用户名: 密码: 验证码:
巴丹吉林沙漠高大沙山的内部结构及形成过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着亚洲内陆干旱化、水资源与生态恢复、沙尘暴源区等研究的不断深入,风沙地貌的形成机理研究已成为国内外十分关切的问题。巴丹吉林沙漠东南部的高大沙山是一种独特的风沙地貌,是罕见而珍贵的世界性地质遗产,为世界上规模最宏大的沙山地貌。自20世纪30年代以来,吸引了众多国内外学者对其进行研究。
     从区域整体的角度来看,巴丹吉林沙漠东南部的高大沙山的形成与局部地形起伏对气流的阻滞作用有关,即横亘于巴丹吉林沙漠东南缘的雅布赖山与南缘的北大山成为西北风与西风运行的障碍,受主风场西北风的携带,沙物质由沙漠西北缘的弱水冲积扇进入沙漠东南部,在阻滞作用下,沙物质沉积下来,逐渐形成复合型的高大沙山,表现为风积作用为主;在沙漠中北部和西北部地区,没有大型的风场运行障碍,且较沙漠南部和东南部地区干燥,贴地层水分较少,地表植被相对较少,贴地面风速大,沙物质不容易附着,沙尘很容易被扬起进入大气,因此较少发生次级沙丘叠置的情况,沙丘形态单一,相对高差较小,其地貌特征反映了风积作用与风蚀作用的共同影响。复合型高大沙山地貌特征表现为整体的横向沙丘相、迎风坡次生简单横向沙丘及顶部星状沙丘相相结合的复合形态,解释高大沙山的成因需逐一解释其复合形态中的各个地貌单元,巴丹吉林沙漠北部、中部的星状沙丘、横向沙丘等与沙漠东南部的高大沙山具有相同的沙源,虽各自所受局域风况有所差别,但从整体区域的角度来分析,处于同样的区域风况下,即同处季风边缘区域,受西风带,高原季风,东南季风三个大气环流系统的共同控制。因此,从巴丹吉林沙漠区域整体的角度研究从简单沙丘到复合型高大沙山的形成机理具有合理性、可行性和必要性。
     在当今地学界,对于巴丹吉林沙漠高大沙山的形成机理的研究手段主要依赖于沙山表层资料,方法与视角相对单一,研究区域仅限于巴丹吉林沙漠东南部地区,在高大沙山形成演化的解释上存在较大争议,对于其复合形态中的各个地貌单元未曾逐一深入研究;对于高大沙山内部结构所掌握的数据资料较少。因此,本研究采用遥感、野外资料采集、粒度组成实验、风沙地貌分形计算、沙波纹与沙丘形态参数关系建模、探地雷达勘察、沙丘层理电磁波正反演建模、光释光测年等技术、方法、手段,对巴丹吉林沙漠整个区域的风积地貌特征、形态参数规律、粒度分布规律、沙丘沙山内部结构、下伏地形等方面进行了系统的研究,以巴丹吉林沙漠区域整体的角度,由古到今的时间序列,由外到内的思路,揭示了高大沙山的内部结构与形成过程,得到以下主要结论:
     1.高大沙山的规则排列揭示了风力对高大沙山形成具有重要影响。本研究基于实测数据,修正了高大沙山高度、间距关系的经验公式,得出H=0.08Sp1.01(其中H表示沙山的高度,Sp表示沙山的间距)。
     2.高大沙山的粒度组成揭示了高大沙山迎风坡的下部以侵蚀作用为主,沙山中上部以风力的堆积为主,背风坡下部以重力的堆积为主的沙粒沉积方式。
     3.从平面的角度来看,沙波纹的分维数为1.798,沙山分维数为1.179。从垂向的角度来看,沙波纹的分维数为1.072,沙山的分维数为D=1.307。证明分维数可以描述沙波、沙丘形态的延展性和复杂性。验证了分形地貌学描述风沙地貌的有效性。
     4.国内前人的沙漠探地雷达工作中均缺乏背风坡的剖面资料,本研究的野外考察选用了瑞典MALA公司RTA超强地面耦合天线,经过设计改造,在国内首次获得了高大沙山迎风坡至背风坡的连续剖面,国际上虽有完整的沙丘探地雷达剖面,但都仅限于几米至几十米高度的沙丘。因此,本研究中的天线选取使得探地雷达剖面具有良好的高差程度、连续性以及完整性。
     5.建立了雷达波在不同含水量沙层中的正反演模型,可用于探地雷达反演模型的迭代拟合,探地雷达图像揭示了古沙丘的存在以及水位层的存在。
     6.通过古沙丘的产状与光释光年代学证据,复原了特征时期的古风向,在巴丹吉林沙漠西北部钙质胶结出露的年龄为89.61±2.45ka BP,而沙漠东南部钙质胶结出露的年龄为113.89±5.51ka BP,结合统计古沙丘产状,得出末次间间冰期以前巴丹吉林地区以西风为主导风向,西北风次之,而末次间间冰期以来则以西北风为主导风行,西风次之。
     7.前人缺乏在巴丹吉林沙漠腹地同一测区获取连续的年代序列,在本研究结果中,获取了位于巴丹吉林沙漠南部一个连续的湖相沉积与风成沙交错分布的年代剖面,其下部光释光年代结果为101.35±17.12ka BP,139.48±19.63ka BP,说明了在MIS 5e阶段和MIS 3阶段,巴丹吉林沙漠东南部存在高湖面或大湖期。
     8.综合分析解释了高大沙山内部结构与形成过程,即在雅布赖山与北大山对风沙流的阻滞作用下,使得沙物质沉积下来,在风力作用下,形成规则排列的沙丘,巴丹吉林沙漠湿润的环境使得古沙丘胶结保存下来,沙物质不断加积其上,层层叠置形成复合型的高大沙山。
Desert geomorphological evolution and environmental changes are serious problems which attract almost domestic and overseas desert geographers attention,along with development of researches on the inland arid,water source,ecological resume and sand-dust storm origin. Mechanism of the desert geomorphological evolution is still unknown and being studied. A special sand geomorphology existed in Southeast Badain Jaran Desert is essential made from Mega-dunes,which are the largest sand geomorphology in the world and kept as valuable geological heritage in the nature. More and more scientists pay attention to studying the special geomorphology since 1930s. This work studies the structure and formation of mega-dunes.
     From the overall aspect of the region,the forming of mega-dunes in the south part of Badain Jaran Desert is related with the regional terrain that has blocked the air current,the Yabulai mountain which lays in the southeast of the Badain Jaran Desert and the Dabei mountain in the south have been the block for the motion of northwest wind and west wind. The northwest wind as a main filed,which contains a lot of sand,and because of the block the sand has been deposited,the sand go into the southeast area through the northwest access,based on the block sand has become a comprehensive mega-dunes. In the mid-north and the northwest area,there's no big block for the wind filed,and it's drier than the south and the southeast area,which cause fewer water in the surface of the ground and fewer plants,thus the wind blows fast on the surface of the ground,it's hard for sand depositing,sand are blowing into the air,so there's fewer secondary dunes overlaying. The dunes here are shaped simple and of low height-gap,which reflects the co-influence of wind-deposit and wind-rust. The terrain of compound mega-dunes has presented as an overall landscape transverse dunes,and the compound of simple secondary transverse dunes in the windward slopes and star dunes on top. It's necessary to explain every individual element of the mega-dunes for reasoning the forming of the mega-dunes. The star dunes and the transverse dunes of the north and middle have the same sand origins to the mega-dunes in the south of Badan Jaran Desert. Though the wind is different of the regions,for the overall aspect they are all at the edge of the monsoon,and controlled by westerlies,tableland monsoon and southeast monsoon. Therefore, it's quite reasonable necessary and operational for the research from the overall aspect of forming of simple duns and mega-dunes.
     1. The regular order of mega-dunes display that the wind have strong influence on it, and it took off the probability that the underlying terrain control the mega-dunes. In this paper, based on the data from experiments,we modified the height of mega-dunes,and the distance of experimental equations.then get the height is equal to 0.08Sp1.01. (Sp is the distance between dunes).
     2. Granularity of mega-dunes reveals that lower windward slope of mega-dunes is mainly effected by erosion, and higher slope is mainly effected by the accumulation of wind-based,and lower leeward is effected by the accumulation of sands gravity.
     3. The fractal dimension of star sand hills is 1.041, the fractal dimension of complex star sand hills is 1.117,the fractal dimension of complex star sand hills chain body is 1.158,which improved that using fractal geomorphology to discraibe aeolian geomorphology is valid
     4. For lacking of information about the profile of the leeward slope in previous domestic study,we used RTA super ground-based coupling antennas of MALA Company in Sweden,and we obtained the constant profile of both windward slope and leeward slope for the first time in China by improving design. Although integrated dune-detected radar profile can be obtained internationally,the height of the dunes are limited from a few meters to tens of meters. Hence, the selection of antenna in this research made the profile of ground detect radar has a fine degree of elevation, continuity and integrity.
     5. The establish of forward and inverse model of radar wave in different hydrous sand layers can be used in the iterative fitting of GPR inversion model,and the images of GPR depicted the existence of both ancient dunes and water layer.
     6. The paleo wind directions were reconstructed by the sand dune occurrence. In NW Badain Jaran Desert, the calcareous cementation were dated at 89.61±2.45ka BP by the OSL,at the same time,113.89±5.51ka BP by the OSL in SE Badain Jaran Desert. The ancient dunes showed that the west wind prevail in Last interglacial Glacial, while during the Last Glacial the NW winds dominate.
     7. In previous research, during the interior areas in Badain Jaran Desert, there are no continuous data results in the profile. In this paper, the dating results were achieved from a profile which is continuous and rhythmic by the lake sediments and aeolian sediments deposited. The profile is 4 m depth, and the lowest in the profile were dated at 101.35±17.12ka BP, 139.48±19.63ka BP by optically stimulated luminescence (OSL) results. The dating results showed there were humid in South Badain Jaran Desert during MIS 5e and MIS 3.
     8. Inner structure and forming process in large sand hill were interpreted by the holistic, from outside to inside and from old to young analysis. The results showed that wind-blown sand was blocked by the Yabulai and Beida Mountains, then the sand were deposited and formed the sand dunes which were regularly arranged. The paleo-sand dune cementation were preserved by the humid environments,at the same time,the sands deposited on them continually,finally,the large sand hill were formed. Meanwhile, whether the water layer in the sand hill can support the attitude of the sand hill or not,further researches are needed.
引文
[1]艾南山,陈嵘,李后强.走向分形地貌学[J].地理学与国土研究,1999,15(1):38-42.
    [2]蔡厚维.试谈河西走廊的新构造运动[J].甘肃地质,1986,6:95-101.
    [3]陈红宝.巴丹吉林沙漠气象观测与气候特征初步研究[硕士论文].兰州:兰州大学.2011.
    [4]陈红宝,王乃昂,朱金峰.青海湖及毗邻地区气候变化灰色模型预测[J].干旱区资源与环境,2010,24(5):124-128.
    [5]陈钧,王乃昂,杨太保,等.黄土高原兽类地理研究[M].兰州:甘肃人民出版社,2006.
    [6]陈楠,赵光平,彭维耿,等.西北地区东部沙尘暴演变的气候型态与差异特征分析[J].第四纪研究,2009,29(1):55-63.
    [7]陈少勇,郭江勇,韩通,等.中国西北干旱半干旱区近46a秋季气候变暖分析[J].中国沙漠,2009,29(3):544-550.
    [8]崔之久,伍永年,刘耕年,等.关于“昆仑-黄河运动”[J].中国科学(D辑),1998,28(1):419-425.
    [9]董春雨,王乃昂,杨萍,等.基于水热平衡模型的青海湖水位变化趋势预测[J].湖泊科学,2009,21(4):587-593.
    [10]董光荣.中国沙漠形成演化气候变化与沙漠化研究[M].北京:海洋出版社,2002.
    [11]董光荣,高全洲,邹学勇,等.晚更新世以来巴丹吉林沙漠南缘气候变化[J].科学通报,1995,40(13):1214-1218.
    [12]董治宝.中国风沙物理五十年(Ⅰ)[J].中国沙漠,2005,25(3):293-305.
    [13]董治宝,郑晓静.中国风沙物理50a(Ⅱ)[J].中国沙漠,2005,25(6):796-815.
    [14]董治宝,屈建军,卢琦,等.关于库姆塔格沙漠“羽毛状”风沙地貌的讨论[J].中国沙漠,2008,28(6):1007-1010.
    [15]董治宝,屈建军.库姆塔格沙漠地貌图[M].北京:科学出版社,2008.
    [16]范育新,陈发虎,范天来,等.乌兰布和北部地区沙漠景观形成的沉积学和光释光年代学证据[J].中国科学:地球科学,2010,40(7):903-910.
    [17]方修琦,张学珍,戴玉娟,等.1951-2005年中国大陆冬季温度变化过程的区域差异[J].地理科学,2010,30(4):571-576.
    [18]龚家栋,程国栋,张小由,等.黑河下游额济纳地区的环境演变.地球科学进展,2002,17(4):491-496.
    [19]哈斯.腾格里沙漠东南缘沙丘表面风沙流结构变异的初步研究[J].科学通报,2004,49(11):1099-1104.
    [20]哈斯,董光荣,王贵勇.腾格里沙漠东南缘格状沙丘的形态动力学研究[J].中国科学(D),1999,29(5):466-471.
    [21]何彤慧,王乃昂.毛乌素沙地历史时期环境变化研究[M].北京:人民出版社,2010.
    [22]何乃武,俞祁浩.探地雷达在多年冻土地区工程勘测中的应用[J].路基工程,2006,(05):13-15.
    [23]黄天明.应用环境同位素研究巴丹吉林沙漠地下水补给来源[硕士论文].兰州:兰州大学.2007
    [24]侯迎,王乃昂,张学敏,等.高频光密度测量法在崆峒山树轮年表建立中的应用[J].干旱区地理,2010,33(2):236-242.
    [25]高全洲,陶贞,董光荣.微量元素记录的化学风化和气候变化——以巴丹吉林沙漠查格勒布鲁剖面为例[J].中国沙漠,2001,21(4):374-379.
    [26]李后强.艾南山.风积地貌形成的湍流理论[J].中国沙漠,1992,12(3):1-9.
    [27]李吉均,方小敏.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391.
    [28]李嘉.路面雷达电磁波的时域有限差分法模拟[D].郑州大学,2005.
    [29]李孝泽,王振亭,陈发虎,等.巴丹吉林沙漠横向沙山沉积GPR雷达探测研究[J].第四纪研究,2009,29(4):797-805.
    [30]李貅,冯兵.应用地球物理基础教程(上)电法[M].陕西人民教育出版社,2003.
    [31]李勋贵,王乃昂,魏霞.高含沙河流汛期弃水量确定的分级最大值法[J].资源科学,2010,32(6):1213-1219.
    [32]李育,王乃昂,许清海,等.中国北方第四纪孢粉提取方法研究[J].沉积学报,2007,25(1):124-130.
    [33]凌裕泉,吴正,刘绍中,等.新月形沙丘形态的模拟实验研究[J].地理科学,1998,18(1):88-93.
    [34]刘建宝,王乃昂,程弘毅,等.沙丘沙休止角影响因素实验研究[J].中国沙漠,2010,30(4):758-762.
    [35]刘建宝,王乃昂,李亚军,等.沙漠休止角一种新的测定方法[J].兰州大学学报(自然科学版),2010,46(4):37-41.
    [36]刘陶,杨小平,董巨峰,等.巴丹吉林沙漠沙丘形态与风动力关系的初步研究[J].中国沙漠,2010,30(6):1285-1291.
    [37]刘贤万.实验风沙物理与风沙工程学[M].北京:科学出版社,1995.210.
    [38]刘子亭,杨小平,朱秉启.巴丹吉林沙漠全新世环境记录的年代校正与古气候重建[J].2010,30(5):925-933.
    [39]陆锦华,郭迎胜.巴丹吉林高大沙山典型区景观图的编制研究[J].中国沙漠,1995,15(4):385-391.
    [40]陆莹,王乃昂,李贵鹏,等.巴丹吉林沙漠湖泊水化学空间分布特征[J].湖泊科学,2010,22(5):774-782.
    [41]楼桐茂.甘肃民勤至巴丹吉林庙间沙漠成因及其改造利用[J].治沙研究,1962,第3号:90-95.
    [42]马宏伟,王乃昂.近50年石羊河出山口径流对气候变化的响应[J].干旱区资源与环境,2010,24(1):113-117.
    [43]马宏伟,王乃昂,李卓仑.近50年石羊河流域气候变化的R/S分析[J].兰州大学学报 (自然科学版),2010,46(4):42-46.
    [44]马金珠,黄天明,丁贞玉,等.同位素指示的巴丹吉林沙漠南缘地下水补给来源.地球科学进展,2007,22(9):922-930.
    [45]马宁,王乃昂,李卓仑,等.1960-2009年巴丹吉林沙漠南北缘气候变化分析[J].干旱区研究,2011,28(2):242-250.
    [46]屈建军,张伟民,吴丹.金字塔型沙波纹的风洞模拟实验研究.科学通报,1992,37,(20):1870-1872.
    [47]屈建军,凌裕泉.金字塔沙丘形成机制的初步观测与研究.中国沙漠,1992,12(3):20-28.
    [48]屈建军,常学礼,董光荣,等.巴丹吉林沙漠高大沙山典型区风沙地貌分形特征.中国沙漠,2003,23(4):361-365.
    [49]施能.北半球冬季大气环流遥相关的长期变化及其与我国气候变化的关系[J].气象学报,1996,54(2):675-683.
    [50]孙庆峰,陈发虎,李孝泽.巴丹吉林沙漠第四纪研究评述与讨论[J].干旱区研究,2008,25(2):304-310.
    [51]孙培善,孙德钦.内蒙高原西部水文地质初步研究[J].治沙研究,1964,第6号:245-317.
    [52]徐婷,徐美丽.阿拉伯国家环境治理与可持续发展的制度因素[J].阿拉伯世界研究,2010,5:41:48
    [53]谭见安.内蒙古阿拉善荒漠的地方类型[J].地理集刊,1964,8:1-31.
    [54]唐进年,徐先英,金红喜.自然风成沙纹的形态特征及其与地表沙物理性状的关系[J].北京林业大学学报,2007,29(2):111-115.
    [55]王涛.巴丹吉林沙漠形成演变的若干问题[J].中国沙漠,1990,10(1):29-40.
    [56]王文龙,王海.青藏铁路多年冻土勘察的物探方法选择及其应用效果[J].冰川冻土2003,(S1):150-154.
    [57]吴正.风沙地貌与治沙工程学[M].北京:科学出版社.2003.
    [58]徐馨,何才华,沈志达,等.第四纪环境研究方法[M].贵阳,贵州科技出版.1992.
    [59]闫满存,王光谦,李保生,等.巴丹吉林沙漠高大沙山的形成发育研究[J].地理学报,2001a,56(1):83-91.
    [60]闫满存,王光谦,董光荣,等.巴丹吉林沙漠沙山发育与环境演变研究[J].中国沙漠,2001b,21(4):361-366.
    [61]闫满存,王光谦,李保生,等.巴丹吉林沙漠更新世古风向变化及环境意义[J].清华大学学报(自然科学版),2001c,41(11):118-122.
    [62]杨萍,巴丹吉林沙漠北部风沙地貌形态类型的分区研究[J].中国沙漠,1999,19(3):210-213.
    [63]杨小平.近3万年来巴丹吉林沙漠的景观发育与雨量变化[J].科学通报,2000,45(4):428-434.
    [64]杨小平,师长兴,李炳元,等.从地球系统科学角度浅析中国地貌若干问题研究的新进展[J].第四纪研究,2008,28(4):521-534.
    [65]杨逸畴,洪笑天.关于金字塔沙丘成因的探讨[J].地理研究,1994,13(1):94-99.
    [66]俞祁浩,程国栋.物探技术在我国多年冻土勘测中的应用[J].冰川冻土,2002,(01):102-108.
    [67]俞祁浩,Kurt Roth,金会军,潘喜才,Schiwek Philip Martin,盛煜,魏智,吴吉春.中德合作三江源区和甜水海地区多年冻沙物质退化过程科学考察和研究进展[J].冰川冻土,2006,(06):844-849.
    [68]俞祁浩,屈建军,郑木兴,等.探地雷达在沙漠研究中的应用[J].中国沙漠,2004,24(3):371-375.
    [69]于守忠.内蒙古西部戈壁及巴丹吉林沙漠考察[A].治沙研究(第三号).北京:科学出版社,1962:96-108.
    [70]曾红玲,高新全.戴新刚.近20年全球冬、夏季海平面气压场和500hPa高度场年代际变化特征分析[J].高原气象,2002,21(1):66-73.
    [71]张国庆,田明中,刘斯文,等.阿拉善沙漠地质遗迹全球对比及保护行动[J].干旱区资源与环境,2010,06:10-21.
    [72]张金团.浅生钙质胶结对古环境研究的意义[J].灾害与防治工程,2008,64(1):72-80.
    [73]张凯,司建华,王润元,等.气候变化对阿拉善荒漠植被的影响研究[J].中国沙漠,2008,28(5):879-885.
    [74]张仁健,周家茂,曹军骥.中国沙漠化及其防治[J].中国粉体技术,2007,1:1-5.
    [75]张伟民,李孝泽,屈建军,等.金字塔沙丘地表气流场及其动力学过程研究[J].中国沙漠,1998,18(3):215-220.
    [76]张伟民,王涛.巴丹吉林沙漠高大沙山形成演化初步探讨[J].中国沙漠,2005,25(2):281-286.
    [77]郑晓静,王萍.风沙流中沙粒随机运动的数值模拟研究[J].中国沙漠,2006,26(2):184-188.
    [78]赵强,李秀梅,王乃昂.生态环境需水量的概念框架[J].环境科学动态,2005,2:46-48.
    [79]赵强,王乃昂,李秀梅,等.青海湖地区9500aBP以来的环境变化研究[J].冰川冻土,2005,27(3):352-359。
    [80]朱金峰,王乃昂,陈红宝,等.基于遥感的巴丹吉林沙漠范围与面积分析[J].地理科学进展,2010,29(9):1087-1094.
    [81]朱震达.中国沙漠、沙漠化、荒漠化及其治理的对策[M].北京:中国环境科学出版社,1999.
    [82]朱震达,王涛.中国沙漠化的研究及实践[J].第四纪研究,1992(2):97-106.
    [83]朱震达,吴正,刘恕,等.中国沙漠概论[M].北京:科学出版社,1980:73-76.
    [84]朱宗元,梁存柱,王炜,等.阿拉善荒漠区的景观生态分区的景观生态分区[J].干旱区资源与环境,2000,14(4):37-48.
    [85]钟德才.中国现代沙漠动态演变图(1:400万)[Z].中国地图出版社,2003.
    [86]Ahlbrandt T S. Sand dunes, geomorphology and geology, Killpecker Creek area, northern Sweetwater County, Wyoming [D]. Laramie WY:University of Wyoming,1973.
    [87]Anders Stuhr Jorgensen and Frank Andreasen Mapping of permafrost surface using ground-penetrating radar at Ka BPngerlussuaq Airport, western Greenland [J]. Cold Regions Science and Technology,2007,48(1):64-72.
    [88]Andreotti B, Claudin P, Pouliquen O. Aeolian sand ripples:Experimental study of fully developed states. Phys Rev Lett,2006,96:028001
    [89]Bai Yang, Wang Nai'ang, Liao Kongtai et al. Geomorphological evolution revealed by Aeolian sedimentary structure in Badain Jaran Desert on Alxa Plateau, Northwest China [J]. Chinese Geographical Science,2011. doi:10.1007/s11769-011-0468-y.
    [90]Baas A C W. Complex systems in aeolian geomorphology [J]. Geomorphology,2007, 91(3-4):311-331.
    [91]Bagnold R A. The physics of blown sand and desert dunes [M]. Methuen, London,1941.
    [92]Bailey S D, Wintle A G, Duller G A T et al. Sand deposition during the last millennium at Aberffraw Anglesey, North Wales as determined by OSL dating of quartz [J]. Quaternary Science Reviews,2001,20(5-9):701-704.
    [93]Bose P K, Chakraborty S, Sarka BPr S. Recognition of ancient aeolian longitudinal dunes:a case study from the Upper Bhander sandstone, Son valley, India [J]. Journal of Sediment Research,1999,69(1):74-83.
    [94]Bristow C S. Ground Penetrating Radar in Aeolian Dune Sands [M]. In:Jol H M.(eds.). Ground Penetrating Radar:Theory and Applications. Amsterdam:The Netherlands,2009: 273-297.
    [95]Bristow C S, Augustinus P C, Wallis I C et al. Investigation of the age and migration of reversing dunes in Antarctica using GPR and OSL, with implications for GPR on Mars [J]. Earth and Planetary Science Letters,2010,289(1-2):30-42.
    [96]Bristow C S, Bailey S D, Lancaster N. The sedimentary structure of linear sand dunes [J]. Nature,2000a,406:56-59.
    [97]Bristow C S, Chroston P N, Bailey S D. The structure and development of foredunes on a locally prograding coast:Insights from ground penetrating radar surveys, Norfolk, England [J]. Sedimentology,2000b,47(5):923-944.
    [98]Bristow C S, Duller G A T, Lancaster N. Age and dynamics of linear dunes in the Namib desert [J]. Geology,2007a,35(6):555-558.
    [99]Bristow C S, Jol H M,2003. Ground Penetrating Radar in Sediments [M]. London: Geological Society Special Publication.
    [100]Bristow C S, Jones B G, Nanson G C et al.,2007b. GPR surveys of vegetated linear dune stratigraphy in central Australia:Evidence for linear dune extension with vertical and lateral migration [M]. In:Baker G S et al. (eds.). Stratigraphic Analysis Using GPR. Boulder: Geological Society of America Special Paper,19-34.
    [101]Bristow C S, Lancaster N, Duller G A T,2005. Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia [J]. Journal of the Geological Society,162(2):315-322.
    [102]Bristow C S, Pucillo K. Quantifying rates of coastal progradation from sediment volume using GPR and OSL:The Holocene fill of Guichen Bay, southeast South Australia [J]. Sedimentology,2006,53(4):769-788.
    [103]Bristow C S, Pugh J, Goodall T. Internal structure of aeolian dunes in Abu Dhabi revealed using ground penetrating radar [J]. Sedimentology,1996,43(6):995-1003.
    [104]Bryson R A and Baerreis D A. Possibilities of major climatic modification and their implications:Norhwest India, a case study. Bull. Amer [J]. Meteror,1967,48:136-142.
    [105]Bryson R A, Wilson C A Ⅲ and Kuhn R M. Some preliminary results of radiation sonde ascents over India [M], Pr℃eedings WMO-IUGG Symposium Tropical Meterorology, Rotorua, New Zealand, November. J. W.Huthings (Ed.), Wellington, New Zealand Meteorological Service.1964:507-516.
    [106]Chen J, Li L, Wang J et al. Groundwater maintains dune landscape [J]. Nature,2004,432: 459-460.
    [107]Chen J, Zhao X, Sheng X et al. Formation mechanisms of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia [J]. Chinese Science Bulletin,2006,51(24): 3026-3034.
    [108]Cooke R A., Warren A, Goudie A. Desert geomorphology [M].UCL Press, London, United Kingdom.1993.
    [109]Cornish V. On the formation of sand dunes [J]. Geographical Journal.1897,9:278-309.
    [110]Cornish V. Waves of sand and snow [M]. London:T. Fisher-Unwin,1914.59-60.
    [111]Dong Z, Qian G, Luo W et al. Phological hierarchies for complex mega-dunes and their implications for mega-dune evolution in the Badain Jaran Desert [J]. Geomorphology,2009, 106(3-4):180-185.
    [112]Dong Z, Wang T, Wang X. Geomorphology of the megadunes in the Badain Jaran Desert [J]. Geomorphology,2004,60(1-2):191-203.
    [113]Elbelrhiti H, Claudin P, Andreotti B. Field evidence for surface-wave-induced instability of sand dunes [J]. Nature,2005,437:720-723.
    [114]Endo N, Taniguchi K. Obsevation of the whole process of interaction between barchans by flume experiments [J]. Geophys Res Lett,2004,34:L12503
    [115]Hogbom. Ancient inland dunes of northern and middle Europe [J]. Geografiska annaler, 1923,5:113-243.
    [116]Horner, N.G. Geomorphic processes in continental basins of central Asia [M].16th. International Geological Congress, Washington, DC. Report,1936,2:21-735.
    [117]Huang Y, Wang N-a, He T et al. Environmental significance of RSL in ancient city wall: historical desertification of Ordos Plateau, Northern China [J]. Climatic Change,2009, 93(1):55-67.
    [118]Huang Y., Wang N., He T., et al. Historical desertification of the Mu Us desert:a multidisciplinary study [J]. doi:10.1016/j.geomorph.2009,110:108-117.
    [119]Hugenholtz C H, Moorman B J, Wolfe S A. Ground penetrating radar(GPR) imaging of the internal structure of an active parabolic sand dune [M]. In:Baker G S et al (eds.). Stratigraphic Analysis Using GPR. Boulder:Geological Society of America Special Paper, 2007,19-34.
    [120]Jakel D. The Badain Jaran Desert:its origin and development [J]. Geowissenschafen,1996, 7:272-274.
    [121]Jared K. Pettersson and David C. Nobes. Environmental geophysics at Scott Base:ground penetrating radar and electromagnetic induction as tools for mapping contaminated ground at Antarctic research bases [J]. Cold Regions Science and Technology,2003,37(2): 187-195.
    [122]Jol H M. Ground penetrating radar antennae frequencies and transmitter powers compared for penetration depth, resolution and reflection continuity [J]. Geophysical Prospecting, 1995,43(5):693-709.
    [123]Jol H M, Bristow C S. GPR in sediments:Advice on data collection, basic processing and interpretation, a good practice guide [M]. In:Bristow C S et al (eds.). Ground Penetrating Radar in Sediments. London:Geological Society, Special Publication,2003:9-27.
    [124]Jol H M, Bristow C S, Smith D G et al. Stratigraphic imaging of the Navajo Sandstone using ground-penetrating radar [J]. The Leading Edge,2003,22(9):882-887.
    [125]Jol H M, Lawton D C, Smith DG. Ground penetrating radar:2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA [J]. Geomorphology,2002,53(1-2): 165-181.
    [126]Kocurek G. Origins of low-angle stratification in aeolian deposits [M]. In:Nickling W G(eds.). Aeolian Geomorphology. Proceedings of the 17th Annual Inghampton Geomorphology Symposium. London:Allen & Unwin,1986:177-195.
    [127]Kocurek G, Ewing R C. Aeolian dune field self-organization—implications for the formation of simple versus complex dune-field patterns [J]. Geomorphology,2005,72(1-4): 94-105.
    [128]Lai Z P, Br ckner H. Effects of feldspar contamination onequivalent dose and the shape of growth curve for OSL of silt-sized quartz extracted from Chinese loess [J]. Geochronometria,2008a,30:49-53.
    [129]Lai Z P, Zhang WG, Chen X et al. OSL chronology of loessdeposits in East China and its implications for East Asianmonsoon history [J]. Quaternary Geochronology,2010, (5): 154-158.
    [130]Lai Z P. Chronology and the upper dating limit for loesssamples from Luochuan section in Chinese Loess Plateau usingquartz OSL SARprotocol [J]. Journal of Asian Earth Sciences, 2010,37:176-185.
    [131]Lancaster N. Arid Geomorphology [J]. Progress in Physical Geography,1997,21:285-290.
    [132]Lancaster N. Arid Geomorphology [J]. Progress in Physical Geography,1998,22:551-557.
    [133]Lancaster N. Controls on aeolian activity:some new perspectives from the Kelso Dunes, Mojave Desert, California [J]. Journal of Arid Environments,1992,27(2):113-125.
    [134]Lancaster N. Development of linear dunes in the southwestern Kalahari, Southern Africa [J]. Journal of arid environments,1988,14:233-244.
    [135]Lancaster N. Dune of the Gran Desierto sand sea, Sonora, Mexico [J]. Earth Surface Processes and Landforms,1987,12:277-288.
    [136]Lancaster N. Geomorphology of desert sand seas [M]. In Goudie, A. S. et al. (Ed.), Aeolian environments, sediments and landforms, John Wiley & Sons Ltd., Singapore,1999:49-70.
    [137]Lancaster N. Geomorphology of desert dunes [M]. Routledge, London,1995.
    [138]Lancaster N. Namib sand sea:Dune forms. Process and Sediments. A. A. Balkema Rotterdam.1989.
    [139]Lancaster N. The dynamics of star dunes:an example from the Gran Desierto, Mexico [J]. Sedimentology,1989,36:273-289.
    [140]Lancaster N. The formation of seif dunes from barchans-supporting evidence for Bagnold's model from the Namib Desert [J]. Zeitschrift fur Geomorphologie NF,1980,24: 160-167.
    [141]Lancaster N. The role of field experiments in studies of dune dynamic sand morphology [J]. Annals of Arid Zone,1996,35:171-186.
    [142]Lancaster N. Variations in wind velocity and sand transport on the windward flanks of desert sand dunes [J]. Sedimentology,1985,32:581-593.
    [143]Li Gang, Wang Nai-ang, Zhang Chunhui, et al. Climate change and disaster response-Case study of historical locust plagues of Shanxi in central China [J]. IGARSS,2007,2008: 4945.4947.
    [144]Li Guodong, Wang Naiang, She Qiusheng, Zhang Junhua. Research on distribution, living environment and rotection of wild bactrian camel (Camelus bactrianus ferus) [J]. Journal of Camel Practice and Research,2008,15(2):211-217.
    [145]Li Yu, Wang Nai'ang, Carrie Morrill, Cheng Hongyi, Long Hao and Zhao Qiang. Environmental change implied by the relationship between pollen assemblages and grain-size in N.W. Chinese lake sediments since the Late Glacial(SCI) [J]. Review of Palaeobotany and Palynology,2009,154:54-64.
    [146]Li Yu, Wang Nai'ang, Cheng Hongyi, Long Hao and Zhao Qiang. Holocene environmental change in the marginal area of the Asian monsoon:a record from Zhuye Lake, NW China [J]. Boreas,2009,38:349-361.
    [147]Li Yu, Wang Naiang, Li Zhuolun, Zhang Huaan. Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin [J]. Chinese Science Bulletin,2010, doi:10.1007/s11434-010-4277-y.
    [148]Lothar Schrott and Oliver Sass.Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies [J]. Geomorphology,2008,93(1-2), 55-73.
    [149]Mandelbrot B B. How long is the coastline of Britain? Statistical self-similarity and fractional dimension [J]. Science,1967,156:636-638.
    [150]Marquardt D W, An algorithm for leastsquares estimation of nonlinear parameters [J]. Indust.Appl.Math,1963,11:431-441.
    [151]Maurice K. Geophysic of the Quebec Appalachians [J]. Tectonophysics,1982,81(1-2): 1-50.
    [152]McKee E D. Structures of dunes at White Sands National Monument, New Mexico(and a comparison with structures of dunes from other selected areas) [J]. Sedimentology,1966, 7(1):1-69.
    [153]Mckee E D. A Study of Global Sand Seas [M]. Washington:U.S. Government Printing Office,1979.
    [154]McKee E D. Sedimentary structures in dunes of the Namib Desert, South West Africa [M]. In:Baker G S et al (eds.). Stratigraphic Analysis Using GPR. Boulder:Geological Society of America Special Paper,1982.
    [155]Mischke S. New evidence for origin of Badain Jaran Desert of Inner Mongolia from granulometry and thermoluminescence dating [J]. Journal of Palaeogeography,2005,7(1): 79-97.
    [156]Moore J C and Maeno N. Dielectric properties of frozen clay and silt soils [J]. Cold Regions Science and Technology,1993,21(3):265-273.
    [157]Neal A, Roberts C L. Internal structure of a trough blowout determined from migrated ground-penetrating radar profiles [J]. Sedimentology,2001,48(4):791-810.
    [158]Nielson J, Kocurek G. Surface processes, deposits, and development of star dunes:Dumont dune field, California [J]. Geological Society of America. Bulletin,1987,99(2):177-186.
    [159]Oliver Sass. Determination of the internal structure of alpine talus deposits usingdifferent geophysical methods(LechtalerAlps, Austria) [J]. Geomorphology,2006,80(2),45-58.
    [160]Pedersen K, Clemmensen L B. Unveiling past aeolian landscapes:A ground-penetrating radar survey of a Holocene coastal dunefeld system, Thy, Denmark [J]. Sedimentary Geology,2005,177(1-2):57-86.
    [161]Pelletier J D. Controls on the height and spacing of eolian ripples and transverse dunes: Anumerical modeling investigation [J]. Geomorphology,2009,105(3-4):322-333.
    [162]Petrov M P. The Ordos, Alashan and Peishan. U.S [M].Joint Publications Research Service, Washington.1966.
    [163]Pye K. Late Quaternary development of coastal parabolic megadune complexes in northern Australia [J]. In:Pye, K., Lancaster, N. (Eds.), Aeolian Sediments, Ancient and Modern. Spec. Publ. Int. Ass. Sedimen,1993,16:23-44.
    [164]Pye K, Tsoar H. Aeolian sand and sand dunes [M]. Unwin Hyman, London,1990.
    [165]Schwammle V, Herrmann H J. Solitary wave behaviour of sand dunes. Nature,2003,426: 619-620.
    [166]Sandweiss D H, Kelley A R, Belknap D F et al 2010. GPR identification of an early monument at Los Morteros in the Peruvian coastal desert [J]. Quaternary Research,73(3): 439-448.
    [167]Sass O. Determination of the internal structure of alpine talus deposits usingdifferent geophysical methods (LechtalerAlps, Austria) [J]. Geomorphology,2006,80(1-2):45-58.
    [168]Schenk C J. Eolian dunemorphology and wind regime [M]. Chapter 3, In:Fryberger S G et al (eds.). Modern and Ancient Eolian Deposits:Petroleum Exploration and Production, 1990. RockyMountain Section of Economic Paleontologists and Mineralogists, Denver, Colorado.1990.
    [169]Schenk C J, Gautier D L, Olhoeft G R et al. Internal structure of an aeolian dune using ground-penetrating radar [M]. In:Pye K et al (eds.). Aeolian Sediments Ancient and Modern. London:International Association of Sedimentologists,1993:61-69.
    [170]Schrott L and Sass O.Application of field geophysics in geomorphology:Advances and limitations exemplified by case studies. Geomorphology,93(1-2):55-73.
    [171]Schwammle V, Herrmann H J. Solitary wave behaviour of sand dunes [J]. Nature,2003, 426:619-620.
    [172]Seppala M, Krister L. Wind tunnel studies of ripple formation. Geografiska Annaler 60 A, 1978,1-2:29-42.
    [173]Smith D G, Jol H M. Ground-penetrating radar investigation of a Lake Bonneville delta, Provo level, Bingham City, Utah [J]. Geology,1992,20(12):1083-1086.
    [174]Wang Tie, Li Mei, and Wang Naiang. Protecting China Cedar (Cryptomeria Fortunei) Habitat Using GIS-Based Simulation, Modeling of Existence Probability, and Function Zoning [J]. Mountain Research and Development,2007,27(4):352-358.
    [175]Wang Nai'ang, Li Guodong, Cheng Hongyi et al. The Study on Urban Climate of Lanzhou(EI) [J]. IEEE (IGARSS06),2006:636-639.
    [176]Wang N, Li Z, Cheng H, et al. High lake levels on Alashan Plateau during the Late Quaternary [J]. Chinese Science Bulletin,2011,56(17):1879-1808.
    [177]Wang N, Li Z, Li Y, et al.The Younger Dryas Event recorded by the mirabilite deposition in Huahai Lake, the Hexi Corridor, NW China [J].Quaternary International (2010).
    [178]Wang N, Zhang C, Li GThe Historical Desertification Process in Hexi Corridor, China [J]. Chinese Geographical science,2005,15(4):245-253.
    [179]Wang X M, Chen F H, Dong Z B, et al. Evolution of the southern Mu Us Desert in North China over the past 50 years:An analysis using proxies of human activity and climate parameters [J]. Land Degradation & Development,2005,16(4):351-366.
    [180]Yang X, Liu T, Xiao H. Evolution of megadunes and lakes in the Badain Jaran Desert, Inner Mongolia, China during the last 31000 years [J]. Quaternary International,2003,104(1): 99-112.
    [181]Yang X, Ma N, Dong J et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China [J]. Quaternary Research,2010,73(1): 10-19.
    [182]Zhang Weimin, Qu Jianjun, Dong Zhibao et al. The airflow field and dynamic processes of pyramid dunes [J]. Journal of Arid Environments,2000,45(4):357-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700