤相对含水量低于75%的水分条件下,与SWC(x)呈显著负相关(y=-0.0152x+4.224;R~2=0.860 5~*;n=40)。腐胺(Put)含量在SWC75处理时最低。亚精胺(Spd)含量随红壤水分增加呈抛物线变化,在SWC45处理时含量最高。而精胺(Spm)含量在红壤水分SWC60处理时最高。Spd含量与Put含量之间呈显著正相关。(Spd+Spm)/Put的比值(y)在SWC≤75%的红壤水分条件时,与SWC(x)呈显著线性相关(y=0.0112x+0.173;R~2=0.851 8~*;n=40),柑橘受红壤水分胁迫时产生的PAs对生理起调节作用的主要是Spd与Spm,(Spd+Spm)/Put的比值决定了柑橘受红壤水分胁迫影响的程度。初步提出这个比值可能是柑橘响应红壤水分胁迫程度的一个潜在的敏感度指标。比值越高,柑橘受红壤水分胁迫越轻。这是本实验发现的有关柑橘响应红壤水分变化一个新的生理现象,值得进一步探讨。
     4.红壤水分影响了柑橘体内质膜透性以及活性氧含量和保护酶活性的变化。随红壤水分减少,柑橘叶片丙二醛(MDA)含量和质膜透性显著增加,叶片脂质过氧化加重。MDA含量和叶片相对电导率均与SWC呈显著线性负相关,相关系数分别为R~2=0.905 1~*(n=50)和R~2=0.823 6~*(n=50);但柑橘叶片O_2~-生成速率和H_2O_2含量均随红壤水分减少呈下降趋势,而且与柑橘根系和叶片的铁含量显著相关,O_2~-、H_2O_2并不是造成柑橘叶片在红壤干旱胁迫下氧化伤害的主要原因,这是本实验发现柑橘对红壤干旱响应又一个新的生理现象,有待进一步探讨。随着红壤含水量的变化,柑橘叶片抗氧化系统处于动态的平衡中,其中,SOD、POD、APX酶活性在红壤水分亏缺条件下都保持较高的活性,但CAT活性随红壤水分下降却显著降低。
     5.红壤水分影响柑橘果实的产量因子和品质指标。红壤水分的增加,柑橘果实生长量显著增加,果实纵/横径比值下降。在SWC≤75%时,柑橘产量,单果重,单果果肉重、果实可食率、果肉含水量等随SWC增加而显著增加,在75%时各指标值最高;果实可溶性固形物、可溶性糖和可滴定酸含量分别与SWC呈显著或极显著线性负相关,相关系数分别为R~2=0.880 7~*(n:50)、R~2=0.717 7~*(n=50)和R~2=0.965 1~(**)(n=50);果实pH值则呈相反趋势,柑橘果实固酸比和糖酸比随SWC的增加而显著增加,果实固酸比与SWC呈显著线性相关(R~2=0.908 6~*,n=50),糖酸比在SWC=75%时达到最大值。红壤水分含量降低可增加柑橘果实可溶性固形物和糖的含量,却降低了果实的适口度。保持红壤含水量60%-75%的范围,即可增加柑橘果实中品质成分的含量,又可提高果实的口感。以柑橘产量、品质和口感而言,柑橘最佳的红壤水分含量为SWC=75%。
     6.基于主成分分析,得出红壤水分对柑橘生理生态要素影响相对较大的指标是:树高(y_1)、单果重(y_2)、叶片Fe含量(y_3)、MDA含量(y_4)、Spd含量(y_5)、质膜透性(y_6)、O~(2-)生成速率(y_7)、脯氨酸/游离氨基酸比值(y_8)和柑橘水分利用效率WUE(y_9)。各指标与红壤相对含水量之间(x)的关系如下:
     y_1=0.9367x+26.644,R~2=0.928 4~*;
     y_2=0.3638x+70.994,R~2=0.898 9~*;
     y_3=-2E~(-05)x~2+0.0023x+0.0934,R~2:0.725 0~*;
     y_4=-2E~(-05)x+0.004,R~2=0.933 7~(**);
     y_5=-0.06x~2+6.7931x-61.917,R~2=0.906 2~(**);
     y_6=-0.4152x+14.958,R~2=0.823 6~*;
     y_7=-0.0002x~2+0.0278x+0.7546,R~2=0.782 2~*;
     y_8=1E~(-05)x~2-0.0017x+0.3754,R~2=0.812 7~*;
     y_9=-0.0043x~2+0.5092x-6.3014,R~2=0.910 6~*.
Water content in red soil makes an important role in the production of crop and fruit as one of the most limiting factors in the red soil region of China. Citrus production is the main fruit in the region, and also an important and predominant sector of agriculture whose planting acre stands on the list all over the world.
     The objectives of this study were to investigate the effect of soil water content on the characteristics of citrus eco-physiological changes and its mechanism; to lower the negative influence of soil aridity on the growth, output and quality of citrus; further, to provide the theoretical foundation for economic irrigation of citrus production in red soil region of China. So we made the tests of ecophysiology of citrus in the red soil which contain different amount of water in the typical red soil region of China (Yintan, Jiangxi Province) from 2003 to 2004. This project was also put in practice together with the economic irrigation project which was supported by National High Technology Research and Development Programe of China ("863").
     Two-year potted plants and 9-year mature satsuma mandarin trees (Citrus unshiu Marc.cv. Miyagawa Wase) were selected as experimental materials, and grown in a red soil developed from the Quaternary red clay. Soil water content was monitored in real time by FDR and controlled to be at 5 different moisture levels(treatments): SWC30, SWC45, SWC60, SWC75 and SWC90 (i.e., soil relative water content as 30%, 45%, 60%, 75% and 90%, respectively). A series of targets of Eco-physiological factors of citrus trees were investigated, such as growth of the root system, stem and leaf; absorption and accumulation of the main nutrient elements; photosynthetic characteristics; content of proline (Pro) and polyamine (PAs); metabolism of reactive oxygen species (ROS) and activities of protect enzymes (APX, CAT, POD and SOD); fruit yield and quality response to soil water contents. The relationship between those eco-physiological factors and soil water content were further analyzed by principal component analysis (PCA). The relationships between citrus growth factors and meteorological-environmental factors were also discussed in this paper.
     The main findings of the study are highlighted below:
     1. The root growth factors including fresh and dry weight of single citrus root, root tip number, total root length, taproot length, average root diameter, root volume, projection area, surface area, length and surface area in different root regions, and the leaf growth factors including leaf area, leaf perimeter, leaf width, the height of trees, new shoot length, and stem diameter were all increased with the increase of SWC. Among of them, the major root growth factors, such as root volume, total root length, root projection area and root area, were maximized when SWC were from 75.5% to 79.6%. Both root growth and tree height were significantly restrained when SWC was below 30%, and shoot length and stem diameter were also inhibitated when SWC was below 45%. Nitrogen (N) and potassium (K) accumulation in roots was increased while phosphorous (P) content was reduced with the increasing of SWC from 30%-75%. Therefore, it was a negative-linear relation between P content of the roots and SWC while a positive-linear relation between K content and SWC. The N content of citrus leaves was reduced markedly when soil water content was either too low or too high. However, the P and K contents of citrus leaf were increased as the SWC increased. The accumulation of calcium (Ca), magnesium (Mg) and iron (Fe) was negatively affected when SWC was below 30%.
     2. Chlorophyll (Chl) content and photosynthetic characteristics were affected by SWC. The content of Chl a, Chl b and carotinoid(Car), net photosynthetic rate(Pn), stomatal conductance(Gs), Difference of CO_2 concentration pass in and out of the air chamber(△Ca) and candarboxylation efficiency(CE) in citrus leaves were maximized while intercellular CO_2 concentrations(Ci) were minimized at 75% SWC. Both Pn and△Ca were increased with the increasing of SWC until 75% (R~2 = 0.938 8*and R~2 = 0.907 2*, respectively). However, Ci decreased as SWC increased. Transpiration rate (Tr) had a significantly positive correlation with SWC (from 30% to 90%, R~2 = 0.962 5**). Analyzing the relationships between Ci, Pn, Gs and SWC, we concluded that Pn variation of citrus leaves resulted from SWC was mainly due to non-stomatal factors when SWC was less 30% and due to stomatal factors if SWC was more than 45%. Part of transpiration was non-effective, in other words, not used for photosynthesis, when SWC was above 75% based on the relationship of Pn and Tr with SWC. The water use efficiency (WUE) of citrus was at the highest when SWC was from 45% to 60%, whereas WUE was markedly reduced under very dry (SWC<30%) and excessive soil water (SWC>90%) conditions.
     3. Nitrogen metabolites of citrus leaves were influenced by either little or too much soil water, which resulted in the accumulation of proline (Pro) and polyamine (PAs) in citrus. Total free amino acid (FAA)(y) increased with the decrease of SWC(x)(y=-0.0282x+ 12.049; R~2=0.852 4*, n=50 ). There was a negative relation between Pro(y) and SWC(x) when SWC was below 75% (y=-0.0152x+4.224, R~2=0.860 5*, n=40). Putrescine (Put) content reached the minimum when SWC was 75%. Spermidine (Spd) content changed with the increase of SWC in a parabola shape, and was maximized when SWC was 45%. The spermine (Spm) was maximized at SWC60. There was a significant relationship between Spd(y) and Put(x) (y=0.2404x~2-51.337x +2976.4, R~2=0.858 6*, n=50). When SWC was less than 75%, it had a significantly linear relation between the ratio of (Spd+Spm)/Put(y) and SWC(x) (y=0.0112x+0.173 ,R~2=0.851 8*, n=50). Spd and Spm acted as the main factors in physiological adjustment of PAs, which was produced under the circumstance of soil water stress. And the degree of effect of citrus on soil water stress was determined by the ratio of (Spd+Spm)/Put. The ratio of (Spd+Spm)/Put determined the severity of soil water stress on citrus tree. The higher the ratio, the slighter the soil water stress of the citrus tree was. This physiological phenomenon how citrus trees were affected by soil water regime in the red soil was first discovered by this study, and will be further investigated.
     4. Cytoplasm membrane permeability (CMP), ROS and the activities of protective enzymes were affected by soil moisture conditions. As soil water content reducing, malondialdehyde (MDA) and CMP of citrus leaves increased evidently and superoxidation of lipid metabolism was also aggravated. Both MDA content and CMP were significantly correlated with SWC (R~2 = 0.905 l*(n=50) and R~2 = 0.823 6* (n=50) respectively). Superoxide anion radical (?) producing rate and H_2O_2 content all were reduced with the decrease of soil water content, which was related to the Fe content of both citrus roots and leaves. However, this was not the main reason that (?) and H_2O_2 led to the oxidative damage of citrus leaf under the red soil drought conditions. This response of citrus trees to soil drought in the red soil was another new physiological phenomenon found from this experiment and more study is needed to better understand the findings. The anti-oxidation system of citrus leaves was in the homeostasis as SWC was changing. The activities of SOD, POD and APX remained high under the deficit of soil water, while CAT activity decreased rapidly with the decrease of SWC.
     5. SWC affected the yield and quality of satsuma mandarin citrus fruit. With the increasing of SWC, fruit yield of the citrus was significantly increased while the ratio of fruit length to diameter decreased. Fruit yields, weight of single fruit, per fruit pulp weight, fruit edible ratio, water content of sarcocarp were all increased with the increase of SWC and reached the maximum at SWC75. Soluble brix, soluble suger and titratable acid of fruit had notable or significantly notable negative-linear relations with SWC (R~2 = 0.880 7*; R~2 = 0.717 7* and R~2=0.965 1**) while pH of fruit was increased as SWC did. Brix-acid ratio of fruit was increased linearly with the increase of SWC (R~2=0.908 6*, n=50) and reached the maximum at SWC75. Suger-acid ratio also increased with SWC. Lowering SWC increased the contents of solube brix and solube suger but reduced the flavor or taste of the fruit of citrus. When SWC was kept in 60% to 75%, quality of satsuma mandarin fruit and the flavor or taste of fruit was all improved. The optimized citrus fruit yields, quality and flavor or taste were achieved at SWC75.
     6. Using principal component analysis, it was found that citrus eco-physiological factors influenceded mainly by SWC were tree height (y_1), single fruit weight (y_2), content of Fe (y_3, MDA (y_4), Spd (y_5), CMP (y_6), (?) production rate (y_7), the ratio of Pro to FAA(y_8) and WUE (y_9) of citrus leaves. The relationships between those factors with SWC(x) are listed as following:
引文
[1] 蔡大鑫,沈能展,崔振才.调亏灌溉对作物生理生态特征影响的研究进展[J].东北农业大学学报,2004,35(2):129-134
    [2] 蔡焕杰,康绍忠,张振华.作物调亏灌溉的适宜时间与调亏程度的研究[J].农业工程学报,2000,16(3):24-27
    [3] 蔡焕杰,邵光成,张振华.不同水分处理对膜下滴灌棉花生理指标及产量的影响[J].西北农林科技大学学报(自然科学版),2002,30(4):29-32
    [4] 曹慧,兰彦平,王孝威,等.果树水分胁迫研究进展[J].果树学报,2001,18(2):110-114
    [5] 曹慧,许雪峰,韩振海,等.水分胁迫下抗旱性不同的苹果属植物光合特性的变化[J].园艺学报,2004,31(3):285-290
    [6] 陈屏昭,陈顺方,刘忠荣,等.缺磷胁迫对温州蜜柑叶片光合作用的影响.云南农业大学学报,2003.18(2):158-162
    [7] 陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响[J].园艺学报,1998,25(3):241-246
    [8] 陈立松,刘星辉.水分胁迫对龙眼幼苗叶片膜脂过氧化及内源保护体系的影响.武汉植物学研究,1999,17(2):105-109
    [9] 陈立松,刘星辉.水分胁迫对荔枝叶片超微结构的影响[J].福建农业大学学报,2001,30(2):171-174.
    [10] 陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报,1999,25(1): 49-56.
    [11] 陈淑茗,陈登文,侯超.果树营养液对苹果外部形态、生理及其品质的影响[J].西北植物学报,2001,21(6):1153-1158.
    [12] 陈晓远,高志红,罗远培.干湿变化条件下小麦的补偿效应研究[J].内蒙古农业大学学报,2001,22(2):62-66
    [13] 陈晓远,罗远培,石元春.作物对水分胁迫的反应.生态农业研究,1998,6(4):12-15
    [14] 陈贻竹,B.帕特森.低温对植物超氧物歧化酶、过氧化物酶和过氧化氢水平的影响[J].植物生理学报,1988,14(4):323-328
    [15] 陈志辉,张良诚,吴光林,等.水分胁迫对柑橘光合作用的影响.浙江农业大学学报,1992,18(2):60-66
    [16] 程福厚,李绍华,孟昭清.调亏灌溉条件下鸭梨营养生长、产量和果实品质反应的研究[J].果树学报,2003,20(1):22-26
    [17] 程来亮,罗新书.短期土壤干旱对苹果叶片光合速率日变化的影响.果树科学,1990,(4):193-2018.
    [18] 程瑞平,束怀瑞,顾曼如.水分胁迫对苹果树生长和叶中矿质元素含量的影响.植物生理学通讯,1992,228(1):32-34
    [19] 程湘东,黄秋林,成映波,等.红壤幼年温州蜜柑园平衡施肥研究[J].中国南方果树,1994,23(2):20-23
    [20] 单长卷,刘遵春.土壤水分对嘎拉苹果幼苗水分生理特性和生长特征的影响[J].西北林学院学报,2006,21(2):42-44
    [21] 邓秀新,郭文武.国际柑橘学会第九届学术大会介绍[J].果树学报,2001,18(2):124
    [22] 董鸣,王义凤,孔繁志,等.陆地生物群落调查观测与分析[M].北京:中国标准出版社,1996.234-239
    [23] 冯广龙,刘昌明.土壤水分对作物根系生长及分布的调控作用[J].生态农业研究,1996,4(3):5-9.
    [24] 高飞飞,黄辉白.冬季期间温度和水分对暗柳橙成花和花序类型的影响[J].华南农业大学学报,1991,12(4):58-61.
    [25] 高世铭,赵松岭.半干旱区春小麦水分亏缺补偿效应研究[J].西北植物学报,1995,15(8):32-39
    [26] 龚云池,徐季娥,张淑珍,等.鸭梨叶片和果实中钙素含量年周期变化的研究[J].园艺学报,1987,14(1):1-6
    [27] 谷瑞升,郗荣庭,刘万生.水分胁迫对早实核桃生长和结果的影响[J].林业科学,1994;30:79-82.
    [28] 关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297
    [29] 郭相平,康绍忠,索丽生.苗期调亏处理对玉米根系生长影响的试验研究[J].灌溉排水,2001,20(1):25-27
    [30] 郭延平,张良诚,沈允钢.低温胁迫对温州蜜柑光合作用的影响[J].园艺学报,1998,25(2):111-116.
    [31] 何嵩涛,刘国琴,樊卫国.银杏对水涝胁迫的生理反应(Ⅰ)--水涝胁迫对银杏膜脂过氧化作用及保护酶活性的影响[J].山地农业生物学报.2000,19(4):272-275
    [32] 何晓群.现代统计分析方法与应用[M].北京:中国人民大学出版社,1999
    [33] 贺佳,陆健主编.医学统计学中的SAS统计分析[M].上海:第二军医大学出版社.2002
    [14] 胡国谦,陈凯,周维(氵匀),等.优质柑橘的适宜栽培区及其生态指标.红壤生态系统研究(第二集,王明珠主编).南昌:江西科技出版社,1993,136-141
    [35] 胡正月.2000年世界及主要国家水果和柑橘生产情况[J].江西园艺,2001,4:27
    [36] 华孟,王坚.土壤物理学[M].北京:北京大学出版社,1993,44-45
    [37] 黄道友,彭廷柏,陈桂秋.亚热带红壤丘陵区季节性干旱成因及其发生规律研究[J].中国生态农业学报,2004,12(1):124-126
    [38] 黄辉白,高飞飞,许建揩,等.水分胁迫对甜橙果实发育的影响[J].园艺学报,1986,13:237
    [39] 黄辉白.果树的水分关系[A].曾骧主编.果树生理学[M].北京:北京农业大学出版社,1992:451-487.
    [40] 黄建昌.草莓对干旱的生理反应[J].果树科学,1994,11(2):114-116
    [41] 黄兴法,李光永,曾得超.果树调亏灌溉技术的机理与实践[J].农业工程学报,2001,17(4):30-33.
    [42] 黄修桥,高峰,王宪杰.节水灌溉与21世纪水资源的持续利用[J].灌溉排水,2001,20(3):1-5
    [43] 黄占斌.干湿变化与作物的补偿效应规律研究[J].生态农业研究,2000,8(1):30-33
    [44] 贾虎森,潘秋红,蔡世英.水分胁迫下油梨幼苗活性氧代谢对光合作用的影响.热带作物学报,2001,22(1):48-54.
    [45] 接玉玲,杨洪强,崔明刚.土壤含水量与苹果叶片水分利用效率的关系[J].应用生态学报,2001,12(3):387-390
    [46] 江行玉,赵可夫,窦君霞,等.NaCl胁迫下外源亚精胺和二环基胺对滨藜内源多胺含量和抗盐性的影响[J].植物生理学通讯,2001,37(1):6-9
    [47] 康绍忠,史文娟,胡笑涛.调亏灌溉对玉米生理指标及水分利用效率的影响[J].农业工程学报,1998,(4):82-87
    [48] 雷廷武,曾德超.桃树叶水势的调控及其对生长量的影响.见许越先主编:农业用水有效性研究[M].北京:科学出版社,1992,81-86
    [49] 李伏生,康绍忠,张富仓.CO_2浓度氮和水分对春小麦光合蒸散及水分利用效率的影响[J].应用生态学报,2003,14(3):387-393
    [50] 李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000,260-26
    [51] 李嘉瑞,任小林,王民柱,等.干旱对果树光合的影响及水分胁迫信息传递[J].干旱地区农业研究,1996,14(3):69-72.
    [52] 李金玲,樊卫国.土壤干旱胁迫对杨梅生长及部分生理特性的影响[J].山地农业生物学报,2006,25(5):424-428.
    [53] 李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503-507
    [54] 李绍华.果树生长发育、产量和果实品质对水分胁迫的反应的敏感期及节水灌溉[J].植物生理学通讯,1993,29(1):10-16
    [55] 李韶山,王艳,刘颂豪.UV-B 对水稻幼苗膜脂过氧化作用的影响[J].激光生物学报,2000,9(1):23-26
    [56] 李文华,吴万兴,张忠良,等.土壤水分对仁用杏水分和生长特征的影响[J].西北农林科技大学学报(自然科学版),2003,31(4):139-144
    [57] 李晓燕,李连国,刘志华.葡萄叶片组织结构与抗旱性关系的研究[J].内蒙古农牧学院学 报,1994,15(3):30-33
    [58] 李跃强,盛承发.植物的超越补偿反应[J].植物生理学通讯,1996,32(6):457-464
    [59] 李元,祖艳群,王勋陵.大气臭氧层减薄、地表紫外辐射增强与植物的响应[J].武汉植物研究,2000,18(5):426-430
    [60] 李振国.植物细胞质膜透性的测定.中国科学院上海植物生理研究所.上海植物生理学会编,现代植物生理学实验指南[M].北京:科学出版社,1999,302-303
    [61] 李振轮,谢德体.柑橘生长与生态因子的关系研究进展[J].中国农学通报,2003,19(6):181-185.
    [62] 梁建生,张建华.根系逆境信号 ABA 的产生和运输及其生理作用[J].植物生理学通讯,1998,34(5):329-338
    [63] 林定波,刘祖祺,张石城.多胺对柑橘抗旱力的影响[J].园艺学报,1994,21(3):222-2264
    [64] 刘国琴,樊卫国.果树对水分胁迫的生理响应[J].西南农业学报,2000,13(1):101-106
    [65] 刘国琴,何嵩涛,樊卫国,等.土壤干旱胁迫对刺梨叶片矿脂营养元素含量的影响[J].果树学报,2003,20(2):96-98.
    [66] 刘家尧,王学臣,梁峥.植物基因表达的代谢调控[J].植物学通报,1999,16(1):1-10.
    [67] 刘俊,吉晓佳,刘友良.检测植物组织中多胺含量的高效液相色谱法[J].植物生理学通讯,2002,38(6):596-598
    [68] 刘昆玉,张秋明,郑玉生,等.温州蜜橘节水栽培研究[J].湖南农学院学报,1995,21(3):245-248.
    [69] 刘明池,陈殿奎.亏缺灌溉对樱桃番茄产量和品质的影响.中国蔬菜,2002,(6):4-6
    [70] 刘明池,张慎好,刘向莉.亏缺灌溉时期对番茄果实品质和产量的影响[J].农业工程学报,2005,21(Supp):92-95
    [71] 刘殊,廖镜思.水分胁迫对龙眼光合作用的影响[J].果树科学,1997,14(4):244-247
    [72] 鲁剑巍,陈防,王运华,等.氮磷钾肥对红壤地区幼龄柑橘生长发育和果实产量及品质的影响[J].植物营养与肥料学报,2004,10(4):413-418
    [73] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:332-334.
    [74] 陆爱华,褚孟媛.水分胁迫后梅杏桃脯氨酸脱落的积累及其与抗旱性的关系[J].南京农业大学学报,1989,12(3):29-32
    [75] 吕芳德,徐德聪,栗彬.水分胁迫对美国山核桃叶绿素荧光参数的影响[J].中南林学院学报,2006,26(4):27-30
    [76] 罗梦,郭春会,马小卫.水分胁迫对长柄扁桃叶片含水量及保护酶活性的影响[J].干旱地区农业研究,2006,24(6):61-64
    [77] 罗广华,王爱国.植物体内氧自由基的测定和清除.见:中国科学院上海植物生理研究所、上海市植物生理学会编.现代植物生理学实验指南[M].北京:科学出版社,1999,308-309
    [78] 罗华建,刘星辉,谢厚钗.水分胁迫对枇杷叶片活性氧代谢的影响[J].福建农业大学学 报,1999,28(1):33-37
    [79] 罗华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126-130
    [80] 骆胜,黄国善,张百寿.红壤丘陵发展柑橘的途径和经济效益[J].浙江省红壤改良利用 (浙江省科委主编),1982,141-149
    [81] 吕中恕.果树生理[A].上海:上海科学技术出版社,1982,316-340
    [82] 米红,张文璋.实用现代统计分析方法与SPSS应用[A].北京:当代中国出版社,2000
    [83] 穆彪,张邦琨.农业气象学[A].贵阳:贵州科技出版社,1997
    [84] 穆罕默德,赵莹莹,孙刚,等.节水灌溉技术研究进展[J].农业与技术,2001,21(4):27-32
    [85] 倪治华,潘云洪.平衡施肥对低丘红壤幼龄温州蜜柑园产量和果实品质的影响[J].中国南方果树,1995,24(1):14-17.
    [86] 聂华堂,陈竹生,计玉.水分胁迫下柑橘的生理变化与抗旱性关系.中国农业科学,1991,24(4):14-18
    [87] 潘东明,潘良镇.水分胁迫对龙眼幼苗多胺等生理生化指标的影响.福建农业大学学报,1997,26:277-282
    [88] 潘东明,郑国华,谢厚钗,等.水分胁迫与枇杷叶片 SOD 活性及脂质过氧化作用[J].福建农业大学学报,1993,22(1):254-257
    [89] 齐红岩,李天来,张洁.亏缺灌溉对番茄蔗糖代谢和干物质分配及果实品质的影响[J].中国农业科学,2004,37(7):1045-1049
    [90] 曲桂敏,李兴国,赵飞,等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报,1999,26(3):147-151
    [91] 曲泽洲主编.果树栽培学总论(第二版)[M].北京:农业出版社,1985:120-142.
    [92] 全国职业高中种植类专业教材编写组,果树栽培技术 (南方本) [M].北京:高等教育出版社,1996,6-12
    [93] 山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70-76
    [94] 山仑,张岁岐.节水农业及其生物学基础[J].水土保持研究,1999,6(1):3-6
    [95] 申双和,崔兆韵.棉田土壤热通量的计算[J].气象科学,1999,19(3):276-281
    [96] 施积炎,袁小凤,丁贵杰.作物水分亏缺补偿与超补偿效应的研究现状[J].山地农业生物学报,2000,19(3):226-233
    [97] 束怀瑞主编.果树栽培生理学[M].北京:中国农业出版社,1993,111-137
    [98] 宋纯鹏.植物衰老生物学[M].北京:北京大学出版社,1998
    [99] 孙存普,张建中,段绍瑾主编.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999
    [100] 孙谷畴.叶片水势降低对荔枝光合作用的影响[J].植物学报,1988,30(1):99-102.
    [101] 孙文权.多胺代谢与园艺植物开花的关系--文献评述[M].园艺学报,1989,16(3):178-184
    [102] 汤莹,郭永杰,蔡得荣.调亏灌溉对河西绿洲春小麦生长发育和产量的影响[J].甘肃农业科技,2002,(6):22-25
    [103] 汤章城.植物对水分胁迫的反应和适应性Ⅱ.植物对干旱的反应和适应性[J].植物生理学通讯,1983,(4):1-7
    [104] 腾文元,周湘红.果树气孔反应及其对叶水势的调控.干旱地区农业研究,1993,11(4):61-64
    [105] 田景瑜,刘桂兰,毕巧玲,等.泡桐生长与土壤水分关系研究[J].河南林业科技,2001,21(4):33-34
    [106] 童昌华,周冲全.丘陵桔园土壤水分变化规律与果实生产的关系[J].浙江柑橘,1989,(4):16-18
    [107] 汪天,王素平,郭世荣.外源亚精胺对根际低氧胁迫下黄瓜幼苗光合作用的影响[J].应用生态学报,2006,17(9):1609-1612
    [108] 汪天,王素平,郭世荣.低氧胁迫下黄瓜幼苗根系多胺代谢的变化.园艺学报[J].2005,32(3):433-437
    [109] 王爱国.植物的氧代谢.植物生理与分子生物学[M].于叔文,汤章城主编.北京:科学出版社,1998
    [110] 王传海,郑有飞,万长建,等.紫外线增加对小麦产量及产量形成的影响[J].中国农业气象,2001,22(4):19-21
    [111] 王和洲,张晓萍.调亏灌溉条件下的作物水分生态生理研究进展[J].灌溉排水,2001,20(4):73-75.
    [112] 王洪祥,梁克宏.柑橘园自然平衡生态系统的修复及优化技术[J].浙江柑橘,2005,22(4):13-16
    [113] 王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003,14(10):1632-1636
    [114] 王继和,马全林,吴春荣,等.干旱沙区几种果树生理生态特性及其适应性研究[J].中国沙漠,2001,21(增刊):22-29
    [115] 王继和,施茜,张盹明,等.民勤沙区几种果树水分生理和土壤水分的关系[J].西北植物学报,1997,17(6):131-136
    [116] 王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459-456
    [117] 王淼,代力民,姬兰柱.土壤水分状况对长白山阔叶红松林主要树种叶片生理生态特性的影响[J].生态学杂志,2002,21(1):1-5
    [118] 王淼,李秋荣,郝占庆,等.土壤水分变化对长白山主要树种蒙古栎幼树生长的影响[J].应用生态学报,2004,15(10):1765-1770
    [119] 王伟.植物对水分亏缺的某些生化反应[J] .植物生理学通讯,1998,34(5):388-393
    [120] 王学民.应用多元分析[M] .上海:上海财经大学出版社,1999
    [121] 王玉柱.杏树根系分布的观察[J].华北农学报,1993,8(4):83-86
    [122] 王中英.果树抗旱生理[M].北京:中国农业出版社,2000
    [123] 魏虹,林魁,李凤民,等.有限灌溉对半干旱区春小麦根系发育的影响[J].植物生态学报,2000,24(1):106-110
    [124] 文晓鹏,樊卫国,罗充.水分状况对板栗光合生理的影响[J].见:韩振海,黄卫东,许雪峰主编.中国科学技术协会第二届青年学术年会园艺学论文集.北京:北京农业大学出版社,1995,223-228
    [125] 吴荣军,郑有飞,王传海,等.紫外辐射增强对玉米地上部分与根系生长的影响比较[J].生态环境,2007,16(2):323-326
    [126] 吴景社,李久生,李英能,等.21世纪节水农业中的高新技术重点研究领域[J].农业工程学报,2000,16(1):9-13
    [127] 先兆江,夏国海.几个苹果品种叶片气孔的初步研究[J].莱阳农学院学报,1985;(2):54-60
    [128] 徐祝龄,王汶,衣纯真.作物水分胁迫监测的国内外研究进展[J].中国农业气象,1995,16(4):41-47
    [129] 徐宗焕,方柏州,陈家金,等.福建漳江口红树林生长与气象条件的关系[J].中国农学通报,2007,23(8):532-535
    [130] 许大全,李德耀,邱国雄,等.毛竹叶光合作用的气孔限制研究[J].植物生理学报,1987,13(2):154-160
    [131] 许大全.叶片表观光合量子效率的测定.见:中国科学院上海植物生理研究所、上海市植物生理学会编.现代植物生理学实验指南[M].北京:科学出版社,1999,89-90
    [132] 薛沛沛,王克勤,郭逢春,等.金沙江干热河谷不同土壤水分对台湾青枣根系生长的影响[J].福建林业科技,2007,34(1):89-92,118
    [133] 晏斌,戴秋杰.紫外线B对水稻叶组织中活性氧代谢及膜系统的影响[J].植物生理学报,1996,22(4):373-378
    [134] 杨朝选,焦国利,郑先波.重水分胁迫下苹果树茎、叶水势的变化[J].果树学报,2002,19(2):71-74
    [135] 杨洪强,黄天栋,束怀瑞,等.水分胁迫对苹果幼树内源多胺水平的影响[J].西北农业大学学报 19954(3):93-94
    [136] 杨洪强黄天栋.水分胁迫对苹果新根多胺和脯氨酸含量的影响[J].园艺学报,1994,21(3):295-296
    [137] 杨建伟,梁宗锁,韩蕊莲.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报,2004,28(5):630-636
    [138] 杨善元.光合作用中有关色素的测定.见:中国科学院上海植物生理研究所、上海市植物生理学会编.现代植物生理学实验指南[M].北京:科学出版社,1999,95-96
    [139] 姚贤良.华中丘陵红壤的水分问题 Ⅳ.橘园红壤的水分状况[J].土壤学报,1998,35(2):210-217
    [140] 姚允聪,曲泽洲,李树仁.土壤干旱与柿树叶片膜脂及脂质过氧化的关系[J].林业科学,1993,29(6):485-491
    [141] 姚允聪,王有年,周向东.土壤干旱与艳红苹果叶片几个生理生化指标的变化[J].园艺学进展,1994,(9):417-421
    [142] 姚允聪,张大鹏,王有年,等.水分胁迫条件下苹果幼苗叶绿体抗氧化代谢研究[J].果树科学,2000,17(1):1-6
    [143] 叶明儿,李三玉.多效唑对温州蜜柑耐旱性及水分生理指标的影响[J].浙江农业学报,1999,11(2):73-75
    [144] 易蓉蓉.国家中长期科学和技术发展规划纲要(2006年-2020年).科学时报,20070228,A2版
    [145] 于同泉,秦岭,陈静,等.水分胁迫对板栗幼苗抗氧化酶及丙二醛的影响[J].北京农学院学报,1996,11(1):48-52
    [146] 于秀林,任雪松.多元统计分析[M].北京:中国统计出版社,1999
    [147] 袁志发,周静芋主编.多元统计分析[M].北京:科学出版社,2002
    [148] 曾骧主编.果树生理学[M].北京:北京农业大学出版社,1992,451-479
    [149] 曾德超,彼得·杰里主编.果树调亏灌溉密植节水增产技术的研究与开发[M].北京:北京农业大学出版社,1994,451-487
    [150] 张斌,张桃林.南方东部丘陵区季节性干旱成因及其对策研究[J].生态学报,1995,15(4):413-419
    [151] 张大鹏.葡萄叶片光合速率与量子效率日变化的研究与利用[J].果树科学,1990,7(4):193-200
    [152] 张殿忠,汪沛洪,赵会贤.测定小麦叶片游离氨基酸含量的方法.植物生理学通讯,1990,(4):62-65
    [153] 张放,唐晓蕴.低温胁迫对处于不同水分状态柑橘光合作用的影响[J].浙江大学学报(农业与生命科学版),2001,27(4):393-397
    [154] 张峰,杨颖丽,何文亮,等.水分胁迫及复水过程中小麦抗氧化酶的变化[J].西北植物学报,2004,24(2):205-209
    [155] 张桃林主编.中国红壤退化机制与防治[M].北京:中国农业出版社,1999,1-2
    [156] 张喜英,由懋正,王新元.不同时期水分调亏及不同调亏程度对冬小麦产量的影响[J].华北农学报,1999,14(2):1-5
    [157] 张宪法,于贤昌,张振贤.土壤水分对温室嫁接和非嫁接黄瓜生长与生理特性的影响[J].应用生态学报,2002,13(11):1399-1402
    [158] 张晓煜,刘玉兰,张磊,等.气象条件对酿酒葡萄若干品质因子的影响[J].中国农业气象,2007,28(3):326-330
    [159] 张云贵,吴学良.柑橘幼树在不同水分条件下的生长反应[J].浙江柑橘,1995,(1):19-20.
    [160] 张云贵,谢永红,吴学良,等.PEG诱导水分胁迫对柑橘幼苗细胞质膜透性及脯氨酸含量的影响 [J].果树科学,1995,12(1):25-28
    [161] 张正斌.植物对环境胁迫整体抗逆性研究若干问题[J].西北农业学报,2000,9(3):112-116
    [162] 赵晨,罗毅,袁国富,等.作物水分胁迫指数与土壤含水量关系探讨[J].中国生态农业学报,2001,9(3):34-36
    [163] 赵福庚,刘友良.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感[J].植物生理学报,2000,26(4):343-349
    [164] 赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2003,26(增刊):89-92
    [165] 赵可夫,王韶唐编.作物抗性生理[M].北京:农业出版社,1990
    [166] 赵其国主编.红壤物质循环及其调控[M].北京:科学出版社,2002
    [167] 郑荣梁主编.自由基生物学[M].北京:高等教育出版社,1992
    [168] 郑西.关岭县柑橘生态环境气象条件分析[J].贵州气象,2001,25(5):34-36
    [169] 中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南[M].北京:科学出版社,1999
    [170] 周建明,朱群,白永延,等.高等植物水分胁迫的基因及其表达调控[J].细胞生物学杂志,1999,21(1):1-5.
    [171] Uchida A, Jagendorf A T., HibinoT. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163: 515-523
    [172] Anne M, Boland. The effect of regulated deficit irrigation on tree water use and growth of peach [J]. Journal of Horti cultural Science, 1993,68(2):261-264
    [173] Athwal G S, Huber S C. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase[J]. Plant J, 2002, 29:119-130
    [174] Aziz A. Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride[J]. Physiologia Plantarum, 1998, 104: 195-202.
    [175] Baselga Yrisarry J J. Response of processing tomato to three different levels of water and nitrogen applications[J]. Acta Hort, 1993,335:149-153
    [176] Berry J A, Downton WJS. Environmental regulation of photosynthesis. In Govindjee (ed) Photosynthesis, Vol. Ⅱ. Academic Press, New York, 1982,263-343
    [177] Beviington, K B, Castle W S. Annual root growth pattern of young citrus trees in relating to shoot growth, soil temperature, and soil water content[J]. J. Amer. Soc, Hort. Sci.,1985,110(6):840-845
    [178] Bouchereau A, Aziz A, Larher F, et al.. Polyamines and environmental challenges: recent developments. Plant Science,1999,140: 103-125
    179. Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochen,1976,72:248-254
    
    180. Bray E.A. Molecular response to water deficit[J]. Plant Physiol, 1993,103:1035-1040
    
    181. Carlos H, Crisosto R, Scott J, et al.. Irrigation regimes affect fruit soluble solids concent and rate of water loss of'O' Henry'peaches [J]. HortScience,1994,29: 1169-1171
    
    182. Casero R A, Pegg A E. Spermidine/spermine N1-acetyltransferase—The turning point in polyamine metabolism[J]. Faseb J,1993,7:653-661
    
    183. Caspari H W, Behboudian M H, Chalmers D J. Water use growth and fruit yield of Hosui Asian' pears under deficit irrigation[J]. J Amer Soc Hort Sci, 1994,119:383-388
    
    184. Chalmers D J, Bvanden Ende. Productivity of peach trees factors affecting dry-weight distribution during tree growth[J]. Ann Bot,1975,(39):423-432
    
    185. Chalmers D J, Mitchell P D, Jerie P H. The physiology of growth control of peach and pear trees using regulated irrigation [J]. Acta Hort, 1984,146: 143-149
    
    186. Chalmers D J, Wilson I B. Productivity of peach trees: tree growth and water stress in relation to fruit growth and assimilate demand[J]. AnnBot,1978,(42):285-294
    
    187. Chalmers D J, Burge G, Jerie P H, et al.. The mechanism of regulation of ' Bartlett' pear fruit and vegetative growth by irrigation withholding and regulated deficit irrigation[J]. J. Am. Soc. Hort.Sci.,1986.111:904-907
    
    188. Chen Z H,Zhang L C,Wu G L,et al.. Photosynthetic Acclimation to Water Stress in Citrus[J].Acta Agriculturae Universitatis Zhejiangensis, 1992,18(2): 113-118
    
    189. Choulhury B J. An empirical model for stornatal resistance of field grown wheat Agric[J]. For.Meteorol,1985,36:65-82
    
    190. Cohen S,Cohen Y. Field studies of leaf conductance response to environm ental variables in citrus[J].Journal of Applied Ecology,1983,20:561-570
    
    191. Constable G A, Hearn A B. Irrigation for crops in a sub-humid environment[J]. Irrih Sci,1981,3:17-18
    
    192. Cornic G Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis[J]. Trends Plant Sci,2000,5: 187-188
    
    193.Csnoka L N. Physiological and genetic responses of bacteria to osmotic stress[J]. Microbiol Rev,1989,53:121-147
    
    194. Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants[J]. Plant J,1993,4(2):215-223
    
    195. Dhindsa R S, Plumb D P, Thorpe T A. Leaf senescence correlated with increase levels of membrane permeability and lipid peroxidation and decrease levels dismutase and catalase[J]. J ExpBot,1982,32:91-101
    
    196. Dumbroff E. Lecture course on polyamines as modulators of plant development. 1991,257:62-66
    
    197. Ebel R C, Proebsting E L, Evans R G. Deficit irrigation to control regulative growth in apple and monitoring fruit growth schedule irrigation[J]. Hortscience, 1995, 30(6): 1229-1232.
    
    198. Eck H V. Effect of water deficits on yield, yield compoments and water use efficiency of irrigated corn[J]. Agon J, 1986,78:1035-1940
    
    199. Elisabeth T, Martin-Tanguy J. Polyamines, floral induction and floral development of strawberry[J]. Plant Growth Regulation, 1995,17:157-165
    
    200. Elster E.F. Oxygen activation and oxygen toxicity[J]. Ann Rev Plant physiol, 1982,33:73-96.
    
    201. Flexas J, Escalona J M, Medranoh H. Down gregulation of photosynthesis by drought under field conditions in grapevine leaves[J]. Aust J Plant Physiol, 1998,25:893-900.
    
    202. Foolad M R, Winicov I. Mapping salt-tolerance genes in tomato(Lycopersicon esculentum) using trait-based marker analysis[J]. Theor Appl Genet, 1993, 87:184-192
    
    203. Fryer M J. The antioxidant effects of thylakoid vitamin E[J]. plant Cell Environ, 1992,15:381-392
    
    204. Giannopolitis C N, Ries S K. Purification and quantitative relationship with water-soluble protein in seedling[J]. Plant Physiol, 1977,59:315-318
    
    205. Gimes D W. Climate normalized cotton leaf water potentials for irrigation scheduling[J]. Agric.Water Manage, 1987,12:293-304
    
    206. Hcarn A B. Irrigation for crops in a sub-humid environment. VI. Evaluation of Irrigation Strategies for cotton[J]. Irrig. Sci., 1984,5:75-94
    
    207. He J X, Wang J, Lang H G. Effects of water stress on photo chemical function and protein metabolism of photosystem II in wheat leaves [J]. Physiologia Plantarum, 1995, 93: 771-777.
    
    208. Heath R L, Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatted acid peroxidation[J]. Arch Biochem Biophys,1986,125:189-198
    
    209. Hilgeman R H. Response of citrus trees to water stress in Arizona[J]. Proc Int Citric,1977,1:70-77
    
    210. Himelricle DG, Mcduffie R F. The calcium cycle: uptake and distribution in apple trees[J].Hortscience, 1983,18(2):145-151.
    
    211. Hulze E D, Langeo L, Buschbom U, et al..Stomatal reponses to changes in humidity in plants growing in the desert[J]. Planta, 1972,108:259-270
    
    212. Idso S B. Normalizing the stress degree day for environmental variabibity[J]. Agricultural Meteorology, 1981,24:45-55
    213. Inoue H. Effect of soil drought and temperature on flower bud difference of Satsum Mandarin[J].Japan Soc. Hort. Sci.. 1989,58 (3): 581-583.
    
    214. Jackson R D. Canopy temperature as a crop water stress indicator[J]. Water Resource Research,1981,17:1133-1138
    
    215. Jones H G, Lakso A N,Syvertsen J P. Physiological control of water status in temperate and subtropical fruit trees[J]. Horticultural Review, 1985,7:301-344.
    
    216. Jones M. Modular demography and form in silver birch. In: White J ed. Studied on plant demography [M]: A festschrift for John L. Harper. London: Academic press, 1985:223-237.
    
    217. Kaiser W K. Effect of water deficit on photosynthetic capaciry[J]. Phyboil Plant, 1987,71:142-149.
    
    218. Kilili A W, Behboudian M H, Mills T M. Composition and quality of 'Braeburn' apples under reduced irrigation [J]. Sci Hort, 1996,67: 1-11.
    
    219. Lawlor D W. Effects of water stress on photosynthesis of crops and the biochemical mechanism.In: Abrol Y P, et al.(eds.). Photosynthesis photo reaction to the plant productivity[M]. New York:Oxford and IBH Publishing Co. Pvt. Ltd, 1993,419-449.
    
    220. Lin R C, Xu C C. Xanthophy II cycle and its Molecular Mechanism in photoprotection[J]. Acta botanica Sinica, 2002,44(4):379-383
    
    221.Lotter J D V, Beudes D J,Weber H W.Growth and quality of apples as affected by different irrigation treatments[J].J Hort Sci, 1985,60(2): 181-192
    
    222. Marler T E, Michelbart M V. Drought leaf gas exchange and chlorophyll fluorescence of field-grown papaya[J]. J Amer Soc Hort Sci, 1998, 123(4):714-718
    
    223. Marsal J, Rapoport H F, Manrigue T, et al.. Pear fruit growth under regulated deficit irrigation in container-grown trees[J]. Sci Hort, 2000,85:243-259.
    
    224. McCue K F, Hanson A D. Drought and salt tolerance: towards an understanding and application[J]. Trends Biotechnical, 1990,8:348-362
    
    225. Mehdy M C. Active oxygen species in plant defense against pathogens[J]. Plant Physiol,1994,105:467-472
    
    226. Meyer W S, Gree G C. Water use by wheat and plant indicators of available soil water[J]. Agron J,1980,72:253-256
    
    227. Mitchell P D, Jerie P H, Chalmers D J. Effects of regulated water deficit on pear trees growth,flowing, fruit growth and yield[J]. J. Am. Soc. Hort. Sci. 1984, 109: 604-606
    
    228. Mohd R I. Khuzaimah Mohd Noor, Growt. Water relations and physiological processes of starfruit(Averrhoa carambola L.)[J]-plants under root growth restriction. Sientia Horti.,1996,66:51-58
    
    229. Nakajima Y. et al.. Influence of water stress in autumn on flower induction and fruiting in young pomelo trees[J]. J. Japan. Soc.Hort.Sci., 1993, 2 (1): 15-20
    
    230. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorabate-specific peroxidase in spinach chloroplasts[J]. Plant & Cell Physiology, 1981, 22: 867-880
    
    231. Ranney T.G., Bassuk N.L., Whitlow T.H. Osmotic adjustment and solute constituents in leaves and roots of water stressed cherry trees[J]. J. Amer. Soc. Hort. Sci,1991,116(4): 684-688.
    
    232. Richard A. Johnson, Dean W. Wichern 著,陆.译.实用多元统计分析(第四版),清华大学出版社,2001.
    
    233. Ritchic J T. Water dynamics in the soil-plant-atmosphere system[J]. Plant and soil, 1981,58:81-96
    
    234. Run Y L, Zang LC, Wu G L, et al.. Effect of water stress on photosynthesis of citrus [J]. Acta Horticultural, 1981,15(2):93-98
    
    235. Salin M L. Toxic oxygen species and proactive system of the chloroplast[J] J. Physiol Plant, 1988,72:681-689.
    
    236. Sanchez bianco M J, Ruiz Sanchez M C, Planes J, et al.., Water relation of two almond cultivar sunder anomalous rainfall in non irrigated culture[J]. J., Hort Sci, 1991,66(4):403-408.
    
    237. Schlze E D, Lange O L, Buschbom U, et al.. Stomatal responses to changes in humidity in plants growing in the dessert[J]. Planta,1972,108:259-270.
    
    238. Schulze E D. The role of humidity and leaf temperature in controlling stomatal resistance of prunus armeniaca L. under desert conditions. I, the significance of leaf water status and internal carbon dioxide concertration. Oecplogia:1975,18:219-233
    
    239. Slocum R D. Kaur-Sawhney R. Galston A W. The physiology and biochemistry of polyamines in plants[J]. Arch Biochem Biophy. 1984,235:283-303
    
    240. Smirnoff N., Colombe S V. Drought influences the activity of enzymes of the chloroplast tydrogen peroxides cavening system [J]. J. Exp Bot.,1998, 38:1097-1108.
    
    241. Sophis B, Ulrich K, Gerd A.Reaeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedIings[J]. Plant Physiol., 1998,116:651-658
    
    242. Spollen W G, Sharp R E, Saab 1 N. Regulation of cell expantion in roots and shoots at low water potentials. Smith JAC, Griffiths H(eds). Water Deficits, Plant responses from Cell Community[J].Oxford: Bios Sci Pub, 1993,37-52
    
    243. Thomas, H. Characteristics of Dactylis glomerata L., Lolium perenne L. And L. Multiflorum Lam.Plants[J]. Annals of Botany, 1986,57:211-223
    
    244. Thoms F R, Ronald L P, James A F. Drought response of young apple tree on three rootstock II Gas exchange, chlorophyll fluorescence, water relations and leaf abscisic acid[J]. J. Amer. Soc.Hort. Sci., 1997, 122, (6): 841-848
    
    245. Tiburcio A F, Kaur-Sawhney R? Galston A W. Polyamine metabolism and osmotic stress[J]. Plant Physiol,1986,82:375-378
    
    246. Torrecillas A., Ruiz Sanchen M C, Delamor F, et al.. Seasonal variations in water relation of Amygdalus communis L. under drip irrigated and non irrigated conditions[J]. J. Plant and soil,1988,106(2):215-220.
    
    247. Turmer N C. Further progress in crop water relations advances in Agronomy, 1997,58:293-338
    
    248. Turmer N C. Plant water relation and irrigation management[J].Agric Water Manage,1990,17:5973
    
    249. Vu J C V, Yclenosky G. Water deficit and associated changes in some photosynthetic parameters in leaves of Valencia' orange[Citrus sinensis(L.) Osbeck]. Plant Physiol, 1988,88:375-378
    
    250. Huang X M, Huang H B, Gao F.F. The growth potential generated in citrus fruit under water stress and its relevant mechanisms. J. Scientia Horticulturae, 2000,83: 227-240.
    
    251. Yamane Y, Kashino Y, Koike H. Increases in the fluorescence for level and reversible inhibition of photosystem II reaction by high-temperature treatments in higher plants. Photosynth Res,1997,52:57-64
    
    252. Yasuyoshi H, Tosheko T, Satoru K, Kouichi I. The effects of water stress on the growth, sugar and nitrogen content of cherry tomato fruit. Journal Japan Society Horticultural Science,1998,67(5):759-766
    
    253. Yoshiba Y, Kiyosue T, Nakashima K,et al.. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol, 1997,38(10): 1095-1102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700