用户名: 密码: 验证码:
日照下混凝土箱梁温度场和温度应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
置于外界环境中的桥梁受到外界的影响而产生的温度效应,通常难以准确计算而被简化考虑。现实中许多桥梁事故都被证实与温度效应考虑不周有关,目前各国设计规范关于混凝土箱梁的温差荷载规定不尽一致。本文研究了混凝土箱梁由太阳辐射引起的温度场和温度应力。
     本文将太阳辐射对箱梁温度场的影响做了详细的研究,把太阳辐射分为太阳直射、太阳散射和地面反射三种方式,并考虑翼缘对腹板的阴影作用。在本文的研究中具体的工作和成果有:
     1.通过对湖南省潭邵高速公路水府庙大桥温度场进行实测,用曲线拟合的方法获得了箱梁竖向温差曲线。
     2.利用差分法反算了热力学参数。
     3.根据热传导有限单元法原理,使用有限元软件ANSYS建立了二维分析模型,并用APDL编制了宏文件来施加温度荷载和求解,所得计算结果与现场实测的数据进行了比较。
     4.分别用平面梁模型和空间模型计算了箱梁温度应力并进行了比较。
     5.进行了设计参数研究,包括箱梁翼缘悬臂长度、腹板高度和桥梁轴线方位角对温度场和温度应力的影响,得到了最大横向温差与(腹板高度/翼缘悬臂长度)的曲线图,为设计工作提供了参考。
     试验和计算分析都表明,由太阳辐射引起的混凝土箱梁截面上的温度为非线性分布,拟合得到的竖向温差曲线可以用指数函数T_y=23e~(-6y)和底板附近20cm内线性温差2℃来表示。由于非线性温差而产生的腹板拉应力很大,为了防止混凝土裂缝的发生,设计中必须重视温度效应带来的影响。
Temperature effects that arise in bridges exposed to the environmental variables are not easily estimated, and often considered in a simplified way. It is verified that many bridge accidents were caused by temperature effects which should have be took into account carefully, now the design codes of different country on temperature load in concrete box girder have different provisions. The temperature field and temperature stress in concrete box girder bridges that caused by the solar radiation are studied in this thesis.
    The effect of solar radiation on temperature field in concrete box girder is researched in detail in the thesis which considers that the solar radiation is made up of three component: beam radiation, diffuse radiation and solar radiation diffusely reflected from the ground. The shadow effect of cantilever wing on web is also advised in this thesis. Some work and achievements in the research as follow:
    1. Based on the measurements of temperature field in shuifumiao bridge of Tan-Shao Expressway in Hunan province, the curve of vertical difference in temperature is obtained with the way of curve fit.
    2. Different method is used for back-calculating the thermodynamics parameter.
    3. According to the thermal conduct theory and Finite Element Method(FEM), the analytical model in two-dimension is build, loaded and solved with the help of macro file compiled in APDL and FEM software ANSYS. The result is compared with the data obtained in site measurements.
    4. The temperature stress in box girder is calculated in two-dimension model and three-dimension model respectively, two results are compared each other too.
    5. Parametric studies are conducting in order to find the influence of various parameters such as cantilever wing length, web depth and orientation of bridge axis on the temperature field and temperature stress. The curse between maximal horizontal difference in temperature and (web depth/cantilever wing length) is made, which may provide reference in design.
    Both test and analytical result show that: the temperature distribution in concrete box girder section caused by the solar radiation is nonlinear, the curse of vertical difference in temperature obtained in the way of curse fit can be expressed
    
    
    as exponential function as Ty =23e-6y and the linear difference in temperature 2癈 at the range of 20cm to the bottom slab. The tensile stress resulting from nonlinear difference in temperature in web is strong, so the designer should pay attention to the response of temperature effect in order to protect the concrete from cracking in design.
引文
[1] 魏光坪.单室预应力混凝土箱梁温度场及温度应力研究.西南交通大学学报,1989(4):90-97
    [2] 王文涛.刚构—连续组合梁桥.第1版.北京:人民交通出版社,1997,39-40,47-51
    [3] 刘兴法.混凝土结构的温度应力分析.第1版.北京:人民交通出版社,1991,10-120
    [4] 中华人民共和国交通部标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023-85).第1版.北京:人民交通出版社,2001,120-121
    [5] 中华人民共和国铁道部标准.铁路桥涵设计规范(TBJ2-85).第一版.北京:铁道出版社,1985,101-121
    [6] 贾琳.太阳辐射作用下混凝土箱梁的温度分布及温度应力研究:[东南大学硕士论文].南京:东南大学,2001,2-45
    [7] Emerson, M. Bridge temperatures estimated from the shade temperature. Laboratory Report 696, Transportation Road Research Laboratory, Crowthore, 1976:2-32
    [8] Emerson, M. Thermal movements of concrete bridges: field measurements and methods of prediction. Supplementary Report 747, Transportation Road Research Laboratory, Crowthore, 1982:5-10
    [9] Ramezankhani, M. and Waldron, P. Segmental construction of bridges:differential temperature effects in the Cogan Spur Viaduct. Report No.UBCE/C/91/10, University of Bristol, Department of Civil Engineering, 1991,11:1-8
    [10] Shiu, K.N. and Tabatabai, H. Measured thermal response of concrete box-girder bridge. Transportation Research Record 1460 National Research Council, Washington,D.C., 1993:94-105
    [11] Emanuel, J.H. and Hulsely, J.L. Temperature distributions in composite -bridges. Journal of Structural Division, ASCE, 1978,104(1):65-78
    [12] Berwanger, C. Transient thermal behavior of composite bridge, Journal of Structural Engineering, ASCE, 1983,109(10):2325-2339
    [13] Elbadry, M. and Ghali, A. Temperature viriations in concrete bridges, Journal of Structural Engineering, ASCE, 1983, 109(10):2355-2374
    
    
    [14] Elbadry, M. and Ghali, A. Nonlinear temperature distribution and its effects on bridge, LABSE Periodica, No.P66/83, International Association for Bridge and Structural Engineering, Zurich, 1983, 8:169-191
    [15] Moorty, S. and Roeder, C.W. Temperature dependent bridge movements, Journal of Structural Engineering, ASCE, 1992, 118(4): 1090-1105
    [16] Mirambell, E. Design temperature differences for concrete bridges, Proceedings of the Institution of Civil Engineers; Structural & Buildings, 1997, 122(8):281-292
    [17] Branco, F.A. and Mendes, P.A. Thermal actions for concrete bridge design, Journal of Structural Engineering, ASCE, 1993, 119(8):2313-2331
    [18] Saetta, A. Scotta, R. and Vitaliani, R. Sress analysis of concrete structures subjected to variable thermal loads, Journal of Structural Engineering, ASCE, 1995,121(3):446-457
    [19] Elbadry, M. and Ghali, A. Thermal stresses and cracking of concrete bridges, ACI Journal, November-December, 1986:1001-1009
    [20] Elbadry, M. and Ghali, A. Control of thermal cracking of concrete structures, ACI Journal, 1995,7:435-450
    [21] Mirambell, E. and Costa, J. Thermal stresses in composite bridges according to BS5400 and EC1, Proceedings of the Institution of Civil Engineers; Structural & Buildings,1997, 122(8):281-292
    [22] 刘兴法.预应力混凝土箱梁温度应力计算方法.土木工程学报,1982,19(1):44-54
    [23] 盛洪飞.混凝土箱形截面桥梁日照温度应力简化计算.哈尔滨建筑工程学院学报,1992,25(1):78-84
    [24] 屈兆均.用有限单元法解温度应力的计算原理.桥梁建设,1982(3):25-49
    [25] 许晓峰、陈斌译.混凝土箱型梁桥的温度和应力分布.国外桥梁,1994(2):109-118
    [26] 滕家俊.浪凝土桥梁温度分析计算方法(上).东北公路,1983,17(3):25-41
    [27] 滕家俊.混凝土桥梁温度分析计算方法(下).东北公路,1983,17(4):69-82
    [28] 孙菊芳.有限元法及其应用.第一版.北京:北京航空航天大学出版社,1990,143-202
    [29] 康为江.钢筋混凝土箱梁日照温度效应研究:[湖南大学硕士论文].长沙:湖南大学,2000,34-54
    [30] F.凯尔别克.太阳辐射对桥梁结构的影响.刘兴法等译.第1版.北京:中国铁道出版社,1981,5-45
    
    
    [31] 管敏鑫.混凝土箱梁温度场、温度应力和温度位移的计算方法.桥梁建设,1980(1):40-49
    [32] 范立础.预应力混凝土连续梁桥.第1版.北京:人民交通出版社,2001,253-259
    [33] 教育学院系统地理教材协编组.地球概论.第1版.北京:海洋出版社,1982,40-64
    [34] 韩先科.斜拉桥桥塔温度场的有限元分析及其影响评价:[哈尔滨工业大学硕士论文].哈尔滨:哈尔滨工业大学,2002,35-50
    [35] Clark, J.H. Evaluation of thermal stresses in a concrete box girder bridge, Proc.Instn Civ.Engrs, Part 2, 1989, 87(9):415-428
    [36] 国家技术监督局、建设部联合发布.民用建筑热工设计规范(GB50176-93).第一版.北京:中国建筑工业出版社,1999,89-112
    [37] 吴相豪,吴中如.混凝土热力学参数反分析模型.水力发电,2001(2):20-22
    [38] 谭建国.使用ANSYS6.0进行有限元分析.第1版.北京:北京大学出版社,2002年,278-281
    [39] Saeed Moaveni.有限元—ANSYS理论与应用.欧阳宇,王崧等译.第1版.北京:电子工业出版社,2003,212-246
    [40] 龚曙光.ANSYS基础应用及范例解释.第1版.北京:机械工业出版社,2003,401-421
    [41] 谭浩强,田淑清.FORTRAN语言程序设计.第1版.北京:高等教育出版社,1986,102-121
    [42] 姜全德,蒋泓.钢筋混凝土箱形梁桥日照温度场和温度应力平面有限元数值分析方法.桥梁建设,1990(3):34-48
    [43] 项海帆.高等桥梁结构理论.第1版.北京:人民交通出版社,2001,117-127
    [44] 张来仪,景瑞.结构力学.第一版.北京:中国建筑工业出版社,1997,135-160
    [45] 徐芝纶.弹性力学.第三版.北京:高等教育出版社,1990,194-208
    [46] 王解军,李全林,卢向华.混凝土箱梁桥施工控制中的温度效应.公路,2003(1):129-131
    [47] 杨文华.预应力混凝土连续梁桥腹板抗裂性研究:[湖南大学硕士论文].长沙:湖南大学,1999,42-51
    [48] 王兰生.凝土桥梁设计中的温度效应.国外公路,1995,15(6):11-16
    [49] 竹内洋一郎.热应力.郭廷玮,李安定译.第一版.北京:科学出版社,1977,1-21
    [50] 葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究.中国公路学报,
    
    
    [50] 葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究.中国公路学报,1996,9(2):76-83
    [51] 王勖成,邵敏.有限单元法基本理论和数值方法.第2版.北京:清华大学出版社,1997,421-442
    [52] 何雄君,文武松,胡志坚.钢管混凝土拱桥温度荷载分析.桥梁建设,2000(1):17-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700