用户名: 密码: 验证码:
杂色曲霉素对小鼠免疫细胞的细胞因子影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:杂色曲霉素(sterigmatocystin, ST)是致癌性的真菌毒素,是杂色曲霉(Aspergillus versicolor)、构巢曲霉(Aspergillus nidulans)等真菌产生的毒性代谢产物。在粮食和饲料中的污染非常普遍,甚至在潮湿居所的地毯灰尘中也可检出杂色曲霉素的污染。研究表明,在我国食管癌高发区居民饮食中ST也是主要污染霉菌毒素之一。
     众所周知,恶性肿瘤的发生除致癌物的直接作用外,机体的免疫状态也发挥着非常重要的作用。近年来,一些真菌毒素对人或动物的免疫机能,特别是对细胞因子分泌和表达的影响引起了学术界的关注。由于细胞因子在免疫细胞间充当信号联络作用,是免疫细胞在功能上相互联络的"语言"之一。通过这种"语言",整个免疫系统才能协调一致。因此,研究外周血单个核细胞及腹腔巨噬细胞所产生的细胞因子的作用是揭示免疫应答本质的一种重要手段。
     目前国内外有关ST的研究多侧重于产毒的分子机制、污染现状和致癌性研究方面,而有关ST对机体免疫机能影响的研究较少。本研究组既往对ST的免疫调节作用进行了一系列的研究,研究结果表明ST可以抑制体外培养的小鼠腹腔巨噬细胞IL-12的表达与分泌;可以诱导或抑制小鼠脾细胞IL-2、IFN-γ和IL-4的表达与分泌;并且ST还可以对体外培养的人外周血单个核细胞(human peripheral bloodmononuclear cells, HPBMc)培养上清中IL-2的分泌有一定抑制作用,提示ST对机体的免疫功能具有一定的影响。但是,上述研究均为体外分离培养免疫细胞进行的研究,从动物整体水平上的研究尚很少。因此,本研究采用半定量RT-PCR方法探讨了腹腔注射ST对小鼠外周血单个核细胞和小鼠腹腔巨噬细胞的TNF-α、IL-6和IL-12在mRNA水平的影响,并用ELISA方法研究ST对小鼠血清中TNF-α及IL-6含量的影响,旨在从免疫角度探讨我国食管癌高发区粮食中常见优势污染霉菌毒素-ST对机体免疫系统的可能影响,揭示ST的暴露在我国食管癌高发区肿瘤发生发展中的可能作用。
     方法:
     1实验分组及动物处理
     选用健康雄性BALB/c小鼠96只,随机分为3组,分别为ST处理组、溶剂对照组和对照组。按照处死时间的不同,又将上述各组分为2h、6h、12h和24h四组。各ST处理组小鼠均经腹腔单次注射ST 3000μg/kg,溶剂对照组和对照组动物分别腹腔注射同等容量的溶剂(DMSO生理盐水溶液)和生理盐水。
     2小鼠外周血单个核细胞的分离
     小鼠摘眼球取血,用3.2%柠檬酸三钠(Na_3C_8H_5O_7.2H_2O)抗凝,采用聚蔗糖-泛影葡胺密度梯度离心法分离小鼠外周血单个核细胞。
     3小鼠血清的制备
     小鼠摘眼球取血,待血凝固后离心取上清,-80℃保存备用。
     4小鼠腹腔巨噬细胞的分离
     将小鼠眼球放血处死后,浸泡于75%酒精,用10 ml冰冷的无血清RPMI-1640培养液冲洗腹腔,无菌收集腹腔渗出细胞。计数细胞后,按5×106cells/mL接种于含105U/L青霉素、100mg/L链霉素的RPMI-1640培养液中,37℃、5% CO_2培养2小时以使巨噬细胞贴壁。
     5细胞总RNA的提取、鉴定及定量
     采用异硫氰酸胍一步法提取细胞总RNA。1%琼脂糖电泳鉴定其完整性。紫外分光光度计进行定量。
     6 RT-PCR检测细胞因子mRNA的表达
     检测ST在不同处理时间对小鼠外周血单个核细胞及腹腔巨噬细胞TNF-α、IL-6和IL-12 mRNA表达的影响。采用凝胶分析软件(BIO-LD)对凝胶进行定量,各组以目的基因与内参照基因GAPDH量的比值表示目的基因相对表达量。
     7 ELISA检测血清中细胞因子的水平
     采用晶美生物工程(北京)有限公司的小鼠TNF-α、IL-6定量试剂盒,检测ST处理不同时间对小鼠外周血中TNF-α和IL-6水平的影响。
     8统计
     采用SPSS12.0软件进行相关分析与单因素方差分析(analysis of variance, ANOVA),数据用x±s表示。
     结果:
     一ST对小鼠外周血单个核细胞TNF-α、IL-6和IL-12 mRNA表达的影响
     1 ST对小鼠外周血单个核细胞TNF-αmRNA表达的影响
     RT-PCR产物经1.5%琼脂糖凝胶电泳及定量分析表明,与生理盐水对照组相比,各溶剂对照组小鼠外周血单个核细胞TNF-αmRNA相对表达量无明显不同。ST 2h、6h、12h和24h处理组TNF-αmRNA相对表达量分别为0.28±0.04,0.16±0.04,0.21±0.06和0.22±0.05,均明显低于其对应的溶剂对照组(0.38±0.03,0.41±0.03,0.42±0.05和0.37±0.06,P<0.01),其中以ST 6h处理组TNF-αmRNA的表达降低最明显(P<0.05)。
     2 ST对小鼠外周血单个核细胞IL-6 mRNA表达的影响
     半定量RT-PCR检测小鼠外周血单个核细胞IL-6 mRNA水平的结果表明,IL-6 mRNA的表达在各生理盐水对照组与溶剂对照组细胞之间无明显差异。而ST处理组与其相应的溶剂对照组比较IL-6 mRNA的表达均有一定差异,随ST处理时间不同对IL-6 mRNA的表达影响也不同。ST 2h、6h处理组IL-6 mRNA的相对表达量(0.75±0.09,1.38±0.20)均高于溶剂对照组(0.54±0.13,0.48±0.08,P<0.01)。但ST 12h、24h处理组表达呈降低趋势,ST 24h处理组的相对表达量为0.25±0.05,明显低于相应的溶剂对照组(0.55±0.09,P<0.01)。
     3 ST对小鼠外周血单个核细胞IL-12 mRNA表达的影响
     与生理盐水对照组相比,各溶剂对照组细胞IL-12p35 mRNA相对表达量无明显不同。ST 2h、6h、12h和24h处理组IL-12p35 mRNA的相对表达量分别为0.33±0.06,0.29±0.07,0.30±0.04和0.35±0.05,均明显低于相应溶剂对照组(0.66±0.10,0.69±0.13,0.71±0.05,0.73±0.16,P<0.01)。但在ST处理组之间其表达无明显改变。
     在空白对照组、溶剂对照组、ST处理组均未检测到小鼠外周血单个核细胞IL-12p40 mRNA的表达。
     二ST对小鼠外周血血清中TNF-α和IL-6水平的影响
     1 ST对小鼠血清中TNF-α水平的影响
     ELISA检测小鼠血清中TNF-α水平的结果表明,ST2h、6h、12h、24h处理组与相应的溶剂对照组的TNF-α水平{(11.43±0.60)、(12.17±1.04)、(11.69±1.53)、(12.43±1.40)pg/ml}相比,TNF-α水平均明显降低(P<0.01)。ST 2h和6h处理组TNF-α血清水平分别为(9.14±0.58)pg/ml和(8.57±0.57)pg/ml,而在ST 12h和24h处理组均未检测到TNF-α。ST处理组小鼠血清中TNF-α水平,随时间的延长而逐渐降低,二者呈负相关(r = -0.905, P<0.01)。
     2 ST对小鼠血清中IL-6水平的影响
     ELISA检测小鼠血清中IL-6水平的结果表明,ST2h、6h、12h、24h处理组与相应的溶剂对照组{(10.63±1.58)、(11.63±1.52)、(12.25±1.26)、(10.90±1.14)pg/ml}相比,IL-6水平均明显降低(P<0.01)。在ST 2h和6h处理组IL-6的水平分别为(7.32±1.10) pg/ml和(7.00±1.00) pg/ml,ST12h和24h处理组均未检测到IL-6蛋白的分泌。ST处理组小鼠血清中IL-6水平随时间的延长而逐渐降低(r = -0.933,P<0.01)。
     三ST对小鼠腹腔巨噬细胞TNF-α、IL-6及IL-12 mRNA表达的影响
     1 ST对小鼠腹腔巨噬细胞TNF-αmRNA表达的影响
     RT-PCR产物经1.5%琼脂糖凝胶电泳及定量分析表明,各溶剂对照组的小鼠腹腔巨噬细胞TNF-αmRNA的表达与生理盐水对照组相比无差异。ST 2h、6h、12h、24h处理组TNF-αmRNA的相对表达量依次为0.37±0.08,0.34±0.06,0.15±0.01 , 0.13±0.03 ,均明显低于相应的溶剂对照组(0.51±0.06,0.52±0.04,0.54±0.10,0.53±0.10,P<0.05)。ST处理组小鼠腹腔巨噬细胞TNF-αmRNA的表达随时间的延长逐渐降低(r = -0.833, P<0.01)。
     2 ST对小鼠腹腔巨噬细胞IL-6 mRNA表达的影响
     与生理盐水对照组相比,各溶剂对照组细胞IL-6 mRNA相对表达量无明显改变。不同时间ST处理组小鼠腹腔巨噬细胞IL-6 mRNA的相对表达量均比相应的溶剂对照组显著降低(P< 0.01),但各ST处理组间IL-6 mRNA相对表达量无统计学差异。
     3 ST对小鼠腹腔巨噬细胞IL-12 mRNA表达的影响
     IL-12p35 mRNA相对表达量在溶剂对照组与生理盐水对照组之间没有明显变化。各ST处理组小鼠腹腔巨噬细胞IL-12p35 mRNA的相对表达量均较其相应的溶剂对照组显著降低。
     在空白对照组、溶剂对照组、ST处理组均未检测到小鼠腹腔巨噬细胞IL-12p40 mRNA的表达。
     结论:
     1单次给予小鼠腹腔注射ST 3000ug/kg后,在2-24h范围内ST对小鼠外周血单个核细胞TNF-αmRNA的表达主要为抑制作用,其中以6h处理组的抑制最为显著。
     2 ST对小鼠外周血单个核细胞IL-6 mRNA表达的影响随处理时间的不同而不同,在处理2h和6h,ST对IL-6 mRNA的表达具有一定的诱导作用,而随着ST处理时间延长至24h,表现为明显的抑制作用。
     3 ST可以显著抑制小鼠外周血单个核细胞IL-12p35 mRNA表达。
     4 ST可以降低小鼠外周血血清中TNF-α及IL-6的水平,且作用随时间的延长而加强。
     5 ST处理可以抑制小鼠腹腔巨噬细胞TNF-α、IL-6及IL-12p35 mRNA的表达,其中ST对TNF-αmRNA的抑制作用随时间的延长而加强。
     6本研究结果提示,ST除其致癌性外,ST还可能通过细胞因子的改变对机体免疫系统产生不利影响。
Objective: Sterigmatocystin (ST), being the secondary metabolite of Aspergillus verdicolor and Aspergillus nidulans etc, is a carcinogenesis mycotoxin. Studies show that ST is one of the most common seen mycotoxin contaminanted in grain all over the world. It could be detected even in the carpet dust from damp dwellings. Works in China have revealed that ST has been one of the predominating mycotoxins in the grains and foodstuffs in the high incidence area of esophageal cancer since 1970s.
     There has been growing concern regarding on the effects of mycotoxins on immunological function, especially on the expression and secretion of some cytokines. Cytokines act as a kind of“language”in the signal communication among the immune cells and in the regulation of immune response. Thus, study of the cytokines of peripheral blood mononuclear cells and peritoneal macrophages is of great importance in the study of immune function.
     Up to now, the studies on ST have been mainly focused on the mechanism of toxin-producing, contamination status and carcinogenic effect, few works involved in the putative effects of ST on immune function. Our preliminary study showed that ST could not only inhibit the secretion of IL-12 of murine peritoneal macrophage cells and the secretion of IL-2 of human peripheral blood mononuclear cells (HPBMc), but also could induce or inhibit the expression of IL-2, IFN-γand IL-4 of murine spleen cells in vitro. All these studies showed that ST has some effects on the immune function.
     The previous researches were carried out in vitro. Few studies about the effect of ST on immune cells in vivo were seen up to now. The effects of ST on the expression of TNF-α, IL-6 and IL-12 mRNA of the peripheral blood mononuclear cells and the murine peritoneal macrophage cells, and the effects of ST on the protein level of TNF-αand IL-6 in the serum in BALB/c mice after single injection intraperitoneally were studied with RT-PCR and ELISA method respectivly this study. The aim of this study is to further explore the effects of ST on immune cells and reveal the putative roles of ST contamination in the high incidence area of esophageal cancer in our country.
     Methods
     1 Experimental animal and treatment
     Ninety six male BALB/c mice were randomly divided into three groups: ST treatment group, solvent control group and saline control group. Mice in the three groups were injected intraperitoneally with ST (3000ug/kg), DMSO dilution and normal saline (all in same volume) respectively at the beginning of the experiment. The mice in each group were respectively sacrificed 2h, 6h, 12h and 24h after ST treatment.
     2 Isolation of the peripheral blood mononuclear cells
     The blood was collected in the sterile eppendorf containing Na_3C_8H_5O_7.2H_2O for anticoagulation. The peripheral blood mononuclear cells were isolated from the blood by Ficolly-Hypaque density gradient centrifugation.
     3 Isolation of the serum
     The blood was collected in the sterile eppendorf and then centrifuged after clotting. The supernatant was harvested and stored at -80℃.
     4 Culture of the murine peritoneal macrophage cells
     Following enucleation of the eyeball, BALB/c mice were washed in 75% ethanol. Irrigation of peritoneal cavity was performed with 10ml ice-cold in incomplete RPMI-1640. Emigrated cell in abdominal cavity were counted and adjusted to 5×10~6 cells/ml in RPMI-1640 culture medium containing 10% fetal calf serum, streptomycin (100ug/ml), penicillin (100U). Macrophage cells were allowed to adhere for 2h in 37℃5%CO_2.
     5 Abstraction and quantitation of the total RNA
     The total RNA was abstracted by single-step method with guanidinium isothiocyanate. The integrity of the total RNA was identfied at 90V on 1% agarose gels. The UV Spectro- photometer was used for the quantitation of the total RNA.
     6 The expression of cytokine mRNA detected by RT-PCR
     The effects of ST on the expression of TNF-α, IL-6 and IL-12 of the peripheral blood mononuclear cells and the murine peritoneal macrophage cells were determined with RT–PCR method. The relative cytokines expression was calculated as the ratio between the density of cytokines and that of GAPDH by BIO-LD densitometric image analyzer.
     7 The serum level of cytokines detected by ELISA
     TNF-αand IL-6 ELISA detection kits made by Jingmei Biotechnology Company Limited was applied to determine the effect of ST on the level of TNF-αand IL-6 in the serum.
     8 Statistics
     Data from these studies were analyzed by one-way analysis of variance (ANOVA) and bivariate correlation. The SPSS 12.0 was employed for all calculations. The results were expressed as means±SD.
     Results
     1 The effects of ST on the expression of TNF-α, IL-6 and IL-12 mRNA in the peripheral blood mononuclear cells (PBMC) in vivo
     1.1 The effects of ST on the expression of TNF-αmRNA in the peripheral blood mononuclear cells
     RT-PCR products were detected by 1.5% agarose gel electrophoresis and analyzed quantitatively by BIO-LD. The result showed that there was no significant difference in the expression of TNF-αat mRNA level between the saline group and DMSO group. TNF-αmRNA expression in ST 2h, 6h, 12h and 24h group (0.28±0.04, 0.16±0.04, 0.21±0.06, 0.22±0.05 respectively) was much lower than that in corresponding DMSO group (0.38±0.03, 0.41±0.03, 0.42±0.05, 0.37±0.06, P<0.01). The most significant inhibiting effect was seen in ST 6h group.
     1.2 The effects of ST on the expression of IL-6 mRNA in the peripheral blood mononuclear cells
     No significant differences were found between the saline group and DMSO group. IL-6 mRNA expression level in ST 2h and 6h group (0.75±0.09 and 1.38±0.20) was significantly higher than those in corresponding DMSO group(0.54±0.13 and 0.48±0.08, P<0.01). The most significant inducing effect was seen in ST 6h group. The expression level of IL-6 mRNA begins to decrease from 12h ST treatment group, and reaches the lowest in ST 24h group(0.25±0.05), which was dramatically lower than that in DMSO 24h group(0.55±0.09,P<0.01).
     1.3 The effects of ST on the expression of IL-12 mRNA in the peripheral blood mononuclear cells
     There was no significant difference between the saline group and DMSO group. The relative expression of IL-12p35 mRNA in the ST groups at different time points was 0.33±0.06, 0.29±0.07, 0.30±0.04, 0.35±0.05 respectively , which was significantly lower than that in corresponding DMSO group( 0.66±0.10, 0.69±0.13,0.71±0.05,0.73±0.16,P<0.01). There were no significant differences between the ST groups.
     The expression of IL-12p40 mRNA was not detected in all the above groups.
     2 The effects of ST on the level of TNF-αand IL-6 in serum
     2.1 The effects of ST on the TNF-αlevel in serum of mice
     ELISA analysis showed that the TNF-αlevel in each ST treated group was decreased significantly compared with the DMSO 2h、6h、12h、24h group{(11.43±0.60),(12.17±1.04),(11.69±1.53),(12.43±1.40)pg/ml ,P<0.01}. The serum level of TNF-αin ST 2h and 6h group was (9.14±0.58) pg/ml and (8.57±0.57) pg/ml respectively, but it could not be detected at 12h and 24h. There is a negtive relationship between the serum TNF-αlevel and ST treat time (r = -0.905, P<0.01).
     2.2 The effects of ST on the IL-6 level in serum of mice
     ELISA analysis showed that all the serum level of IL-6 in ST treated groups was significantly lower than that in the corresponding DMSO group {(10.63±1.58), (11.63±1.52), (12.25±1.26), (10.90±1.14) pg/ml, P<0.01}. The serum level of IL-6 in ST treated group at 2h and 6h was (7.32±1.10) pg/ml and (7.00±1.00) pg/ml. It could not be detected at ST 12h and 24h treated group. A significant negative correlation could be found between ST treat time and the level of TNF-αin serum(r = -0.933, P<0.01).
     3 The effects of ST on the expression of TNF-α,IL-6, IL-12 mRNA in the murine peritoneal macrophage cells
     3.1 The effects of ST on the expression of TNF-αmRNA in the murine peritoneal macrophage cells
     RT-PCR analysis showed that there was no significant difference in expression of TNF-αmRNA between the saline group and the DMSO group. The relative expression of TNF-α mRNA in ST(2h、6h、12h、24h) group was 0.37±0.08, 0.34±0.06, 0.15±0.01, 0.13±0.03, which was all significantly lower than that in the solvent group at the same time point(0.51±0.06,0.52±0.04,0.54±0.10,0.53±0.10,P<0.05).There was a negtive correlation between ST treatment time and the expression of TNF-αmRNA(r = -0.833, P<0.01).
     3.2 The effects of ST on the expression of IL-6 mRNA in the murine peritoneal macrophage cells
     No significant differences in expression of IL-6 mRNA were found between the saline group and DMSO group. The ratio of IL-6 mRNA expression in the ST mice was 0.21±0.05,0.29±0.05,0.27±0.06,0.24±0.06 respectively for 2, 6, 12 and 24h group,which was significantly lower than that in DMSO group respectively(P<0.01). But no significant differences were found among the different ST groups at the time range from 2h to 24h.
     3.3 The effects of ST on the expression of IL-12 mRNA in the murine peritoneal macrophage cells
     An inhibiting effect on the expression of IL-12p35 mRNA was found among the ST treated groups from the time range 2h to 24h.
     The expression of IL-12p40 mRNA was not detected in all above groups.
     Conclusion
     1 ST could inhibit the expression of TNF-αin the peripheral blood mononuclear cells of mice administered intraperioneally with ST3000ug/kg from 2h to 24h after ST treatment, especially in ST 6h group.
     2 The effects of ST on IL-6 mRNA expression vary with the time after ST treatment. ST could induce the expression of IL-6 mRNA at 2h and 6h, but inhibition effect was seen at 24h.
     3 ST could inhibit the expression of IL-12p35 mRNA at all ST groups from 2h to 24h after treatment.
     4 ST could decrease TNF-αand IL-6 level in serum of mice, and the effects were more obvious with the time prolonged.
     5 ST could inhibit the expression of TNF-α,IL-6 and IL-12p35 mRNA in the murine peritoneal macrophage cells in vivo at the time range from 2h to 24h. The inhibiting effect on the expression of TNF-αmRNA intensified gradually as time prolonged.
     6 All these data suggested that except for its carcinogenic effects, ST exposure might have certain negative effects on function of immune cells via the moduating effects on the mRNA and protein level of the cytokines.
引文
1 Sivakumar V, Thanislass J, Niranjali S, et al. Lipid peroxidation as a possible secondary mechanism of sterigmatocystin toxicity. Hum Exp Toxicol, 2001, 20(8): 98-403
    2 Zhang XH, Xie TX, Li SS, et al. Preventive detection of fungi and mycotoxins in corn from high risk area of esophageal cancer in Cixian Country. Chin J Cancer Res, 1995, 7(3): 72-176
    3 Zhang XH, Xie TX, Li SS, et al. Contamination of fungi and mycotoxins in food stuffs in high risk area of esophageal cancer. Biomed Environ Sci, 1998, 11(2): 40-146
    4 Feng GH, Leonard TJ. Culture conditions control expression of the genes for aflatoxin and sterigmatocysion biosynthesis in Aspergillus parastiticus and A.Nidulans. Appl Environ Microbiol, 1998, 64(6): 275-2277
    5 张祥宏,王凤荣,王俊灵,等.真菌及其毒素诱发肺癌的动物实验研究. 北京大学学报(医学版), 2003, 35(1): 4-6
    6 谢同欣,王凤荣,谭少波,等.杂色曲霉素诱发小鼠肺腺癌和腺胃不典型增生.中华肿瘤杂志, 1990, 12: 21-23
    7 黄向华,张祥宏,李月红,等.杂色曲霉素和脱氧雪腐镰刀菌烯醇对小鼠致癌作用的研究.中华肿瘤杂志, 2004, 26(12): 705-708
    8 邢凌霄,张祥宏,尹桂然,等.杂色曲霉素对体外小鼠腹腔巨噬细胞白介素 12 表达与分泌的影响.中国药理学和毒理学,2005, 19(3): 205-208
    9 邢凌霄,张祥宏,李月红,等.杂色曲霉素对小鼠脾细胞的 IL-2 和 IFN-γ 的表达和分泌的影响.中国病理生理杂志,2004, 20(3): 306-310
    10 黄向华,张祥宏,严霞,等.杂色曲霉素对体外培养人外周血白细胞介素Ⅱ分泌影响的研究.卫生研究,2002, 31(2): 112-114
    11 Dugyala RR, Sharma RP. The effect of AFB1 on cytokine mRNA and corresponding protein levels in peritoneal macrophages and splenic lymphocyte. Int J Immunopharmac, 1996, 18(10): 599-608
    12 Stifka MK, Whitton JL.clinical implications of dysregulated cytokine production. J Mol Med 2000, 78(2): 74-80
    13 Quyan YL, Azcona JI, Pestka JJ. Effect of trichothecene structrure on cytokine sexretion and gene expression in murine CD4+ T-cell. Toxicology, 1995, 104(1-3): 187-202
    14 龙振洲主编.医学免疫学.第 2 版.北京:人民卫生出版社,1996, 45
    15 Utisumi KY, Takai Y, Tata T, et al. Enhanced production of IL-6 in tumor-bearing mice and determination of cells responsible for its augmented production. Immunol, 1990, 145(1): 397-403
    16 Mull JJ, Custer MC, Travis WD, et al. Cellular mechanisms of the antitumor activity of recombinant IL-6 in mice. Immunol, 1992, 148(8): 2622
    17 Iho S, Shau Hungyi, HG Sidney. IL-6 enhances the cytotoxic activity of thymocyte-derived CD56+ cells .Cell Immunol, 1992, 144(1):1-10
    18 Trinchieri G. Interleukin-12 and its role in the generation of Th1 cells. Immunol Today, 1993, 14: 335-338
    19 Dugyala RR, Sharma RP. The effect of AFB1 on cytokine mRNA and corresponding protein levels in peritoneal macrophages and splenic lymphocyte. Int J Immunopharmac, 1996, 18(10): 599-608
    20 Marin DE, Gouze ME, Taranu I, et. Fumonisin B1 alters cell cycle progression and interleukin-2 synthesis in swine peripheral blood mononuclear cells. Mol Nutr Food Res. 2007, 51(11): 1406-1412
    21 Severino L, Luongo D, Berfamo P, et al. Mycotoxins nivalenol and deoxynivalenol differentially modulate cytokine mRNA expression in Jurkat T cells. Cytokine, 2006, 36(1-2): 75-82
    22 Pestka JJ, Zhou HR. Interleukin-6-deficient mice refractory to IgA dysregulation but not anorexia induction by vomitoxin (Deoxynivalenol) ingestion. Food Chem Toxico, 2000, 38(7): 565-575
    23 Bhandari N, Enongene E N, Riley RT,et al. Temporal expression of fumonisin B1-induced tumor necrosis factor-α and interferon γ in mice. Comp Biochem Physiol C Toxicol Pharmacol, 2002, 131(2): 113-122
    24 邢凌霄,张祥宏,尹桂然,等.杂色曲霉素对体外小鼠腹腔巨噬细胞白介素 12 表达与分泌的影响.中国药理学和毒理学,2005, 19(3): 205-208
    1 Grove JF. Non-macrocyclic trichothecenes. Nat Prod Rep, 1988, 5:187–209
    2 Rotter BA, Prelusky DB Pestka JJ. Toxicology of deoxynivalenol (vomitoxin). Toxicol Environ Health, 1996, 48(1):1–34
    3 Rotter BA, Prelusky DB, Pestka JJ. Toxicology of deoxynivalenol (vomitoxin). Toxicol Enviro Health, 1996, 48(1):1–34
    4 Pier AC, Richard JL, Cysewski SJ. Implications of mycotoxins to animal disease. Am Vet Med Assoc, 1980, 176(8): 719–724
    5 Bondy GS, Pestka JJ. Dietary exposure to the trichothecene vomitoxin (deoxynivalenol) stimulates terminal differentiation of Peyer’s patch B cells to IgA secreting plasma cells. Toxicol Appl Pharmacol, 1991, 108(3):520–530
    6 Ueno Y. Toxicological features of T-2 toxin and related mycotoxins. Fundam Appl Toxicol, 1984 4:S132–S124
    7 Bondy GS, Pestka JJ. Immunomodulation by fungal toxins. Toxicol Environ Health B Crit Rev, 2000, 3(2): 109–143
    8 Islam, Z, Moon, YS, Zhou HR, et al. Endotoxin potentiation of trichothecene-induced lymphocyte apoptosis is mediated by up-regulation of glucocorticoids. Toxicol Appl Pharmacol, 2002, 180(1): 43–55
    9 Tai JH, Pestka JJ. T-2 toxin impairment of murine response to Salmonella typhimurium: a histopathologic assessment. Mycopathologia, 1990, 109(3): 149–155
    10 Zhou HR, Harkema JR, Hotchkiss JA et al. Lipopolysaccharide and the trichothecene vomitoxin (deoxynivalenol) synergistically induce apoptosis in murine lymphoid organs. Toxicol Sci, 2000, 53(2): 253–263
    11 Gerberick GF, Sorenson WG, Lewis DM, et al. The effects of T-2 toxin on alveolar macrophage function in vitro. Environ Res, 1984, 33(1): 246–260
    12 Sorenson WG, Gerberick GF, Lewis DM et al. Toxicity of mycotoxins for the rat pulmonary macrophage in vitro. Environ Health Perspect, 1986, 66:45–53
    13 Samara A, Yagen B, Agranat I, et al. Induction of differentiation in human myeloid leukemic cells by T-2 toxin and other trichothecenes. Toxicol Appl Pharmacol, 1987, 89(3):418–428
    14 Pang VF, Swanson SP, Beasley VR, et al. The toxicity of T-2 toxin in swine following topical application. Fundam Appl Toxicol, 1987, 9(1): 41–49
    15 Hughes BJ, Taylor MJ, Sharma RP. Effects of verrucarin A and roridin A, macrocyclic trichothecene mycotoxins, on the murine immune system. Immunopharmacology, 1988, 16(2):79–87
    16 Hughes BJ, Hsieh GC, Jarvis BB et al. Effects of macrocyclic trichothecene mycotoxins on the murineimmune system. Arch Environ Contam Toxicol, 1989, 18(3):388–395
    17 Atkinson HA, Miller K. Inhibitory effect of deoxynivalenol, 3-acetyldeoxynivalenol and zearalenone on induction of rat and human lymphocyte proliferation. Toxicol, Lett, 1984, 23(2): 215–221
    18 Bondy GS, McCormick SP, Beremand MN, et al. Murine lymphocyte proliferation impaired by substituted neosolaniols and calonectrins–Fusarium metabolites associated with trichothecene biosynthesis. Toxicon, 1991, 29(9): 1107–1113
    19 Forsell JH, Kateley, JR, Yoshizawa, T, et al. Inhibition of mitogen-induced blastogenesis in human lymphocytes by T-2 toxin and its metabolites. Appl Environ Microbiol, 1985, 49(6): 1523–1526
    20 Porcher JM, Dahel C, Lafarge Frayssinet C, et al. Uptake and metabolism of T-2 toxin in relation to its cytotoxicity in lymphoid cells. Food Chem Toxicol, 1988, 26(7): 587–593
    21 Azcona OJ, Ouyang YL, Warner RL, et al. Effects of vomitoxin (deoxynivalenol) and cycloheximide on IL-2, 4, 5 and 6 secretion and mRNA levels in murine CD4+ cells. Food Chem Toxicol, 1995, 33:433–441
    22 Ihara T, Yamamoto T, Sugamata M, et al. The process of ultrastructural changes from nuclei to apoptotic body. Virchows Arch, 1998, 433(5): 443–447
    23 Pestka JJ. Deoxynivalenol-induced IgA production and IgAnephropathy-aberrant mucosal immune response with systemic repercussions. Toxicol Lett, 2003,140–141(11): 287–295
    24 Pestka JJ, Dong W, Warner RL, et al. Effect of dietary administration of the trichothecene vomitoxin (deoxynivalenol) on IgA and IgG secretion by Peyer’s patch and splenic lymphocytes. Food Chem Toxicol, 1990, 28(10): 693–699
    25 Yan D, Zhou HR, Brooks KH, et al. Potential role for IL-5 and IL-6 in enhanced iga secretion by Peyer’s patch cells isolated from mice acutely exposed to vomitoxin. Toxicology, 1997, 122(1-2): 145–158
    26 Moon Y, Pestka JJ.Cyclooxygenase-2 mediatesinterleukin-6 upregulation by vomitoxin (deoxynivalenol) in vitro and in vivo. Toxicol Appl Pharmacol, 2003, 187(2): 80–88
    27 Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem, 2000, 69(10): 145–182
    28 Newton R, Kuitert LM, Bergmann M, et al. Evidence for involvement of NF-κB in the transcriptional control of COX-2 gene expression by IL-1β. Biochem Biophys Res Commun, 1997, 237(1):28–32
    29 Moon Y, Uzarski R, Pestka J. Relationship of trichothecene structure to COX-2 induction in the macrophage: selective action of Type B (8-keto) trichothecenes. J. Toxicol Environ Health, 2003, 66(20): 1967–1983
    30 Li S, Ouyang Y, Yang GH, et al. Modulation of transcription factor AP-1 activity in murine EL-4 thymoma cells by vomitoxin (deoxynivalenol). Toxicol Appl Pharmacol, 2000, 163(1): 17–25
    31 Wong SS, Zhou HR, Pestka JJ. Effects of vomitoxin (deoxynivalenol) on the binding of transcription factors AP-1, NF-κB, and IL-6 in RAW 264.7 macrophage cells. Toxicol Environ Health A, 2002, 65(16):1161–1180.
    32 Ouyang YL, Li S, Pestka JJ. Effects of vomitoxin (deoxynivalenol) on transcription factor NF-κB/Rel binding activity in murine EL-4 thymoma and primary CD4+ T cells. Toxicol Appl Pharmacol, 1996, 140(2): 328–336.
    33 Li S, Ouyang YL, Dong W, et al. Superinduction of IL-2 gene expression by vomitoxin (deoxynivalenol) involves increased mRNA stability. Toxicol Appl Pharmacol, 1997,147(2): 331–342
    34 Moon Y, Pestka JJ. Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases. Toxicol Sci, 2002(2), 69:373–382
    35 Dixon DA, Kaplan CD, McIntyre TM, et al. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. J Biol Chem, 2000, 275(16): 11750–11757
    36 Moon Y, Pestka JJ. Cyclooxygenase-2 mediates interleukin-6 upregulation by vomitoxin (deoxynivalenol) invitro and in vivo. Toxicol Appl Pharmacol, 2003, 187(2): 80–88
    37 Chung YJ, Zhou HR, Pestka J. Transcriptional and post-transcriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol Appl Pharmacol, 2003, 193(2): 188–201
    38 Wong S, Schwartz RC, Pestka JJ. Superinduction of TNF-α and IL-6 macrophages by vomitoxin (deoxynivalenol) modulated by mRNA stabilization. Toxicology, 2001, 161(1-2):139–149
    39 Li S, Ouyang YL, Dong W, et al. Superinduction of IL-2 gene expression by vomitoxin (deoxynivalenol) involves increased mRNA stability. Toxicol Appl Pharmacol, 1997, 147(2):331–342
    40 Middlebrook JL, Leatherman DL. Binding of T-2 toxin to eukaryotic cell ribosomes 4. Biochem Pharmacol, 1989, 38(18): 3103–3110.
    41 Witt MF, Pestka JJ. Uptake of the naturally occurring 3-alpha-hydroxy isomer of T-2 toxin by a murine B cell hybridoma. Food Chem Toxicol, 1990, 28(1): 21–28
    42 Iordanov MS, Pribnow D, Magun JL, et al. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28 s rRNA. Mol Cell Biol, 1997,17(6):3373–3381
    43 Laskin JD, Heck DE and Laskin DL. The ribotoxic stress response as a potential mechanism for map kinase activation in xenobiotic toxicity. Toxicol Sci , 2002, 69(2):289–291
    44 Cobb MH. MAP kinase pathways. Prog Biophys Mol Biol, 1999, 71(3-4): 479–500Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol, 2002, 20(10): 55–72
    45 Moon Y, Pestka JJ. Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases. Toxicol Sci , 2002, 69(2): 373–382
    46 Chung YJ, Zhou HR, Pestka J. Transcriptional and post-transcriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol Appl Pharmacol, 2003, 193(2): 188–201
    47 Zhou HR, Islam Z, Pestka JJ. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol Sci , 2003, 72(1):130–142
    48 Azcona OJ, Ouyang YL, Warner RL, et al. Effects of vomitoxin (deoxynivalenol) and cycloheximide on IL-2, 4, 5 and 6 secretion and mRNA levels in murine CD4+ cells. Food Chem Toxicol, 1995, 33:433–441
    49 Azcona-Olivera JI, Ouyang Y, Murtha J, et al. Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): relationship to toxin distribution and protein synthesis inhibition. Toxic Appl Pharmacol, 1995, 133(1): 109–120
    50 Williams BR. Signal integration via pkr Sci, 2001, 89(3): RE2
    51 Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79(1): 143–180
    52 Zhou HR, Lau AS, Pestka JJ. Role of double-stranded RNA-activated protein kinase (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol Sci, 2003, 74(2): 335–344
    53 Tsygankov AY. Non-receptor protein tyrosine kinases. Front Biosci, 2003, 8(5): s595–s635
    54 Pestka JJ, Yan D, King LE. Flow cytometric analysis of the effects of in vitro exposure to vomitoxin (deoxynivalenol) on apoptosis in murine T, B and IgA+ cells. Food Chem Toxicol, 1994, 32(12):1125–1136
    55 Islam Z, Nagase M, Ota A, et al. A structure–function relationship of T-2 toxin and its metabolites in inducing thymic apoptosis in vivo in mice. Biosci Biotechnol Biochem, 1998, 62(8): 1492–1497
    56 Yang G, Jarvis B, Chung Y, et al. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationshipto ERK, p38 MAPK and SAPK/JNK activation. Toxicol Appl Pharmacol, 2000(2), 164: 149–160
    57 Zhou HR, Pestka JJ. Deoxynivalenol-induced apoptosis mediated by p38 MAPK-dependent p53 gene induction in RAW 264.7 macrophages. Toxicologist, 2003, 72: 330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700