用户名: 密码: 验证码:
生长因子progranulin在骨修复,皮肤炎症以及椎间盘退变过程中的作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     大面积骨缺损的治疗一直是一个困扰临床医生的技术难题。除骨移植外,生长因子,生物材料及相关干细胞研究的组织工程学为治疗大面积骨缺损提供了新的治疗思路。生长因子progranulin (PGRN)是一种多功能蛋白,已经有研究证明PGRN在发育过程中可以促进软骨细胞分化及软骨内成骨。我们知道在骨修复过程中软骨形成软骨痂后成骨,对修复缺损起到非常关键的作用。且近期发现,PGRN通过与肿瘤坏死因子TNF-α的受体TNFR1/2相结合,保护了免疫性关节炎中骨组织不受侵蚀。生长因子PGRN促软骨细胞分化,抑破骨的作用引起我们浓厚兴趣,是否可将PGRN引入治疗大而积骨缺损呢?直至目前,PGRN在骨修复过程中所起作用及其可能涉及的相关机制尚无报道。
     [实验方法]
     在本实验中,我们使用多种转基因小鼠,包括野生型小鼠,PGRN基因缺失小鼠, TNFR1基因缺失小鼠,TNFR2基因缺失小鼠,’TNF-α转基因小鼠并应用多种手术诱导模型包括桡骨节段性骨缺损模型,股骨钻孔骨缺损模型,肌肉内异位骨生成模型和股骨节段性骨缺损模型研究PGRN在骨修复过程中的作用和相关机制。
     [实验结果]
     通过本实验,我们发现手术诱导的骨缺损模型中,PGRN基因缺失型小鼠出现骨修复过程迟缓,主要表现为节段性骨缺损模型建立后,在各个检测时间点的骨断端问距较野生型对照组明显增大,提示新骨形成缓慢,而局部使用PGRN重组蛋白可加速野生型小鼠节段性骨缺损的骨修复过程。除此之外,我们发现PGRN在BMP-2(骨形态发生蛋白-2)诱导的骨生成过程中起到不可或缺的作用,因为PGRN基因缺失型小鼠中BMP-2诱导的异位骨生成较野生型小鼠显著减少,且软骨内成骨过程明显减缓,而在PGRN基因缺失型小鼠中使用PGRN重组蛋白治疗后可以改善基因缺失导致的BMP-2异位成骨诱导不良现象。另外,我们发现PGRN介导的促骨修复作用与TNFR2密切相关。CT等影像学结果显示,在TNFR2基因缺失型小鼠中,上述PGRN促骨修复作用几乎完全消失。同时我们发现,BMP-2介导的异位骨形成在TNF-α转基因小鼠中被明显抑制。组织学分析发现在TNF-α转基因小鼠中,新生骨的边缘部分破骨细胞异常活跃,提示TNF-α的过量表达导致了新生骨侵蚀加剧,最终使新生骨量减生。我们将PGRN重组蛋白与BMP-2同时作用于TNF-α转基因小鼠,结果发现这种成骨减少现象明显改善,组织学分析发现PGRN的治疗使TNF-α转基因小鼠中破骨细胞活性降低,这提示了PGRN在骨修复过程中也可能是通过抑制炎性反应及过度活跃的破骨细胞活性起作用的
     [结论]
     本实验通过使用多种转基因小鼠及数种手术诱导模型,验证了PGRN在骨修复过程中起到促软骨细胞分化,抑破骨的作用。机制方面的研究显示,这种作用是通过与BMP-2及TNF-α/TNFR通路相互作用来实现的,这也提示我们PGRN有可能成为治疗骨缺损的新分子,尤其在患者处于炎性状态时发挥其独特作用。
     [研究背景]
     皮肤炎性疾病,包括银屑病等,属于免疫炎性疾病的一类,困扰着大量患者。但到目前为止,其发病机制及治疗措施仍然有待进一步研究。在多种皮肤炎症的发病过程中,最重要的细胞因子之一是肿瘤坏死因子(TNF-α),起到非常关键的作用。TNF-a可以通过激活相关炎性通路如NF-κB信号通路从而促进下游因子表达,继而导致炎症发生。因此,对TNF-α的拮抗就成为非常有前景的治疗方法之一。到目前为止,已经有数种针对TNF-α的药物应用于临床,并在类风湿关节炎,银屑病以及溃疡性结肠病等疾病中发挥治疗作用。然而,目前所开发的抗TNF-α药物应用于自身免疫性疾病患者后,仍有约半数患者对这些治疗药物反应不敏感或无效。因此,进一步开发新的TNF-α相关抑制剂对于治疗这些患者来说是十分必要的。Progranulin (PGRN)是一种多功能蛋白,在诸多生理及病理过程中发挥重要作用。PGRN以及其衍生工程蛋白Atsttrin已被报道可以通过与TNF-α的细胞表面受体TNFR1/2相互结合拮抗TNF-a所导致的NF-κB信号通路激活和炎性作用,并在小鼠模型中对抗免疫性关节炎(Tang, W.,等,Science,2011)。PGRN及Atsttrin的拮抗机制与前期药品不同,因为前期应用于临床的TNF-α抑制剂主要包括TNF-α的抗体或TNF-α受体类似物,通过捕获TNF-α,封闭其结合位点,从而防止其与细胞表面受体TNFR1/2相结合来实现对TNF-α功能的抑制,而PGRN及Atsttrin则通过与TNF-α受体竞争性结合起到抗炎作用。直至目前,PGRN在皮肤炎症中的作用尚无人报道。因此,在本课题中,我们使用相关实验,研究PGRN及Atsttrin在皮肤炎症中的作用及相关机制。
     [实验方法]
     1. PGRN在人和小鼠正常皮肤组织中的表达由免疫组化,实时荧光定量PCR及Western蛋白印迹实验检测。
     2.在野生型小鼠和PGRN基因缺失型小鼠中诱导oxazolone皮肤炎症模型,通过组织学,qPCR, WB以及流式细胞技术等方法,对比野生型小鼠和PGRN从因缺失型小鼠中皮肤炎症的发生发展情况及使用Atsttrin治疗后皮肤炎症的差别。
     3.在各个实验小组中对NF-κB信号通路的指标进行检测。
     [实验结果]
     1.兔疫组化示,PGRN在人和小鼠皮肤中均有表达。qPCR及WB发现PGRN在皮肤炎性疾病中表达上升。
     2. Oxazolone诱导的皮炎模型中,较之野生型小鼠,PGRN基因缺失小鼠的皮炎程度加重,表现在诱导后鼠耳外观肿胀,厚度增加,同时qPCR示炎性反应的相关标志性分子包括包括白细胞介素1(IL-1β),白细胞介素6(IL-6),环氧化酶2(COX-2)以及诱导性一氧化氮合成酶(iNOS)表达增多。另外,流式细胞学检测结果示在PGRN基因缺失小鼠颈部引流淋巴结中,其调节性T细胞的比例较野生型明显降低,使用PGRN衍生的工程蛋白Atsttrin治疗后,在野生型小鼠中,Oxazolone诱导的皮炎得以明显控制,包括诱导后耳厚度增加程度,即耳肿胀程度得以控制;组织学发现表皮组织因皮炎所致的增生程度降低,而炎性相关的标志性分子如白细胞介素1(IL-1β),白细胞介素6(IL-6),环氧化酶2(COX-2)以及诱导性一氧化氮合成酶(iNOS)水平也相较于PBS对照治疗组显著性下降。
     3.我们发现PGRN及Atsttrin在皮肤炎症中的保护性作用可能通过调节NF-κB信号通路的活性来实现的。在Oxazolone诱导的皮炎模型中,PGRN基因缺失小鼠局部皮肤中NF-κB信号通路组成部分NF-κB2的表达上升,而NF-κB通路抑制分子IκB的磷酸化加强,反映NF-κB通路活性增强。同时,在野生型皮炎模型中使用Atsttrin治疗后,皮炎中增强的NF-κB信号通路活性得以有效控制。
     [结论]
     我们研究发现皮肤炎症中PGRN表达上调。构建动物模型证明PGRN缺失致使皮炎程度加剧,Atsttrin治疗后可减轻皮炎程度。并进一步探究了参与此过程的NF-κB信号通路的活性变化。这一研究不但首次观察了内源性PGRN在皮肤炎症中的作用,也提示其衍生工程蛋白Atsttrin可能作为一种治疗炎性皮肤疾病的新型药物,应用于未来临床之中。
     [研究背景]
     椎间盘退行性变是发病率最高的退行性疾病之一,由多种因素引起。其特征为椎间盘在形态学和生物力学方面发生显著性变化,体现在新骨形成,软骨破坏和破骨活跃,并最终导致椎间盘结构紊乱,活动受限,且可出现下腰痛症状。在这一退变过程中所涉及的相关分子机制尚不明确,目前尚无有效控制或逆转的治疗措施。Progranulin (PGRN)作为一种多功能生长因子,与神经及关节软骨退变性疾病有密切关系。近期,有研究发现PGRN可以竞争性结合肿瘤坏死因子TNF-α的受体TNFR1/2,抑制免疫性关节炎模型中NF-κB信号通路的激活,从而保护关节软骨不受破坏。另有报道称在神经系统中,PGRN的缺失可导致wnt/β-catenin信号通路激活。而NF-κB和wnt/β-catenin通路与椎间盘退变关系密切。然而,PGRN在椎间盘退变过程中的作用尚无相关报道;是否通过上述两条通路发挥作用有待进一步求证。此实验主要研究正常以及退变状态下PGRN在椎间盘组织的表达情况,探索PGRN在椎间盘老化退变过程中的作用,并阐述相关分子机制。
     [实验方法]
     1.本实验采用免疫组化(IHC),实时荧光定量PCR (qPCR)以及Western免疫蛋白印迹实验技术(WB)检测人与小鼠椎间盘中PGRN的表达情况。
     2.对4月龄,6月龄及9月龄的野生型和PGRN基因缺失型小鼠椎间盘进行HE染色分析一般形态学变化;Safranin O染色分析软骨成分变化;IHC检测椎间盘基质aggrecan的降解产物;破骨细胞活性由TRAP染色检测。另外进行影像学CT检测。qPCR检测椎间盘退变标志性基因的mRNA水平,包括碱性磷酸酶(ALP)骨钙素(osteocalcin),金属蛋白酶13(MMP13),10型胶原,抗酒石酸酸性磷酸酶(TRAP)及织蛋白酶K (Cathepsin K)
     3.野生型和PGRN基因缺失型小鼠椎间盘组织中NF-κB和wnt/β-catenin信号通路的表达与活性也通过qPCR, WB及兔疫组化实验方法进行检测。
     [实验结果]
     1.免疫组化实验结果显示PGRN在人和小鼠的椎间盘中均有表达,qPCR以及WB结果证实PGRN水平随老化过程而升高。
     2.通过比较不同年龄组野生型和PGRN基因缺失型小鼠椎间盘白发性退变过程,发现PGRN基因缺失型小鼠椎间盘组织终板出现骨赘形成,而相邻椎体内松质骨出现骨质疏松情况。Safranin O染色及aggrecan降解产物的免疫组化结果显示PGRN基因缺失时椎间盘组织中软骨结构破坏显明加重,退变临床评分明显高于野生型对照组。另外,与同年龄野生型小鼠相比,qPCR示PGRN基因缺失型小鼠椎间盘组织中的软骨退变相关于指标水平显著性上升。
     3.在实验中发现PGRN基因缺失导致椎间盘组织中NF-κB和wnt/β-catenin信号通路相关组分表达升高,活性增强,分析退变加速可能是由过度激活此二种信号通路所致。
     [结论]
     PGRN在维持椎间盘组织稳态中起到非常重要的作用,PGRN基因缺失导致椎间盘退变加速。这为防治椎间盘退变性疾病提供了新的潜在作用靶点。
The treatment of large bone defects remains a challenge for the orthopaedic surgeon. Regenerative therapies with the use of mesenchymal stem cells (MSC), bio-scaffolds and growth factors may provide an alternative to autogenous bone transplantation. Hndochondral ossification plays a key role in bone healing process, which requires normal cartilage callus formation. Progranulin (PGRN) growth factor is known to enhance chondrocyte differentiation and endochondral ossification during development, yet whether PGRN also plays a role in bone regeneration remains unknown. Herein we reported that PGRN deficiency led to impaired bone healing, while recombinant PGRN enhanced bone regeneration. Moreover, PGRN was required for BMP-2induction of osteoblastogenesis and ectopic bone formation. Furthermore, the role of PGRN in bone repair was mediated, at least in part, through interacting with TNF-α signaling pathway. Firstly. PGRN-mediated bone formation depends on TNFR2but not TNFR1. Secondly. PGRN blocked TNF-α-induccd inflammatory osteoclastogenesis. Collectively. PGRN acts as a critical mediator of bone healing process through constituting an interplay network with BMP-2and TNF-a signaling, which represents a potential novel molecular target for treatment of bone fractures, especially under inflammatory conditions.
     BACKGROUND: PGRN and its derived engineered protein, Atsttrin, were reported to antagonize TNF-α and to protect against inflammatory arthritis (Tang, W., et al, Science,2011). However, whether PGRN and Atsttrin also play a role in skin inflammatory diseases is unknown.
     OBJECTIVE: Define the role of PGRN and Atsttrin in skin inflammation of mice dermatitis model and the underlying signaling pathway.
     METHODS: The expression pattern of PGRN in human and mice skin was assayed using immunohistochcmistry and western blotting. Oxazolone induced dermatitis was established and skin inflammation was compared between wildtype (WT) and PGRN-/-mice, and WT mice with or without Atsttrin treatment, through histology, real-time PCR, Western blotting and flow cytometery. Additionally, expression and activity NF-κB signaling was assayed in each experimental group.
     RESULTS: PGRN was detectable in human and mice epidermis, and its level was elevated in skin inflammation. PGRN-/-mice exhibited more severe inflammation reaction following induction of oxazolone and displayed more severe swelling of ear, more cytokine production and fewer regulatory T cells compared with WT mice. Moreover, Atsttrin attenuated dermatitis in WT mice. In addition, the protective role of PGRN in dermatitis was probably due to the regulation of NF-κB signaling, because deficiency of PGRN exaggerated, while treatment of Atsttrin suppressed the activation of NF-kB signaling in dermatitis model.
     CONCLUSION: PGRN and its derived protein. Atsttrin. play a protective role in skin inflammation, which implies a potential molecular target for treatment of inflammatory skin diseases.
     Objective
     Degenerative disc disease (DDD) is one of the most prevalent degenerative diseases in aged people in which process the intervertebral disc (IVD) undergoes extensive morphological and biomechanical changes which lead to decreased structural integrity, disc height and flexibility, and usually cause low back pain in the patients. PGRN is a growth factor which has multiple functions. Studies suggested that insufficiency of PGRN caused degenerative disease of nervous system and articular cartilage in both human and mouse. Recently, we reported that PGRN antagonized TNF-a through binding to TNF receptors and exhibited an anti-inflammatory function in inflammatory arthritis models. The present study aimed examining progranulin (PGRN) expression in intervertebral disc (IVD) under physiological and pathological degenerative conditions, defining the role of PGRN in IVD degeneration in aging, and elucidating the signaling pathways involved.
     Methods
     The expression of PGRN in IVD tissues from murine and human subjects were assayed using immunohistochemistry and western blotting. The degeneration of IVD samples from4-,6-and9-month old wildtype and PGRN-/-mice were analyzed by HE staining, Safranin O staining, aggrecan degradation with new-epitope antibody, TRAP staining and μCT. The expressions of genes associated with cartilage degeneration, osteoblastogenesis and osteoclastogenesis were analyzed, and NF-κB and wnt/β-catenin signaling pathways were also examined in the IVD samples from wildtype and PGRN-/-mice.
     Results
     PGRN was detectable in human and murine IVD, and its level was upregulated with aging. PGRN-/-mice exhibit accelerated formation of bony tissue in end plate and elevated activity of bone resorption in vertebra with aging. More severe destruction of cartilage was observed in IVD of PGRN-/-mice. The clinical score was significantly higher in PGRN-/-mice. Furthermore, deletion of PGRN resulted in altered expressions of the molecules known to be involved in cartilage degeneration, osteoblastogenesis, and osteoclastogenesis. Additionally, accelerated IVD degeneration is probably due to the enhanced NF-κB and wnt/β-catenin signaling seen in PGRN-defieient mice.
     Conclusion
     PGRN plays a critical role in homeostasis of IVD, and deficiency of PGRN leads to accelerated disc degeneration in aging, which implies a potential molecular target for prevention and treatment of disc degenerative diseases.
引文
1. Lin, G.L. and K.D. Hankenson, Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. Journal of cellular biochemistry,2011. 112(12):p.3491-501.
    2. Bandyopadhyay, A., et al., Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS genetics,2006.2(12):p. e216.
    3. Tsuji, K., et al., BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature genetics,2006.38(12):p. 1424-9.
    4. Liu, C.J. and X. Bosch, Progranulin:a growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther,2011.133(1):p.124-32.
    5. Liu, C.J., Progranulin:A promising therapeutic target for rheumatoid arthritis. FEBS Lett,2011. May 4(Epub ahead of print).
    6. Baker, M., et al., Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature,2006.442(7105):p.916-9.
    7. Cruts, M., et al., Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature,2006. 442(7105):p.920-4.
    8. Wils, H., et al., Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol, 2012.228(1):p.67-76.
    9. Bateman, A. and H.P. Bennett, The granulin gene family:from cancer to dementia. Bioessays,2009.31(11):p.1245-54.
    10. He, Z., et al., Progranulin is a mediator of the wound response. Nat Med, 2003.9(2):p.225-9.
    11. Guo, F., et al., Granulin-epithelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein. Arthritis Rheum,2010.62(7):p.2023-36.
    12. Xu, K., et al., Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyteproliferation. J Biol Chem,2007.282(15):p.11347-55.
    13. Bai, X.H., et al., ADAMTS-7, a direct target of PTHrP, adversely regulates endochondral bone growth by associating with and inactivating GEP growth factor. Mol Cell Biol,2009.29(15):p.4201-19.
    14. Feng, J.Q., et al., Granulin epithelin precursor:a bone morphogenic protein 2-inducible growth factor that activates Erkl/2 signaling and JunB transcription factor in chondrogenesis. FASEB J,2010.24(6):p.1879-92.
    15. Zhao, B., et al., TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med,2012. 209(2):p.319-34.
    16. Liu, C.J. and X. Bosch, Progranulin: A growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther, 2012. 133(1): p. 124-32.
    17. Tang, W., et al., The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic Against Inflammatory Arthritis in Mice. Science, 2011. 332(6028): p. 478-484.
    18. Wu, H. and R.M. Siegel, Progranulin Resolves Inflammation. Science, 2011. 332(6028): p. 427-428.
    19. Yin, F., et al., Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med, 2010. 207(1): p. 117-28.
    20. Kimelman-Bleich, N., et al., The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based hone formation in vivo. Biomaterials, 2009. 30(27): p. 4639-48.
    21. He, Y.X., et al., Impaired hone healing pattern in mice with ovariectomy-induced osteoporosis: A drill-hole defect model. Bone, 2011. 48(6): p. 1388-400.
    22. Shimono, K., et al., Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-gamma agonists. Nature medicine, 2011. 17(4): p. 454-60.
    23. Lin, E.A., et al., Prevention of atrophic nonunion by the systemic administration of parathyroid hormone (PTH1-34) in an experimental animal model. Journal of orthopaedic trauma, 2012. 26(12): p. 719-23.
    24. Garcia, P., et al., Development of a reliable non-union model in mice. J Surg Res, 2008. 147(1): p. 84-91.
    25. Zhu, P., M.T. Sweetwyne, and K.I). Hankenson, Pkcdelta Is Required for Jagged-1 Induction of hMSC Osteogenic Differentiation. Stem Cells, 2013.
    26. Yang, Q., et al., Inhibitory effects of iron on hone morphogenetic protein 2-induced osteoblastogenesis. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2011. 26(6): p. 1188-96.
    27. Holstein, J.H., et al., Krythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone. 2011.49(5): p. 1037-45.
    28. Shi, R.K., et al., NELL-1 promotes cartilage regeneration in an in vivo rabbit model. Tissue engineering. Part A, 2012. 18(3-4): p. 252-61.
    29. Siu, R.K., et al., Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue engineering. Part A, 2011. 17(7-8): p. 1123-35.
    30. Cha, B.H., et al., Cartilage tissue formation from dedifferentiated chondrocytes by codelivery of BMP-2 and SOX-9 genes encoding bicistronic vector. Cell transplantation, 2012.
    31. Ben-David, D., et al., Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix. Biomaterials, 2013. 34(12): p. 2902-10.
    32. Gerstenfeld, L.C., et al., Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs,2001.169(3):p.285-94.
    33. Takayanagi, H., et al., T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature,2000. 408(6812):p.600-5.
    34. Pacios, S., et al., Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. Faseb J,2012.26(4):p.1423-30.
    35. Pirih, F., et al., Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res,2012.27(2):p.309-18.
    36. Eguchi, Y., et al., Antitumor necrotic factor agent promotes BMP-2-induced ectopic bone formation. Journal of bone and mineral metabolism,2010.28(2): p.157-64.
    37. Ushiku, C., et al., Long bone fracture repair in mice harboring GFP reporters for cells within the osteoblastic lineage. J Orthop Res,2010.28(10):p. 1338-47.
    38. Colnot, C., Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res,2009.24(2):p.274-82.
    39. Kawanami, A., et al., Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun,2009. 386(3):p.477-82.
    40. Soung do, Y., et al., Runxl dose-dependently regulates endochondral ossification during skeletal development and fracture healing. J Bone Miner Res,2012.27(7):p.1585-97.
    41. Lu, C., et al., Cellular basis for age-related changes in fracture repair. J Orthop Res,2005.23(6):p.1300-7.
    42. Naik, A.A., et al., Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res,2009.24(2):p.251-64.
    43. Mi. M., et al., Chondrocyte BMP2 signaling plays an essential role in bone fracture healing. Gene,2013.512(2):p.211-8.
    44. Gerstenfeld, L.C., et al., Impaired fracture healing in the absence of TNF-alpha signaling:the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res,2003.18(9):p.1584-92.
    45. Wahl, E.C., et al., Direct bone formation during distraction osteogenesis does not require TNFalpha receptors and elevated serum TNFalpha fails to inhibit bone formation in TNFR1 deficient mice. Bone,2010.46(2):p.410-7.
    46. Liu, Y., et al., Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha. Nat Med,2011. 17(12):p.1594-601.
    47. Abu-Amer, Y., et al., Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest,1997. 100(6):p.1557-65.
    48. Zou, W., et al., Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem,2001.83(1):p.70-83.
    49. Roggia, C., et al., Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A,2001.98(24):p.13960-5.
    1. Rappersberger, K., et al., Pimecrolimus identifies a common genomic anti-inflammatory profile, is clinically highly effective in psoriasis and is well tolerated. The Journal of investigative dermatology,2002.119(4):p.876-87.
    2. Meingassner, J.G., et al., A novel anti-inflammatory drug, SDZ ASM 981, for the topical and oral treatment of skin diseases:in vivo pharmacology. The British journal of dermatology,1997.137(4):p.568-76.
    3. Nakamura, Y., et al., Critical role for mast cells in interleukin-1 beta-driven skin inflammation associated with an activating mutation in the nlrp3 protein. Immunity,2012.37(1):p.85-95.
    4. Kaur, S., et al., Comparative study of systemic inflammatory responses in psoriasis vulgaris and mild to moderate allergic contact dermatitis. Dermatology,2012.225(1):p.54-61.
    5. Fujii, Y. and T. Sengoku, Effects of the Janus Kinase Inhibitor CP-690550 (Tofacitinib) in a Rat Model of Oxazolone-Induced Chronic Dermatitis. Pharmacology,2013.91(3-4):p.207-213.
    6. Azam, P., et al., Targeting effector memory T cells with the small molecule Kvl.3 blocker PAP-1 suppresses allergic contact dermatitis. The Journal of investigative dermatology,2007.127(6):p.1419-29.
    7. Hyder, L.A., et al., TREM-1 as a Potential Therapeutic Target in Psoriasis. The Journal of investigative dermatology,2013.
    8. Colleran, A., et al., Deubiquitination of NF-kappaB by Ubiquitin-Specific Protease-7 promotes transcription. Proc Natl Acad Sci U S A,2013.110(2):p. 618-23.
    9. Papadopoulos, G., et al., Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. J Immunol, 2013.190(3):p.1148-57.
    10. Bachmann, F., et al., Safety and efficacy of the tumor necrosis factor antagonists. Seminars in cutaneous medicine and surgery,2010.29(1):p. 35-47.
    11. Furst, D.E., Development of TNF inhibitor therapies for the treatment of rheumatoid arthritis. Clinical and experimental rheumatology,2010.28(3 Suppl 59):p. S5-12.
    12. Guilloteau, K., et al., Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1 {alpha}, and TNF-{alpha} Recapitulates Some Features of Psoriasis. Journal of immunology,2010.
    13. He, Z., et al., Progranulin is a mediator of the wound response. Nat Med,2003. 9(2):p.225-9.
    14. Bateman, A. and H.P. Bennett, The granulin gene family:from cancer to dementia. BioEssays:news and reviews in molecular, cellular and developmental biology,2009.31(11):p.1245-54.
    15. Kessenbrock, K., et al., Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest, 2008. 118(7): p. 2438-47.
    16. Yin, F., et al., Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med, 2010. 207(1): p. 117-28.
    17. Liu, C.J., Progranulin: A promising therapeutic target for rheumatoid arthritis. FEBS Lett, 2011. May 4(Epub ahead of print).
    18. Tang, W., et al., The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic Against Inflammatory Arthritis in Mice. Science, 2011. 332(6028): p. 478-484.
    19. Zhu, J., et al., Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell, 2002. 111(6): p. 867-78.
    20. Liu, C.J. and X. Bosch, Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther, 2011. 133(1): p. 124-32.
    21. Guo, F., et al., Granulin-epithelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein. Arthritis Rheum, 2010. 62(7): p. 2023-36.
    22. Liu, C.J. and X. Bosch, Progranulin: A growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther, 2012. 133(1): p. 124-32.
    23. Wu, H. and R.M. Siegel, Progranulin Resolves Inflammation. Science, 2011. 332(6028): p. 427-428.
    24. Daniel, R., et al., Progranulin (acrogranin/PC cell-derived growth factor/granulin-cpithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Dev Dyn, 2003. 227(4): p. 593-9.
    25. Yasui, K., et al., Increased progranulin in the skin of amyotrophic lateral sclerosis: an immunohistochemical study. J Neurol Sci, 2011. 309(1-2): p. 110-4.
    26. Yeom, M., et al., Oral administration of glucosylceramidc ameliorates inflammatory dry-skin condition in chronic oxazolone-induced irritant contact dermatitis in the mouse ear. Journal of dermalological science, 2012. 67(2): p. 101-10.
    27. Man, W., el al., Topical herbal extract (Huangdang mixture) exhibits both preventive and therapeutic effects in murine acute irritant contact dermatitis. International journal of dermatology, 2011. 50(11): p. 1421-7.
    28. Jee, M.K., et al., Compensation of cATSCs-derived TGFbetal and ILK) expressions was effectively modulated atopic dermatitis. Cell death and differentiation, 2013. 4: p. e497.
    29. Orciani. M., et al., The mesenchymal stem cell profile in psoriasis. The British journal of dermatology, 2011. 165(3): p. 585-92.
    30. Orita, K., et al., Inducible nitric oxide synthase (iNOS) and alpha-melanocyte-stimulating hormones of iNOS origin play important roles in the allergic reactions of atopic dermatitis in mice. Experimental dermatology, 2011. 20(11): p. 911-4.
    31. Tang, W., et al., The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science,2011.332(6028):p. 478-84.
    32. Corsini, E., et al., Cyclosporin A exacerbates skin irritation induced by tributyltin by increasing nuclear factor kappa B activation. The Journal of investigative dermatology,2001.117(6):p.1627-34.
    33. Kaur, S., et al., Galvanic zinc-copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin. Archives of dermatological research,2011.303(8):p.551-62.
    34. Contreras-Jurado, C., et al., The thyroid hormone receptors as modulators of skin proliferation and inflammation. The Journal of biological chemistry,2011. 286(27):p.24079-88.
    35. He, Z. and A. Bateman, Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. Journal of molecular medicine,2003.81(10):p.600-12.
    36. He, Z., et al., Progranulin is a mediator of the wound response. Nature medicine,2003.9(2):p.225-9.
    37. Daniel, R., et al., Progranulin (acrogranin/PC cell-derived growth factor/granulin-epithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Developmental dynamics:an official publication of the American Association of Anatomists, 2003.227(4):p.593-9.
    38. Tanaka, A., et al., Serum progranulin levels are elevated in patients with systemic lupus erythematosus, reflecting disease activity. Arthritis Res Ther, 2012.14(6):p. R244.
    39. McFadden, J.P., et al., Why does allergic contact dermatitis exist? The British journal of dermatology,2013.
    40. Fuchs, B.S. and S. Hadi, Use of etanercept in the treatment of psoriasis and psoriatic arthritis. Reviews on recent clinical trials,2006.1(3):p.259-63.
    41. Vamvouris, T. and S. Hadi, A review of the treatment of psoriasis with infliximab. Reviews on recent clinical trials,2006.1(3):p.201-5.
    42. Hodulik, S. and S. Hadi, Efalizumab:a biological agent for the treatment of psoriasis. Reviews on recent clinical trials,2006.1(2):p.165-8.
    43. Verhelst, K., I. Carpentier, and R. Beyaert, Regulation of TNF-induced NF-kappaB activation by different cytoplasmic ubiquitination events. Cytokine & growth factor reviews,2011.22(5-6):p.277-86.
    44. Shih, V.F., et al., A single NFkappaB system for both canonical and non-canonical signaling. Cell Res,2011.21(1):p.86-102.
    45. Jordan, C.T., et al., Rare and common variants in CARD 14, encoding an epidermal regulator of NF-kappaB, in psoriasis. American journal of human genetics,2012.90(5):p.796-808.
    46. Zhou, J., et al., A20-binding inhibitor of NF-kappaB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein beta activation and protects from inflammatory disease. Proceedings of the National Academy of Sciences of the United States of America,2011.108(44):p. E998-1006.
    47. Nam, N.H., Naturally occurring NF-kappaB inhibitors. Mini reviews in medicinal chemistry,2006.6(8):p.945-51.
    48. Orita, K., et al.. Inducible nitric oxide synthase (iNOS) and alpha-melanocyte-stimulating hormones of iNOS origin play important roles in the allergic reactions of atopic dermatitis in mice. Bxp Dermatol,2011, 20(11):p.911-4.
    49. Choi, S.E., et al., Effect of topical application and intraperitoneal injection of oregonin on atopic dermatitis in NC/Nga mice. Exp Dermatol,2010.19(8):p. e37-43.
    50. Honda, T., Y. Miyachi, and K. Kabashima, Regulatory T cells in cutaneous immune responses. Journal of dermatological science,2011.63(2):p.75-82.
    51. Kimber, I., et al., Immunoregulation of skin sensitization and regulatory T cells. Contact dermatitis,2012.67(4):p.179-83.
    1. Cheung, K.M., The relationship between disc degeneration, low back pain, and human pain genetics. Spine J, 2010. 10(11): p. 958-60.
    2. Livshits, G., et al., Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK Twin Spine Study. Ann Rheum Dis, 2011. 70(10): p. 1740-5.
    3. Pye, S.R., et al., Radiographic features of lumbar disc degeneration and hone mineral density in men and women. Ann Rheum Dis, 2006. 65(2): p. 234-8.
    4. Roughley, P.J., Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976), 2004. 29(23): p. 2691-9.
    5. Liu, C.J. and X. Bosch, Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther, 2011. 133(1): p. 124-32.
    6. Liu, C.J., Progranulin: A promising therapeutic target for rheumatoid arthritis. FEBS Lett, 2011. May 4(Epub ahead of print).
    7. He, Z., et al., Progranulin is a mediator of the wound response. Nat Med, 2003. 9(2): p. 225-9.
    8. Bateman, A. and H.P. Bennett, The granulin gene family: from cancer to dementia. Bioessays, 2009. 31(11): p. 1245-54.
    9. Kessenbrock, K., et al., Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest, 2008. 118(7): p. 2438-47.
    10. Yin, F., et al., Exaggerated inflammation, impaired host defense, and newopathology in progranulin-deficient mice. J Exp Med, 2010. 207(1): p. 117-28.
    11. Tang, W., et al., The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science, 2011. 332(6028): p. 478-84.
    12. Zhu, J., et al., Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell, 2002. 111(6): p. 867-78.
    13. Baker. M., et al., Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 2006. 442(7105): p. 916-9.
    14. Cruts, M., et al., Null mutations in progranulin cause ubiqyitin-posilive frontotemporal dementia linked to chromosome 17q21. Nature, 2006. 442(7105): p. 920-4.
    15. Wils, H., et al., Cellular ageing, increased mortality and VTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol, 2012. 228(1): p. 67-76.
    16. Guo, F., et al., Granulin-epilhelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligameric matrix protein. Arthritis Rheum, 2010. 62(7): p. 2023-36.
    17. Xu, K., et al., Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (CEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem,2007.282(15):p.11347-55.
    18. Bai, X.H., et al., ADAMTS-7, a direct target of PTHrP, adversely regulates endochondral bone growth by associating with and inactivating GEP growth factor. Mol Cell Biol,2009.29(15):p.4201-19.
    19. Feng, J.Q., et al., Granulin epithelin precursor:a bone morphogenic protein 2-inducible growth factor that activates Erkl/2 signaling and JunB transcription factor in chondrogenesis. Faseb J,2010.24(6):p.1879-92.
    20. Wu, H. and R.M. Siegel, Progranulin Resolves Inflammation. Science,2011. 332(6028):p.427-428.
    21.!!! INVALID CITATION!!!
    22. Gruber, H.E., et al., Constitutive expression of cathepsin K in the human intervertebral disc:new insight into disc extracellular matrix remodeling via cathepsin K and receptor activator of nuclear factor-kappaB ligand. Arthritis research & therapy,2011.13(4):p. R140.
    23. Fukuta, S., et al., Abundance of calpain and aggrecan-cleavage products of calpain in degenerated human intervertebral discs. Osteoarthritis and cartilage /OARS, Osteoarthritis Research Society,2011.19(10):p.1254-62.
    24. Boos, N., et al., Classification of age-related changes in lumbar intervertebral discs:2002 Volvo Award in basic science. Spine (Phila Pa 1976),2002.27(23): p.2631-44.
    25. Nasto, L.A., et al., Issls Prize Winner:Inhibition of Nf-kb Activity Ameliorates Age-associated Disc Degeneration in a Mouse Model of Accelerated Aging. Spine (Phila Pa 1976),2012.
    26. Poveda, L., et al., Peroxynitrite induces gene expression in intervertebral disc cells. Spine (Phila Pa 1976),2009.34(11):p.1127-33.
    27. Ellman, M.B., et al., Toll-like receptor adaptor signaling molecule MyD88 on intervertebral disk homeostasis:in vitro, ex vivo studies. Gene,2012.505(2): p.283-90.
    28. Wang, M., et al., Conditional activation of beta-catenin signaling leads to severe defects in intervertebral disc tissue. Arthritis Rheum,2012.
    29. Haynes, K.R., et al., Excessive bone formation in a mouse model of ankylosing spondylitis is associated with decreases in Wnt pathway inhibitors. Arthritis research & therapy,2012.14(6):p. R253.
    30. Rosen, E.Y., et al., Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling. Neuron, 2011.71(6):p.1030-42.
    31. Korade, Z. and K. Mimics, Wnt signaling as a potential therapeutic target for frontotemporal dementia. Neuron,2011.71(6):p.955-7.
    32. Kim, J.S., et al., Lactoferricin mediates anabolic and anti-catabolic effects in the intervertebral disc. J Cell Physiol,2012.227(4):p.1512-20.
    33. Yu, H. and Y. Zhu, Expression of ADAMTS-7 and ADAMTS-12 in the nucleus pulposus during degeneration of rat caudal intervetebral disc. J Vet Med Sci, 2012.74(1):p.9-15.
    34. Illien-Junger, S., et al., The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine (Phila Pa 1976), 2010. 35(19): p. 1744-52.
    35. Liang, Q.Q., et al., Prolonged upright posture induces degenerative changes in intervertebral discs of rat cervical spine. Spine (Phila Pa 1976), 2011. 36(1): p. E14-9.
    36. Lotz, M. and R.F. Loeser, Effects of aging on articular cartilage homeostasis. Bone, 2012. 51(2): p. 241-8.
    37. Miller, J.A., C. Schmatz, and A.B. Schultz, Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine (Phila Pa 1976), 1988. 13(2): p. 173-8.
    38. Urban, J.P., S. Smith, and J.C. Fairbank, Nutrition of the intervertebral disc. Spine (Phila Pa 1976), 2004. 29(23): p. 2700-9.
    39. Holm, S., et al., Experimental disc degeneration due to endplate injury. J Spinal Disord Tech, 2004. 17(1): p. 64-71.
    40. Keffer, J., et al., Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. Embo J, 1991. 10(13): p. 4025-31.
    41. Wang, J., et al., TNF-alpha and IL-lbeta promote a disintegrin-like and melalloprotease with thrombospondin type Ⅰ motif-5-medialed aggrecan degradation through syndecan-4 in intervertebral disc. J Biol Chem, 2011. 286(46): p. 39738-49.
    42. Sethi, G., et al.. Targeting TNF for Treatment of Cancer and Auloimmunity. Adv Exp Med Biol, 2009. 647: p. 37-51.
    43. Taylor, P.C. and M. Feldmann, Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nature reviews. Rheumatology, 2009. 5(10): p. 578-82.
    44. Papuga, M.O., et al., TNF is required for the induction hut not the maintenance of compression-induced BMF signals in murine tail vertebrae: limitations of anti-TNF therapy for degenerative disc disease. J Orthop Res. 2011. 29(9): p. 1367-74.
    45. Sinclair, S.M., et al., Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist. Spine (Phila Pa 1976), 2011.36(15): p. 1190-6.
    46. Ellman, MB., et al., The pathophysiologic role of the protein kinase Cdelta pathway in the interverlebral discs of rabbits and mice: in vitro, ex vivo, and in vivo studies. Arthritis Rheum. 2012. 64(6): p. 1950-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700