用户名: 密码: 验证码:
耐盐砧木嫁接提高茄子(Solanum melongena L.)幼苗耐盐性的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茄子(Solanum melongena L.)是一种对盐分中等敏感的蔬菜作物,盐渍条件下茄子的生长发育和产量会受到严重影响。嫁接栽培可有效提高茄子的抗逆性,在生产中广泛应用。但有关茄子嫁接的研究主要集中在抗病性和抗冷性方面,对嫁接提高茄子耐盐性的研究较少,而土壤盐次生渍化已成为蔬菜设施栽培的主要限制因子,严重阻碍了蔬菜设施栽培的可持续性发展。因此,进行茄子嫁接栽培及探讨嫁接提高茄子耐盐机理的研究,对茄子生产具有重大意义。本研究以从日本引进的茄子设施栽培专用品种'Torvum Vigor' (Solanum torvum Swartz)为砧木,南京地区常用栽培品种'苏崎茄'为接穗,采用营养液培和基质培相结合的栽培方法,对NaCl胁迫下茄子嫁接苗和自根苗的生长发育、生理生化代谢进行了比较,以阐明砧木嫁接影响茄子幼苗耐盐性的生理机制,主要研究结果如下:
     1.对引进砧木品种'Torvum Vigor'的生物学特性进行了观察并分析了其耐盐性。结果表明,该砧木植株根系发达,生长势极强,当年种植8月底开花结果,花色白色,花序簇生,结果数量多,果实较小,具有野生茄子的形态特性,南京地区露地栽培不易留种。80 mmol·l~(-1) NaCl胁迫下,与栽培品种'苏崎茄'种相比,供试砧木生长受抑制程度较低,根系活力较强,盐害指数较低,根系Na~+和Cl~-含量较高,而叶片Na~+、Cl~-含量较低,耐盐性优于栽培品种'苏崎茄'。
     2.研究了80 mm0l.·l~(-1) NaCl胁迫对茄子嫁接苗和自根苗生长和光合特性的影响,结果表明,NaCl胁迫显著降低茄子幼苗生物量、叶绿素a和b含量、净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs),对类胡萝卜素含量影响不大,气孔限制值(Ls)显著升高,胞间CO_2浓度(Ci)先降低后升高。在相同胁迫条件下,嫁接苗的Pn、光合色素含量、Tr和Gs显著高于自根苗。嫁接苗生长受NaCl胁迫抑制程度小于自根苗,这与嫁接苗在NaCl胁迫下保持较高的净光合速率有关。
     3.用营养液栽培,对80 mmol·L~(-1) NaCl胁迫下茄子嫁接苗和自根苗的离子吸收和分布进行了比较。结果表明,地上部除叶柄外各部位Na~+、cl~-含量均显著低于自根苗,嫁接苗根部贮存一定量的Na~+、Cl~-;NaCl胁迫后嫁接苗在幼叶和根部保持高K~+/Na~+值和Ca~(2+)/Na~+值;嫁接苗根部选择吸收S_(k,Na)、S_(Ca,Na)值和幼叶选择运输S_(K,Na)、S_(Ca,Na)值均显著高于自根苗。从离子分布看,嫁接茄子的耐盐机制主要在于根部贮存Na~+、Cl~-以减小地上部的盐离子毒害和K~+、Ca~(2+)在幼叶和根部的特异积累。
     4.在营养液栽培条件下,对80 mmol·L~(-1) NaCl胁迫下茄子嫁接苗和自根苗叶片抗氧化酶活性、有机渗透调节物质含量、活性氧代谢和膜脂过氧化进行了比较。结果表明,NaCl胁迫下,茄子嫁接苗和自根苗叶片SOD活性下降,POD和CAT活性胁迫前期升高,后期降低。嫁接苗抗氧化酶活性和渗透调节物质含量均显著高于自根苗,而O_2生成速率、H_2O_2和MDA含量则显著低于自根苗。NaCl胁迫增加了嫁接苗和自根苗叶片膜脂过氧化程度,但是,嫁接苗受NaCl胁迫的影响小于自根苗,NaCl胁迫下较高的抗氧化酶活性、有机渗透调节物质含量和较低的氧化损伤与嫁接苗较强的耐盐性有关。
     5.在基质栽培下,研究了100 mmol·L~(-1) NaCl胁迫对茄子嫁接苗和自根苗AsA-GSH循环中有关酶活性的影响。结果表明,NaCl胁迫可诱导叶片中H_2O_2的产生,导致膜脂过氧化产物丙二醛(MDA)的积累。嫁接苗叶片中H_2O_2和MDA的含量显著低于自根苗。在NaCl胁迫下,嫁接苗叶片中谷胱甘肽还原酶(GR)和抗坏血酸过氧化物酶(APX)活性上升,自根苗下降;NaCl胁迫促进了嫁接苗还原型抗坏血酸(AsA)和还原型谷胱甘肽(GSH)的合成,嫁接苗叶片中AsA和GSH的含量显著高于自根苗。由此认为,嫁接苗耐盐性优于自根苗的原因在于嫁接苗保持较快的AsA-GSH循环,从而保证GSH和AsA的再生以减轻氧化损伤。
     6.用营养液栽培,研究了80 mmol·L~(-1) NaCl胁迫下茄子嫁接苗和自根苗叶片多胺代谢和ABA含量的变化。结果表明,在NaCl胁迫下,茄子嫁接苗3种不同形态多胺(游离态、结合态和束缚态)和ABA含量均显著高于自根苗。NaCl胁迫显著增加了叶片精胺和ABA含量;腐胺和亚精胺含量在胁迫前期上升,后期下降。嫁接苗的腐胺和亚精胺含量降低幅度低于自根苗,而精胺和ABA含量上升幅度则高于自根苗。嫁接苗多胺代谢受NaCl胁迫的影响小于自根苗,NaCl胁迫下ABA的快速积累和保持相对高的叶片多胺含量与嫁接苗耐盐性有关。
     7.采用高压液相色谱法对80 mm0l·L~(-1) NaCl胁迫下营养液栽培茄子嫁接苗和自根苗根系多胺代谢的差异进行了研究。结果表明,胁迫2 d时,嫁接苗根系游离态亚精胺和结合态多胺含量显著高于自根苗,游离态腐胺和束缚态多胺显著低于自根苗,游离态精胺含量两者无显著差异。胁迫10 d时,自根苗3种形态的多胺含量均下降,显著低于对照植株,而嫁接苗根系游离态精胺、结合态腐胺和束缚态多胺含量显著高于对照植株。NaCl胁迫显著提高了茄子嫁接苗和自根苗根系多胺氧化酶的活性,自根苗增加幅度显著高于嫁接苗。以上结果表明,嫁接苗胁迫初期根系结合态多胺的迅速积累及胁迫后期保持较高的精胺含量有利于其耐盐性的提高。
Eggplant (Solarium melongena L.) is considered to be moderate sensitive to salinity, soil salinity deteriorates severely the growth and yield of eggplant. Grafting plays an important role in eggplant cultivation and can effectively enhance the ability of eggplant to resist adversity and has been applied widely in practice. However, studies were mainly focused on increasing disease and cold resistance by grafting, there are few studies on improving salt tolerance by grafting. Furthermore, soil secondary salinization has been becoming the main factor which severely limited the sustainable development of facility vegetable cultivation. Therefor, it is very important to investigate the mechanism of salt tolerance by grafting. In this study, we use 'Torvum Vigor' (Solarium torvum Swartz)which is a special cultivar introduced from Japan as rootstock and eggplant cultivar 'Suqiqie' as scion, grafting was made to compare the differences in growth and metabolism of physiology and biochemical between grafted and own-rooted eggplant seedlings under salt stress, in order to better elucidate the physiological and biochemical mechanisms of improving salt tolerance by grafting. The results of this study were as follows:
     1.Biological characteristics of 'Torvum Vigor' were observed and salt tolerance was evaluated. The results showed that 'Torvum Vigor' displayed stronger growth vigor and flowered at the end of August. Flower color is white and inflore scene is in clusters. Fruit number per plant is great and fruit is small. These are similar to wild eggplant cultivar in morphological character. It is difficult to obtain seeds in Nanjing region under open cultivation since flower period is very later. Under 80 mmol·L~(-1) sodium chloride stress, 'Torvum Vigor' seedlings growth was less affected than that of 'Suqiqie' ones, root activity of 'Torvum Vigor' seedlings was stronger than that of 'Suqiqie' ones. Contents of Na~+ and Cl~- in roots of 'Torvum Vigor' were higher than those of 'Suqiqie', while content of Na~+ and Cl~- in leaves of 'Torvum Vigor' was lower than those of 'Suqiqie' seedlings. The above results suggested salt tolerance of 'Torvum Vigor' is super to 'Suqiqie'.
     2.Growth and photosynthetic characteristics of grafted and own-root eggplant seedlings were studied under 80 mmol·L~(-1) NaCl stress. The results showed that plant growth, contents of chlorophyll a and chlorophyll b, net photosynthetic rate (Pn), transpiration rate (Tr),stomatal conductance (Gs) were significantly decreased and stomata limited value (Ls) was significantly increased by NaCl stress, intercellular CO_2 concentration (Ci) first were decreased and then were increased. NaCl stress had little effect on content of carotenoid in grafted and own-root eggplant seedlings. Under the same stress conditions, Pn, Tr, Gs and contents of photosynthetic pigment in grafted seedlings were significantly higher than those of own-root ones. The growth of grafted seedlings was less affected by NaCl stress than that of own-root ones, which was related to keep higher Pn in grafted seedlings.
     3.The following results were obtained. Contents of Na~+ and Cl~- of grafted seedlings were significantly lower than those of own-root seedlings in shoot except in petiole, and they were accumulated in roots of grafted seedlings. Under NaCl stress, grafted seedlings kept high values of K~+/Na~+ and Ca~(2+)/Na~+ in young leaves and roots; selective absorption values of S_(K,Na) and S_(Ca,Na) in roots and selective transport values of S_(K,Na) and S_(Ca,Na) in young leaves of grafted seedlings were significantly higher than those of own-root seedlings. Based on these results, it could be concluded that, mechanisms of salt tolerance of grafted eggplant seedlings were attributed both to accumulation of Na~+ and Cl~- in roots to alleviate the injury effect of salt ions on shoot growth, and to increasing the values of K~+/Na~+ and Ca~(2+)/Na~+ in young leaves and roots by accumulating K~+ and Ca~(2+).
     4.The activities of antioxidant enzymes, contents of osmotic adjustment substances and metabolism of reactive oxygen in grafted and own-root eggplant seedlings were investigated. The results showed that NaCl stress significantly reduced superoxide dismutase (SOD) activity and increased (?) producing rate, contents of free proline,H_2O_2 and MDA in leaves of both grafted and own-root eggplant seedlings, while peroxidase (POD) and catalase(CAT) activity increased firstly and then decreased. Compared with own-root eggplant seedlings, the grafted seedlings had a higher antioxidant enzymes activities and contents of osmotic adjustment substances and a lower (?) producing rate, contents of H_2O_2 and MDA under NaCl stress. NaCl stress induced lipid peroxidation in leaves of both grafted and own-root eggplant seedlings. However, the grafted seedlings were less affected by NaCl stress than that of own-root seedlings. It was concluded that higher activities of antioxidant enzymes and less oxidative damage might be involved in stronger salt tolerance of grafted eggplant seedlings.
     5.The response of the enzymes and metabolites of the ascorbate-glutathione pathway to oxidative stress caused by salt stress was studied under matrix cultivation. The results showed that NaCl stress induced generation of H_2O-2 and accumulation of malondiadehyde(MDA) both in grafted and own-root seedlings. However, contents of MDA and H_2O_2 in leaves of grafted seedlings were significantly less than those that in own-seedlings. Activities of glutathione reductase (GR) and ascorbate-specific peroxidase (APX) in leaves of grafted seedlings were significantly increased whereas own-seedlings decreased under NaCl stress. NaCl stress promoted reduced ascorbic acid (AsA) and reduced glutathione (GSH) synthesis in grafted eggplant seedlings. Contents of AsA and GSH in leaves of grafted seedlings were significantly higher than those in own-seedlings. It was concluded that a more active AsA-GSH cycle may be involved in stronger salt tolerance of grafted eggplant seedlings, which ensures regeneration of AsA and GSH to reduce oxidative damage.
     6.Polyamines metabolism and abscisic acid (ABA) content in leaves of grafted and own-root eggplant seedlings were studied. The results showed that plant growth, contents of three forms of polyamines (free, conjugated and bound), and ABA content in grafted seedlings were significantly higher than those in own-root seedlings under NaCl stress. NaCl stress significantly increased contents of spermine (Spm) and ABA in leaves, putrescine (Put) and spermidine (Spd) contents increased then decreased in both grafted and own-root seedlings. However, the reduction of Put and Spd contents in leaves of grafted seedlings was lower than that of own-root seedlings, while the increase of Spm and ABA contents of grafted seedlings was higher than that of own-root seedlings. The polyamine metabolism of grafted seedlings was less affected by NaCl stress than those of own-root seedlings. It was concluded that both the rapid accumulation of ABA and higher polyamine contents might be involved in stronger salt tolerance of grafted eggplant seedlings.
     7.Using high-pressure liquid chronatography (HPLC) method, differences in root polyamines metabolism between hydroponically-grown grafted and own-root eggplant seedlings were studied under 80 mmol·L~(-1) NaCl stress. The results showed that contents of free spermidine (Spd), conjugated polyamines in roots of grafted eggplant seedlings were significantly higher than those of own-root seedlings, while contents of free putrescine (Put) and bound polyamines of grafted seedlings were significantly lower than those of own-root seedlings and there was no difference in free spermine (Spm) between grafted and own-root seedlings at 2 d after NaCl treatment. NaCl stress reduced the contents of three forms of polyamines in roots of own-root seedlings at 10 d after NaCl treatment. Whereas, the contents of free Spm, conjugated Put and bound polyamines in roots of grafted seedlings were increased. Polyamine oxidase (PAO) activities were significantly increased under NaCl stress. However, the elevation of PAO in own-root seedlings was higher than that of grafted seedlings. The above results indicated that both accumulation of conjugated polyamine at early stage of stress and higher Spm content at later stage were important to the improvement of salt tolerance in grafted seedlings.
引文
1.白丽萍,周宝利,李宁.盐胁迫下嫁接茄的离子吸收和运输.植物生理学通讯,2005,41(6):767-769
    2.陈贵林,乜兰春,李建文,等.低温胁迫对西葫芦嫁接苗光合特性的影响.上海农业学报,2000,16(1):42-45
    3.陈贵林,乜兰春,赵丽丽.嫁接西瓜生长动态及伤流液营养元素含量的研究.河北农业大学学报,1999,22(3):38-41
    4.陈火英,张建华,庄天明,等.利用花粉管道技术培育番茄耐盐新种质.西北植物学报,2004,24(1):12-16
    5.陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002:35-36;122;124-126
    6.陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报(自然科学版),2003,21(2):177-182
    7.陈坤明,宫海军,王锁民.植物谷胱甘肽代谢与环境胁迫.西北植物学报,2004,24(6):1119-1130
    8.陈年来,马郭军,张玉鑫,等.甜瓜种子萌发和幼苗生长对NaCl胁迫的响应.中国沙漠,2006,26(5):814-819
    9.陈淑芳,朱月林,刘友良,等.NaCI胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005,32(4):609-613
    10.陈淑芳,朱月林,刘友良,等.NaCl胁迫对番茄嫁接苗叶片ABA和多胺含量的影响.园艺学报,2006,33(1):58-62
    11.陈现臣,王彩霞.盐胁迫对西葫芦叶片光合性能的影响.河南农业科学,2007(6):100-103
    12.崔辉梅,陈曾.盐胁迫对白菜种子萌发和幼苗生长的影响.安徽农业科学,2006,34(18):4680-4682
    13.戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响.中国农学通报,2003,19(3):97-101
    14.戴伟民,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响.上海农业学报,2008,18(1):58-62
    15.段九菊,郭世荣,樊怀福,等.盐胁迫对黄瓜幼苗根系脯氨酸和多胺代谢的影响.西北植物学报,2006,26(12):2486-2492
    16.段韶芬.日本瓜果类蔬菜嫁接方法的研究进展.河南农业科学,1996(9):35
    17.范浩定,吴爱芳,周仕龙.大棚蔬菜土壤盐渍化治理技术研究.长江蔬菜,2004(4):48-49
    18.高光林,姜卫兵,汪良驹,等砧木对盐处理下‘丰水’梨幼数光合特性的影响.园艺学报,2003,30(3):258-262
    19.高洪波,刘艳红,郭世荣,等.低氧胁迫下钙对网纹甜瓜幼苗多胺含量及多胺氧化酶活性的影响.植物生态学报,2005,29(4):652-658
    20.高青海,吴燕,徐坤.茄子嫁接苗根系对低温环境胁迫的响应.应用生态学报,2007,17(3):390-394
    21.高永生,陈集双.盐胁迫下镧对小麦幼苗叶片抗氧化系统活性的影响.中国稀土学报,2005,23(4):490-495
    22.龚家栋,Pasternak D,Demalach Y.马铃薯的耐盐性及干旱沙地盐水灌溉试验.土壤学报,1996,33(4):405-413
    23.郭世荣.无土栽培学.北京:中国农业出版社,2003.114
    24.郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36(1):25-29
    25.郭亚华.无籽西瓜的无性繁殖及嫁接技术研究.北方园艺,1986(3):15-17
    26.韩志平,郭世荣,朱国荣,等.砧木对嫁接西瓜生长发育、产量和品质的影响.中国蔬菜,2006(2):22-23
    27.何欢乐,蔡润,潘俊松,等.盐胁迫对黄瓜种子萌发特性的影响.上海交通大学学报(农业科学版),2005,23(2):148-152
    28.何莉莉,侯丽霞,须晖,等.嫁接番茄抗叶霉病效果与植株体内同工酶的关系.辽宁农业科学,2001(1):16-18
    29.何文亮,黄承红,杨颖丽,等.盐胁迫过程中抗坏血酸对植物的保护功能,西北植物学报,2004,24(123):2196-2201
    30.黄占斌,山仑.水分利用效率及其生理生态机理研究进展.生态农业研究,1998,6(4):19-23
    31.柯玉琴,潘廷国.NaCl胁迫对甘薯苗期生长、IAA代谢的影响及其与耐盐性的关系.应用生态学报,2002,13(10):1303-1306
    32.李长润,刘友良.盐胁迫下小麦幼苗离子吸收运输的选择性与叶片耐盐量.南京农业大学学报,1993,16(1):16-20
    33.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:119-120,134-137,184-185,258-261
    34.李明霞.保护地土壤营养障碍与治理途径.蔬菜,1999,(10):4-5
    35.李宁,周宝利,白丽萍,等.盐胁迫下嫁接茄子中几种保护酶活性的变化.辽宁农业科学,2006(1):10-12
    36.李平华,王宝山,王慧.盐胁迫下植物细胞离子稳态重建机制.西北植物学报,2003,23(10):1810-1817
    37.李青云,葛会波,胡淑明,等.钠盐和钙盐胁迫对草莓光合作用的影响.西北植物学报,2006,26(8):1713-1717
    38.李伟,姜晶,李天来.不同浓度NaCI处理对番茄果实生长、产量和品质的影响.沈阳农业大学学报,2006,37(3):502-504
    39.李晓燕,宋占午,董志贤.植物的盐胁迫生理.西北师范大学学报(自然科学版),2004,40(3):106-111
    40.李银心.抗盐、耐海水蔬菜的生物技术培育与海水无土栽培应用.中国科学院植物研究所,2001,1-3
    41.李志英,卢育华,徐立.土壤低温对嫁接黄瓜生理生化特性的影响.园艺学报,1998,25(3):258-263
    42.廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展.生态学报,2007,27(5):2077-2089
    43.林栖凤,邓用川,黄薇,等.红树DNA导入茄子获得耐盐性后代的研究.生物工程进展,2001,2(5):40-44
    44.林栖凤,邓用川,黄薇,等.耐盐辣椒分子育种.生物工程进展,1999,19(5):19-24
    45.林栖凤,邓用川,黄薇,等.外源DNA导入豇豆提高耐盐能力的研究.生物化学杂志,1997(专刊):454-455
    46.林栖凤,李冠一.植物耐盐性研究进展.生物工程进展,2000,20(2):20-25
    47.林植芳,李双顺,林桂株.衰老叶片和叶绿体中H_2O_2的积累与膜脂过氧化的关系.植物生理学报,1988,14(1):16-22
    48.刘春玲,陈慧萍,刘娥娥,等.水稻品种对几种逆境的多重耐性及与ABA的关系.作物学报,2003,29(5):725-729
    49.刘风荣,陈火英,刘杨,等.盐胁迫下不同基因型番茄可溶性物质含量的变化.植物生理与分子生物学报,2004,30(1):99-104
    50.刘桂芹,邓国生.嫁接技术在防治黄瓜枯萎病上的应用.中国蔬菜,1993(2):32-33
    51.刘慧英,朱祝军,吕国华,等.低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究.中国农业科学,2003,36(11):1325-1329
    52.刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响.应用生态学报,2004,15(4):659-662
    53.刘家尧,衣艳君,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响.植物学通报,1998,15(2):46-49
    54.刘文革.不同染色体倍性西瓜(Citrullus lanatus)的遗传变异和抗逆机理研究.西北农林科技大学,2003,58
    55.柳晓磊,朱红林,林才多,等.盐胁迫对黄瓜幼苗生长的影响.湖南农业科学,2007(2):37-39
    56.卢永奋,黄锐明,谢晓凯,等.琼脂固定法盐胁迫对茄子幼苗生长的影响.广东农业科学,2007(3):23-24
    57.毛才良,刘友良.盐胁迫大麦苗体内的Na~+、K~+分配与叶片耐盐量.南京农业大学学报,1990,13(3):32-36
    58.乜兰春,陈贵林,高洪波.茄子抗冷砧木的筛选和嫁接苗抗冷性研究.中国蔬菜,2004(1):4-6
    59.宁顺斌,宋运淳,王玲,等.盐胁迫诱导的植物细胞死亡-植物抗盐的可能生理机制.实验生物学报,2000,33(3):245-253
    60.钱琼秋,魏国强,朱祝军,等.不同品种黄瓜幼苗光合机构对盐胁迫的响应.科技通报,2004,20(5):459-463
    61.钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响.植物营养与肥料学报,2006,12(6):875-880
    62.任天应,张乃生,张全发.黄花菜耐盐能力的研究与生产应用.山西农业科学,1991(9):13-15
    63.史跃林,刘佩瑛,罗庆熙.黑籽南瓜砧对黄瓜抗盐性的影响研究.西南农业大学学报,1995,17(3):232-236
    64.寿伟林,董文其,徐志豪,等.不同砧木品种及嫁接方法对番茄生长发育的影响.2003(4):163-165
    65.苏实,练薇薇,杨文杰,等.盐胁迫对番茄种子萌发何幼苗生长的效应.华北农学报,2006,21(5):24-27
    66.孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施.农业工程学报,2005,21,(增刊):184-188
    67.孙玉英,庞雄,濮伟新,等.茄子/番茄嫁接的抗病效果及增产作用.上海蔬菜,2005(5):57-58
    68.汤章城.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学通讯,1984,(1):15-21
    69.童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    70.汪天,郭世荣,刘俊,等.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用.植物生理学通讯,2004,40(3):358-360
    71.王爱国,罗光华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990(6):55-57
    72.王广印,周秀梅,张建伟,等.不同黄瓜品种种子萌发期的耐盐性研究.植物遗传资源学报,2004,5(3):299-303
    73.王加真,夏更寿,李建龙,等.高盐胁迫对沟叶结缕草叶片光合色素含量的影响.上海交通大学学报(农业科学版),2007,25(6):583-586
    74.王清华,杨建平,张中华,等.盐胁迫对不同品种辣椒种子萌发特性的影响.西北农业学报,2007,16(3):136-140
    75.王仁雷,华春,罗庆云,等.盐胁迫下水稻叶绿体中Na~+、Cl~-积累导致叶片净光合速率下降.植物生理与分子生物学学报,2002,28(5):385-390
    76.王瑞刚,陈少良,刘力源,等.盐胁迫下3种杨树的抗氧化能力与耐盐性研究.北京林业大学学报,2005,27(3):46-52
    77.王淑芳,王峻岭,赵彦修,等.胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定.植物生理学报,2001,27(3):248-252
    78.王素平,郭世荣,周国贤,等.NaCl胁迫下黄瓜幼苗体内K~+、Na~+和Cl~-分布及吸收特性的研究.西北植物学报,2006,26(11):2281-2288
    79.王素平,李娟,郭世荣,等.NaCl胁迫对黄瓜幼苗植株生长和光合特性的影响,西北植物学报,2006,26(3):455-461
    80.王喜庆.嫁接甜瓜防病增产效果初步研究.中国西瓜甜瓜,2002(2):22-23
    81.王绪奎,陈光亚.设施农业中的土壤问题及对策.江苏农业科学,2001(6):39-42
    82.王艳飞,庞金安,马德华,等.黄瓜嫁接栽培研究进展.北方园艺,2002(1):35-37
    83.魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学,2004,37(11):1754-1759
    84.翁祖信.嫁接对茄子黄萎病抗性及早期产量的影响.中国蔬菜,1997(2):34-35
    85.吴波.不同砧木嫁接对甜瓜生理生化特性及枯萎病抗性影响的研究.沈阳:沈阳农业大学,2005,1-3
    86.吴雪霞,朱为民,朱月林,等.外源一氧化氮对NaCl胁迫下番茄幼苗光合特性的影响.植物营养与肥料学报2007,13(6):1105-1109
    87.吴志华,曾富华,马生健,等.水分胁迫下植物活性氧代谢研究进展.亚热带植物科学,2004,33(2):77-80
    88.夏凯.植物激素的生理作用.李合生主编.现代植物生理学.北京:高等教育出版社,2002,206-261
    89.项玉英,杨祥田,张光华.设施栽培土壤次生盐渍化的调查及防治对策.浙江农业科学,2006(1):17-19
    90.谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响.山东林业科技,2004(2):6-7
    91.谢田玲,沈禹颖,邵新庆,等.黄土高原4种豆科牧草的净光合速率和蒸腾速率日动态及水分利用效率.生态学报,2004,24(8):1679-1686
    92.徐胜利,陈青云,陈小青.盐胁迫下嫁接伽师甜瓜植株生长与多胺以及多胺氧化酶活性的关系.果树学报,2006,26(3):260-265
    93.徐胜利,李新民,陈小青,等.厚皮甜瓜嫁接育苗栽培的防病增产效果.中国蔬菜,2000(4):16-18
    94.徐云岭,余叔文.植物适应盐逆境过程中的能量消耗.植物生理学通讯,1990(6):70-73
    95.许传强,李天来,齐红岩,等.嫁接对网纹甜瓜生长发育、产量及品质的影响.中国蔬菜,2005(6):12-14
    96.许详明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6(4):379-387
    97.薛继澄,毕德义,李家金,等.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994(1):4-9
    98.闫立英.不同南瓜品种对嫁接黄瓜幼苗生长及抗寒性的影响.河北职业技术师范学院学报,1999,13(4):29-31
    99.晏斌,戴秋杰,刘晓忠,等.钙提高水稻耐盐性的研究.作物学报,1995,21(6):685-690
    100.杨立飞,朱月林,胡春梅,等.NaCl胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响.西北植物学报,2006,26(6):1195-1200
    101.杨立飞,朱月林,胡春梅,等.NaCl胁迫下营养液栽培嫁接西瓜生长动态及叶片生理生化特性的研究.西南农业学报,2005,18(4):439-443
    102.杨忠,邱源,陈忠,等.大棚蔬菜土壤次生盐渍化无害化综防技术研究.土壤,2006,38(3):346-348
    103.姚春娜,裴新梧,孔英珍,等.盐胁迫下小麦新品系89122的抗氧化酶活性和内源ABA含量变化的研究.兰州大学学报(自然科学版),2001,37(4):76-79
    104.姚枝强,林伯青.茄子黄萎病抗病材料的组织病理学研究.植物病理学报,1996,26(2):159-163
    105.弋良朋,马健,李彦.盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响.中国科学(D辑:地球科学),2006,36(增刊Ⅱ):86-94
    106.于贤昌,邢禹贤,马红,等.不同砧木于接穗对黄瓜嫁接苗抗冷性的影响.中国农业科学,1998,31(2):41-47
    107.于贤昌,邢禹贤,马红,等.低温胁迫下嫁接黄瓜嫁接苗和自根苗内源激素的变化.园艺学报,1999,26(6):406-407
    108.于贤昌,邢禹贤,马红,等.黄瓜嫁接苗抗冷特性研究.园艺学报,1997,24(4):348-352
    109.余海英,李廷轩,周健民.设施土壤次生盐渍化及其对土壤性质的影响.土壤,2005,37(6):581-586
    llO.於丙军,刘俊,吉晓佳,等.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化.应用生态学报,2004,15(7):1223-1226
    111.俞更才.日光温室的西瓜嫁接效应研究.甘肃科学学报,2002,14(增刊):66-69
    112.郁继华,杨秀玲,许耀照,等.NaCl胁迫对黄瓜自根苗和嫁接苗光合速率素影响.植物营养与肥料学报,2004,10(5):554-556
    113.郁继华,雍山玉,张洁宝,等.外源NO对NaCl胁迫下辣椒幼苗氧化损伤的保护效应.西北植物学报,2007,27(9):1801-1806
    114.袁祖华,蔡雁平.盐胁迫下嫁接黄瓜幼苗有机渗透调节物质含量及膜脂过氧化水平研究.湖南农业大学学报(自然科学版),2007,33(2):180-182
    115.张春兰,张耀栋,周权锁.不同作物茬口对减轻蔬菜保护地土壤盐害及连作障碍的作用.土壤通报,1995,26(6):257-259
    116.张丹华,孟昭璜,肖卫民.嫁接导致的绿豆可遗传性变异及其在绿豆育种中的应用.植物学报,2002,44(7):832-837
    117.张其德.盐胁迫对植物及其光合作用的影响(中).植物杂志,2000(1),28-29
    118.张淑红,张恩平,司龙亭,等.盐胁迫对黄瓜幼苗渗透调节物质含量的影响.中国蔬菜,2005(12):30-31
    119.张新春,庄炳昌,李白超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    120.张云起,刘世琦,王海波.耐盐砧木嫁接对西瓜幼苗抗盐特性的影响.上海农业学报,2004,20(3):62-64
    121.章文华,刘友良.钙对大麦幼苗盐胁迫的缓解效应.植物生理学通讯,1992,28(3):176-179
    122.赵福庚,何龙飞,罗庆云.植物逆境生理生态学.北京:化学工业出版社,2004,137-138
    123.赵福庚,孙诚,刘友良,等.盐胁迫下大麦根系多胺代谢与其耐盐性的关系.植物学报,2003,45(3):295-300
    124.赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999:56-58
    125.赵可夫,宋杰,范海.盐腺细胞的离子分布.林栖凤主编.耐盐植物研究.北京:科学出版社,2004:36-37
    126.赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993:100-103
    127.郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报,2001,27(4):325-30
    128.郑群,宋维慧.国内外蔬菜嫁接技术研究进展(上).长江蔬菜,2000(8):1-5
    129.职占峰,刘民强.蔬菜耐盐性研究进展.长江蔬菜,2006(4):35-37
    130.周宝利,高艳新,林桂荣,等.嫁接茄子抗病性与电导率、脯氨酸含量及苯丙氨酸解氨酶活性的关系.园艺学报,1998,25(3):300-302
    131.周宝利,姜荷.茄子嫁接栽培效果和抗病增产机制的研究进展.中国蔬菜,2001,(4):52-54
    132.周宝利,王茹华.主要蔬菜异属间嫁接研究进展.长江蔬菜,2002,学术专刊:21-22
    133.周宝利.嫁接茄子防病增产效果与PPO,SOD,EST同工酶关系的初步研究.园艺学进展,1998(2):425-428
    134.周燮,郑志富,陈溥言,等.专一识别脱落酸甲酯的单克隆抗体的制备和应用.植物生理学报,1996,23(3):284-290
    135.朱进,别之龙.盐胁迫对3种黄瓜砧木幼苗光合特性的影响.园艺学报,2007,34(6):1418-1424
    136.朱新广,张其德.NaCl对光合作用影响的研究进展.植物学通报,1999,16(4):332-338
    137.朱志梅,杨持.草原沙漠化过程中植物的耐胁迫类型研究.生态学报,2004,24(6):1093-1100
    138.朱祝军,喻景权,Gerendas J,等.氮素形态和光照强度对烟草生长和H_2O_2清除酶活性的影响.植物营养与肥料学报,1998,4(4):379-385
    139. Agarwal S, Sairam R K, Srivastava G C, et al. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science, 2005,169: 559-570
    140. Ahmed S, Nawata E, Hosokawa M,et al.Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging.Plant Science, 2002,163:117-123
    141. Alscher, R G, Donahue, J L, Cramer, C L. Reactive oxygen species and antioxidants: relationship in green cells.Physiologia Plantarum,1997,100:224-233
    142.Apse M P, Aharon G S,Snedden W A, et al.Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis.Science,1999,285:1256-1258
    143.Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions.Plant Physiology, 2006, 141: 391-396
    144.Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639
    145.Asao T, Shimizu N, Ohta K,et al.Effect of rootstocks on the extension of harvest period of cucumber (Cucumis sativus L.) growth in non-renewal hydroponics. Journal of Japanese Society for Horticultural Science, 1999, 68: 589-602
    146.Ba(?)uls J, Primo-millo E.Effects of salinity on some Citrus scion-rootstock combinations. Annals of Botany, 1995, 76: 97-102
    147.Bhaskaran S, Smith R H, Newton R J. Physiological changes in cultured sorghum cells in response to induced water stress. Plant Physiology, 1985, 79: 266-269
    148.Binzel M L, Hasegawa P M, Rhodes D. Solute accumulation in tobacco cells adapted to NaCl.Plant Physiology, 1987, 84: 1408-1415
    149.Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmental challenges: recent development. Plant Science, 1999, 140: 103-125
    150.Bowler C, Montagu M V,Inzè D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116
    151.Bray E A. Drought and ABA induced changes in polypeptide and mRNA accumulation in tomato leaves.Plant Physiology, 1988, 88: 1210-1214
    152.Burton G W,Ingold K U.β-carotene:an unusual type of lipid antioxidant. Science,1984,224:569-573
    153.Calmer T D, Fan T W M, Higashi R M, et al. Interactions of Ca~(2+) and NaCl stress on the ion relations and intracellular pH of Sorghum bicolor root tips: An in vivo ~(31)P-NMR study. Journal of Experimental Botany, 1994, 45: 1037-1044
    154.Chartzaulakis K,Klapaki G.Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae, 2000, 86:247-260
    155.Chartzoulakis K S,Loupassaki M H. Effects of NaCl salinity on germination, growth, gas exchange and yield of greenhouse eggplant. Agricultural Water Management,1997,32:215-225
    156.Cheeseman J M. Mechanisms of salinity tolerance in plants. Plant Physiology, 1988, 87:547- 550
    157. Dasgan H Y,Aktas H,Abak K,et al.Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses.Plant Science, 2002, 163: 695-703
    158. Delauney A J, Uerma D P S.Proline biosynthesis and osmoregulation in plants. Plant Journal,1993, 4: 215-223
    159. Dua R P. Grafting technique in gram to ascertain control of root and shoot for salinity tolerance.Indian Journal of Agricultural Science,1997, 67: 212-214
    160. Estan M T,Martinez-Rodriguez M M, Perez-Alfocea F, et al.Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Experimental Botany 2005,56:703-712
    161. Fernadez-Garcia N,Martinez V,Cerda A,et al. Water and nutrient uptake of grafted tomato plants grown under saline conditions. Journal of Plant Physiology, 2002, 159: 899-905
    162. Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism.Planta,1976,133:21-25
    163. Giraudat J, Parcy F, Bertauvh N,et al. Current advances in abscisic acid action and signaling. Plant Molecular Biology, 1994, 26: 1557-1577
    164. Godoy J A, Pardo J M, Pintor-Toro J A. A tomato cDNA inducible by salt stress and absicisic acid:nucleotide sequence and expression pattern.Plant Molecular Biology, 1990, 15: 695-705
    165. Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science,1994, 34: 706-714
    166. Guan L M,Zhao J,Scandalios J G.Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress:H_2O_2 is the likely intermediary signaling molecule for the response. Plant Journal, 2000, 22: 87-95
    167. Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3.Proceedings of theNational Academy of Science of the United of America,2000,97:3735-3740
    168. Handa S, Bressan R A, Handa A K et al. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiology, 1983, 73: 834-843
    169. Hasegawa P M, Bressan R A, Handa A K.Growth characteristics of NaCl-selected and nonselected cells of Nicotiana tabacum L.Plant Cell Physiology, 1980, 21: 1347-1355
    170. Hernánez J A,Olmos E,Corpas F J, et al. Salt-induced oxidative stress in chloroplasts of pea plants.Plant Science, 1995, 105: 151-167
    171. Hong Z. Removal of feedback inhibition of 1-pyrroline 5-car-boxylate synthase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology, 2000,122:747-756
    172.Imlay J A. Pathways of oxidative damage. Annuals Review of Microbiology, 2003, 57: 395-418
    173.Ishitani M, Xiong L , Stevenson B. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interaction and convergence of abscisic acid-depend and abscisic acid-independ pathways.Plant Cell, 1997, 9: 1935-1949
    174. Ishitani M, Liu J P, Halfter U, et al.SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12: 1667-1677
    175. Juan M, Rivero R M,Romero L,et al. Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany, 2005, 54: 193-201
    176. Jumberi A,Oka M, Fujiyama H. Response of vegetable crops to salinity and sodicity in relation to ionic balance and ability to absorb microelements. Soil Science and Plant Nutrition, 2002, 48: 203-209
    177. Kato T,Lou H. Effect of rootstock on the yield, mineral nutrition and hormone level in leaves of eggplant. Journal of Japanese Society for Horticultural Science, 1989, 58: 345-352
    178. Kaya C, Kirnak H, Higgs D. Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus on tomato cultivars grown at high (NaCl) salinity. Journal of Plant Nutrition, 2001, 24: 357-367
    179. Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 2000, 40: 482-487
    180. Khan M A, Ungar I A, Showalter A M. NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan. Physiologia Plantarum,1998,102: 487-492
    181. Kim HT, Kang N J,Kang K Y,et al.Selection of 'Pusan Daemok 1' for high yield and quality in rootstock of cucumber. Journal of Horticultural Science and Biotechnology,1998,40:158-161
    182. Krishnamurthy R, Bhagwat K A. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology, 1989, 91: 500-504
    183. Liu J P, Ishitant M, Halfter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of theNational Academy of Science of the United of America, 2000, 97: 3730-3734
    184. Lopez M V, Satti S M E. Calcium and potassium enhanced growth and yield of tomato under sodium chloride stress.Plant Science,1996,114:19-27
    185. López-Góraez E, SanJuan. MA, Diza-Vivancos P,et al.Effect of rootstocks grafting and boron on the antioxidant systems and salinity tolerance of loquat plants (Eriobotrya japonica Lindl.).2007, Environmental and Experimental Botany, 60:151-158
    186. Maiale S, Sanchez D H, Guirado A, et al.Spermine accumulation under salt stress. Plant Physiology, 2004, 161:35-42
    187. Maris P A,Gilad S A,Wayne A S,et al. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+antiport in Arabidopsis. Science, 1999, 285:1256-1258
    188. MizrahiY. Effect of salinity on tomato fruit ripening.Plant Physiology, 1982, 69: 966-970
    189. Mizrahi Y, Pasternak D. Effect of salinity on quality of various agricultural crops. Plant Soil, 1985,89:301-307
    190. Moftah A E, Michel B E. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves.Plant Physiology, 1987, 83: 238-240
    191. Mutlu F,Bozcuk S.Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance. Russian Journal of Plant Physiology, 2005,52:36-42
    192. Nagalakshimi N,Prasadm M N V.Reponses of glutathione cycle enzymes and giutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science, 2001, 160: 291-299
    193. Nakano Y,Asada K.Hydrogen peroxide scavenged by ascorbated specific peroxide in spinach chloroplast.Plant Cell Physiology, 1981, 22: 857-880
    194. Neto A A, Prisco J T, Joaquim E F, et al. Effects of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmetal and Experimental Botany, 2006, 56:87-94
    195. NiuX, Bressan R A,HasegawaPM, et al.Ion homeostasis in NaCl stress environments. Plant Physiology, 1995, 109:735-742
    196. Nuccio M L, Rhodes D, McNeil S D. Metabolic engineering of plants for osmotic stress resistance.Current Opinion in Plant Biology, 1999, 2: 128-134
    197. Omran R G. Peroxide levels and the activities of catalase, peroxidase and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology, 1980, 65: 407-408
    198. Pessarakli M,Tucker T C. Nitrongen-15 uptake by eggplant under sodium chloride stress.Soil Science Society of America Journal, 1988, 52: 1673-1676
    199. Plaut Z. Sensitivity of crop plants to water stress at specific developmental stages: revaluation of experimental findings. Israel Journal of Plant Science, 1995, 43: 99-111
    200. Poustini K,Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Research, 2004, 85: 125-133
    201.Rao G G. Rao G R. Pigment composition and chlorophyllase activity in pigment pea (Cajanus indicus Spreng) and gingelley (Seamun indicum L.) under NaCl salinity. India Journal of Experimental Biology, 1981, 19: 768-770
    202. Rivero R M, Ruiz J M, Romero L. Role of grafting in horticultural plants under stress conditions.Journal of Food, Agricultural and Environment, 2003,1:70-74
    203. Roy M, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Science, 2001,160: 869-875
    204. Ruiz J M, Belakbir L, Ragala J M, et al.Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sciencce and Plant Nutrition, 1997, 43: 855-862
    205. Sanchez D H, Cuevas J C,Chiesa M A,et al. Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Science, 2005, 168: 541-546
    206. Santa-Cruz A, Acosta M,Perz-Alfocea F,et al. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiologia Plantarum,1997,101:341-346
    207. Santa-Cruz A, Martinez-Rodriguez M M, BolarinMC,et al.Response of plant yield and leaf ion contents to salinity in grafted tomato plants. Acta Horticulturace,2001,559:413-417
    208. Santos C, Azevedo H, Caldeira G. In situ and in vitro senescence induced by KCl stress nutritional imbalance,lipid per-oxidation and antioxidant metabolism. Journal of Experimental Botany, 2001, 52: :351-360
    209. Santos C. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves.Scientia Horticulturae, 2004, 103: 93-99
    210. Serrano R, Mulet J M, Rios G, et al. A glimpse of the mechanisms of ion homeostasis during salt stress.Journal of Experimental Botany, 1999, 50: 1023-1036
    211. Shannon, M C, Grieve C M. Tolerance of vegetable crops to salinity. Scientia Horticulturae,1999,78:5-38
    212. Shinozaki K,Yamaguchi-Shinozaki K. Gene expresion and signal transduction in water-stress response. Plant Physiology, 1997, 115: 327-334
    213. Sudhakar C, Lakshmi A,Giridarakumar S.Changes in the antioxidant enzymes efficacy in two high yielding genotypes of mulberry (Morus Alba L.) under NaCl salinity. Plant Science,2001, 161:613-619
    214. Swaaij A C, Jacobsen E, Kiel J A K, et al. Seclection, characterization and regeneration of hydroxyproline-resistant cell lines of Solanum tuberosum: tolerance to NaCl and freezing stress.Physiologia Plantarum,1986, 68: 359-366
    215.Tang W, Newton R J. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 2005, 46:31-43
    216. Vaidyanathan H, SivakumarP, Chakrabarty R, et al.Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties.Plant Science, 2003, 165:1411-1418
    217. Vitaet V,Baxter I,Doerner P,et al.Evidence for a role in growth and salt resistance of a plasma membrane H~+-ATPase in the root endodermis.Plart Journal,2001,27:191-201
    218. Walden R,Cordriro A, Tiburcio F A. Polyamines: small molecular triggering pathways in plant growth and development.Plant Physiololy,1997,113:1001-1013
    219. Walker R R, Blackmore D H, Sun Q. Carbon dioxide assimilation and foliar ion concentration in leaves of lomen (Citrus limon L.) trees irrigated with NaCl or Na_2SO_4. Australia Journal of Plant Physiology, 1993, 202: 173-185
    220. Wang B S, Ulrich L, Rafael R, et al.Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa.Journal of Experimental Botany, 2001, 52:2355-2365
    221. Webb A A R,Baker A J. Stomatal biology: New techniques, new challenges. New Phytologist,2002, 153: 365-370
    222. Willekens H, Vancamp W, Lnze D. Ozone, sulfur dioxide and ozone ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes in Nicotianaplum baginifolia L. Plant Physiololy, 1994, 106: 1007-1014
    223. Wood A J,SaneokaH, Rhodes D, et al. Betaine aldehyde dehydrogenase in sorghum. Molecular cloning and expression of two related genes.Plant Physiololy,1996,110:1301-1308
    224. Wu F B, Zhang G P, Dominy P. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 2003,50:67-78
    225. Wu S J, Ding L, Zhu J K. SOS1,a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8: 617-627
    226. Wyn J R G. Salt stress and comparative physiology in the Gramineae. Australia Journal of Plant Physiolololy, 1978, 5: 839-850
    227. Yoshida K,Igarashi E, Wakatsuki E, et al. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii.Plant Science, 2004,167:1335-1341
    228. Zhang H X, Blumwald E. Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nature Biotechnology, 2001,19:765-768
    229. Zhu J K, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis:evidence for a critical role of potassium nutrition. Plant Cell, 1998, 10: 1181-1191
    230. Zhu J K. Plant salt tolerance. Trends in Plant Science,2001,6:66-71
    231. Zhu Z J, Wei G Q, Li J, et al.Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.).Plant Science, 2004, 167: 527-533

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700