用户名: 密码: 验证码:
组织工程技术构建阴茎及尿道海绵体的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海绵体是男性阴茎和尿道的重要组成部分,男性外生殖器及尿道疾患往往伴有阴茎海绵体或尿道海绵体病变。以往多采用各种假体结合自体皮瓣重建阴茎和尿道,但海绵体组织缺失使上述手术难以兼顾形态学和功能学的效果。因此,如何重建海绵体一直是泌尿外科范畴内的一个难题。近年来,组织工程技术的发展为海绵体重建提供了可能。本研究探讨了组织工程技术重建海绵体的可行性,以期为阴茎和尿道的修复重建手术提供新的选择。全文共分三章:
     第一章种子细胞的培养
     1目的
     探讨兔阴茎海绵体海绵体平滑肌细胞和内皮细胞的培养方法。
     2材料和方法
     应用胶原酶消化法和组织贴块法分离培养幼兔海绵体平滑肌细胞。差速贴壁法纯化海绵体平滑肌细胞。采用α-平滑肌肌动蛋白(α-SM-actin)和肌球蛋白重链(smMHC)免疫荧光鉴定海绵体平滑肌细胞,波形蛋白(Vimentin)衬染检测成纤维细胞。流式细胞仪检测海绵体细胞表达α-SM-actin的阳性率,比较不同培养条件下海绵体平滑肌细胞的纯度。应用0.02%的I型胶原酶消化分离幼兔海绵体内皮细胞,以EGM-2培养液进行传代培养。采用von Willebrand因子免疫荧光和透射电镜鉴定海绵体内皮细胞。通过流式细胞仪检测海绵体内皮细胞表达von Willebrand因子的阳性率。
     3结果
     体外培养的海绵体来源细胞在荧光显微镜下对α-SM-actin和smMHC仅有少量表达,随传代次数的增加,细胞表达α-SM-actin和smMHC的阳性率进一步降低。流式细胞仪检测酶消化法和贴块法原代培养的海绵体平滑肌细胞的纯度分别为16.91%、11.13%。经差速贴壁纯化后第1代海绵体平滑肌细胞的纯度分别提高到26.88%、21.98%。Vimentin免疫荧光检测到大量阳性表达。酶消化法原代培养的内皮细胞在接种后约12 h开始贴壁生长,7~10 d细胞可融合成铺路石状镶嵌排列,体外传代培养6~8代,细胞活力良好;免疫荧光可见内皮细胞胞浆中von Willebrand因子呈阳性反应;透射电镜下可见胞浆中有Weibel-Palade小体。经流式细胞仪检测海绵体血管内皮细胞的纯度达93.76%。
     4结论
     目前常规方法体外分离、培养的海绵体平滑肌细胞纯度较低,大量海绵体间质来源的成纤维细胞混杂生长,差速贴壁法可在一定范围内提高海绵体平滑肌细胞的纯度。采用0.02%的Ⅰ型胶原酶消化40~50 min,以EGM-2作为培养液可在体外分离培养得到较高纯度的海绵体内皮细胞。
     第二章人脐带动脉平滑肌细胞复合海绵体脱细胞基质构建组织工程海绵体平滑肌的实验研究
     1目的
     探讨人脐动脉平滑肌与阴茎海绵体脱细胞基质复合在裸鼠体内构建海绵体平滑肌的可行性。
     2方法
     以1%的Triton-X100与0.1%NH3H2O制备海绵体脱细胞基质(ACCM)。异体肌肉内埋植实验评价ACCM的生物相容性。分离培养人脐动脉平滑肌细胞(HUASMCs),MTT法测定ACCM浸提液对HUASMCs增殖的影响。将3~5代的HUASMCs接种ACCM,共培养3 d、5 d和10 d后观察HUASMCs与ACCM复合情况。将细胞-ACCM体外复合10天后将复合物植入裸鼠背部皮下,术后10天,20天和40天分别回收移植物,进行组织学观察和器官浴槽实验评价其体内构建情况。
     3结果
     ACCM无细胞残留,异体肌肉内埋植实验证实ACCM生物相容性良好。浸提液实验显示体外培养第4 d和第6 d,浸提液组OD值明显高于对照组(p<0.05)。HUASMCs能渗入ACCM内部,并分化形成平滑肌束。自裸鼠背部皮下回收移植物,组织学观察发现随时间延长,逐渐形成结构良好的海绵体平滑肌和内皮。器官浴槽实验中,构建组织表现出与正常海绵体平滑肌类似的收缩功能;去氧肾上腺素和电刺激所诱导的最大收缩力分别为3.64±0.18 g和2.50±0.21 g.
     4结论
     HUASMCs作为种子细胞与ACCM复合,可构建出具有一定形态和功能的组织工程海绵体平滑肌。
     第三章骨髓基质细胞复合PGA重建兔尿道海绵体的实验研究
     1目的
     探讨兔自体骨髓基质细胞(BMSCs)与PGA体外复合的可行性,为尿道海绵体修复提供实验基础。
     2方法
     制备1×1cm的非编织状PGA膜片。采用密度梯度离心法分离培养BMSCs。5ug/ml CM-Dil标记BMSCs。将BMSCs以30×106 /ml与PGA体外复合培养2周。采用扫描电镜及荧光显微镜观察BMSCs与PGA的复合情况。建立新西兰大白兔尿道腹侧1 cm全层尿道缺损动物模型,将PGA膜片植入尿道缺损区域,修补尿道缺损。术后1个月、2个月、3个月进行尿道造影、大体观察和组织学观察评价尿道重建情况。
     3结果
     CM-Dil标记BMSCs阳性率达为90%以上。BMSCs与PGA复合后,BMSCs均匀密布于PGA纤维表面及PGA纤维形成的间隙中。PGA修复新西兰兔全层尿道缺损,6只动物除1只术后1个月发生尿瘘外,其余动物均排尿通畅。组织学检查发现尿道黏膜再生良好,但尿道海绵体区域主要以纤维瘢痕增生为主,未见明显尿道海绵体再生。
     4结论
     BMSCs与PGA在体外具有良好相容性。PGA能够修复新西兰大白兔1 cm尿道黏膜的缺损,但缺乏尿道海绵体再生。
CHAPTER ONE THE CULTURE OF SEEDING CELLS
     1 Objective
     To investigate the methods of isolating, culturing and evaluating the rabbit corpus cavernosal smooth muscle cells and endothelial cells.
     2 Methods
     The explant cell culture and digestion cell culture methods were used to isolate corporal smooth muscle cells from young rabbit cavernosal tissue. Velocity sedimentation were used to enrich the cells. Usingα-smooth muscle actin, myosin and vimentin monoclone mouse antibodies as markers, the cells purity in cultured cells was analysed by immunofluorescence and flow cytometry. The enzymatic digestion methods were used to isolate corpus cavernosal endothelial cells from young rabbit cavernosal tissue. The cells were suspended in endothelial basal medium(EBM-2) supplemented with EGM-2 BulletKit for culturing, Using endothelial specific von Willebrand Factor(vWF) as a marker, the 2nd passage cells was identified by immunofluorescence and transmission electron microscope. Flow cytometry was performed to analyses cells purity.
     3 Results
     Usingα-smooth muscle actin as the cell marker, the positive rate of corpus cavernosal smooth muscle cells was 16.91% in the digestion cell culture and 11.13% in the explant cell culture. After velocity sedimentation procedures, the cells purity was increased to 26.88% in the digestion cell culture and 21.98% in the explant cell culture. Immunofluorescence confirmed contaminating fibroblasts by vimentin labeling. The corpus cavernosal endothelial cells were cultured in vitro and passaged for six to eight generations. Immunofluorescence confirmed the characteristic of endothelial cells by vWF labeling. Weibel-Palade body (W-P body) was observed by transmission electron microscope. The purity of 2nd passage cells was 93.76%.
     4 Conclusion
     It was difficult to exclude fibroblasts contamination in corporal smooth muscle cells cultured in vitro. Velocity sedimentation procedures could only achieve slight purify of corporal smooth muscle cells. Rabbit corpus cavernosal endothelial cells can be isolated and cultured successfully in vitro by our method.
     CHAPTER TWO CONSTRUCTION OF CORPUS CAVERNOSUM SMOOTH MUSCLE USING UMBILICAL ARTERY SMOOTH MUSCLE CELLS RESEEDED ON ACELLULAR CORPORAL COLLAGEN MATRICES
     1 Objective
     To investigate the feasibility of constructing tissue engineered corpus cavernosum smooth muscle.
     2 Methods
     Acellular corporal collagen matrices (ACCMs) were obtained from the penis of adult rabbits by a cell removal procedure. ACCMs were implanted into the back muscles of allogenic rabbits to investigate the resulting foreign body reaction. HUASMCs were isolated from human umbilical arteries through explant techniques, and expanded in vitro . Subsequently, third and fifth passage HUASMCs were seeded to ACCMs at a concentration of 30×106 cells/ml. After that, seeded ACCMs were implanted subcutaneously in athymic mice. The implants were retrieved at 10, 20 and 40 days after implantation. Histochemistry, immunohistochemistry and scanning electron microscopy were performed to analyze the morphological characteristics of the engineered tissues. Additionally, organ bath studies were performed to address the contractility of the engineered tissues.
     3 Results
     The decellularization process successfully extracted all cellular components and maintained their original collagen fibers. The foreign body reaction to ACCMs consisted of only a transient nonspecific inflammatory response. Light and scanning electron microscopy demonstrated that HUASMCs extended onto the three-dimensional ACCMs scaffolds in vitro. Histologic analyses of the explants from all time points demonstrated a progressive regeneration of smooth muscle, with structures very similar to native corpus cavernosum smooth muscle. The maximum contraction force induced by phenylephrine and electrical stimulation were 3.64±0.18 g/100 mg and 2.50±0.21 g/100 mg.
     4 Conclusion
     Our study demonstrates that HUASMCs can be seeded on
     3-dimensional ACCM scaffolds and will develop a tissue similar to that of the native corpus cavernosum smooth muscle.
     CHAPTER THREE FEASIBILITY OF CONSTRUCTING TISSUE-ENGINEERED CORPUS CAVERNOUS URETHRA WITH RABBIT BONE MARROW STROMAL CELLS
     1 Objective
     To investigate the feasibility to construct urethra with PGA and the compatibility of PGA with BMSCs.
     2 Methods
     BMSCs were harvested, and their phenotype was identified. The cells were cultured onto PGA after amplification. BMSCs were labeled with CM-Dil. Histochemistry and scanning electron microscopy were performed to analyze the morphological characteristics of the engineered tissues. The PGA was implanted into the cavernous urethra of six rabbits after partial resection of 1×1 cm full-thickness urethra. Catheter examination and retrograde urethrography were used to evaluate results 1, 2 and 3 months after the operation, and then all dogs were sacrificed for macroscopical and histological examination.
     3 Results PGA could be seeded with BMSCs in vitro, and BMSCs had the potential of attachment and proliferation on the three-dimensional PGA scaffolds. All dogs survived the procedure.1 of 6 rabbits developed a fistula formation. The other 5 rabbits voided spontaneously without difficulties. Retrograde urethrography revealed no sign of stricture. Histological examination showed the urethral walls were covered by squamous epithelium with slight keratinization.
     4 Conclusion
     PGA may be used as the scaffold for BMSCs growing . PGA can results in regeneration of urethral mucosa,but no regeneration of corpus spongiosum.
引文
1. Kershen RT, Yoo JJ, Moreland RB, et al. Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo. Tissue Eng 2002;8:515-524.
    2. Carlton J, Patel M, Morey AF. Erectile function after urethral reconstruction. Asian J Androl 2008;10:75-78.
    3. Papatsoris AG, Deliveliotis C, Singer C, et al. Erectile dysfunction in Parkinson's disease. Urology 2006;67:447-451.
    4. Iacono F, Giannella R, Somma P, et al. Histological alterations in cavernous tissue after radical prostatectomy. J Urol 2005;173:1673-1676.
    5. Kajbafzadeh AM, Sina A, Payabvash S. Management of multiple failed repairs of the phallus using tissue expanders: long-term postpubertal results. J Urol 2007;177:1872-1877.
    6. Perovic SV, Djinovic R, Bumbasirevic M, et al. Total phalloplasty using a musculocutaneous latissimus dorsi flap. BJU Int 2007;100:899-905; discussion 905.
    7. Berglund RK, Angermeier KW. Combined buccal mucosa graft and genital skin flap for reconstruction of extensive anterior urethral strictures. Urology 2006;68:707-710; discussion 710.
    8. Barbagli G, Lazzeri M. Surgical treatment of anterior urethral stricture diseases: brief overview. Int Braz J Urol 2007;33:461-469.
    9. Akin-Olugbade O, Parker M, Guhring P, et al. Determinants of patient satisfaction following penile prosthesis surgery. J Sex Med 2006;3:743-748.
    10. Mutaf M, Isik D, Bulut O, et al. A true one-stage nonmicrosurgical technique for total phallic reconstruction. Ann Plast Surg 2006;57:100-106.
    11. Henry GD, Wilson SK. Updates in inflatable penile prostheses. Urol Clin North Am 2007;34:535-547, vi.
    12. Dabernig J, Shelley OP, Cuccia G, et al. Urethral reconstruction using the radial forearm free flap: experience in oncologic cases and gender reassignment. Eur Urol 2007;52:547-554.
    13. Park HJ, Yoo JJ, Kershen RT, et al. Reconstitution of human corporal smooth muscle andendothelial cells in vivo. J Urol 1999;162:1106-1109.
    14. Yoo JJ, Park HJ, Atala A. Tissue-engineering applications for phallic reconstruction. World J Urol 2000;18:62-66.
    15. Falke G, Yoo JJ, Kwon TG, et al. Formation of corporal tissue architecture in vivo using human cavernosal muscle and endothelial cells seeded on collagen matrices. Tissue Eng 2003;9:871-879.
    16. Kwon TG, Yoo JJ, Atala A. Autologous penile corpora cavernosa replacement using tissue engineering techniques. J Urol 2002;168:1754-1758.
    17. Chen KL, Yoo JJ, Atala A. Total corpora replacement for erectile dysfunction. 2006.
    18. Malysz J, Gibbons SJ, Miller SM, et al. Potassium outward currents in freshly dissociated rabbit corpus cavernosum myocytes. J Urol 2001;166:1167-1177.
    19. Filippi S, Marini M, Vannelli GB, et al. Effects of hypoxia on endothelin-1 sensitivity in the corpus cavernosum. Mol Hum Reprod 2003;9:765-774.
    20. Rees RW, Ziessen T, Ralph DJ, et al. Human and rabbit cavernosal smooth muscle cells express Rho-kinase. Int J Impot Res 2002;14:1-7.
    21. Pilatz A, Schultheiss D, Gabouev AI, et al. Isolation of primary endothelial and stromal cell cultures of the corpus cavernosum penis for basic research and tissue engineering. Eur Urol 2005;47:710-718; discussion 718-719.
    22. Jiang RZ, Chen HP, Xu XY. Inhibitory effects of polymyxin B on NF-kappaB activation and expression of procollagen I, III in pre-eclamptic umbilical artery smooth muscle cells. Chin Med J (Engl) 2006;119:384-390.
    23. Bazeed MA, Thuroff JW, Schmidt RA, et al. New treatment for urethral strictures. Urology 1983;21:53-57.
    24. Olsen L, Bowald S, Busch C, et al. Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J Urol Nephrol 1992;26:323-326.
    25. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71-74.
    26. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilotstudy and a randomised controlled trial. Lancet 2002;360:427-435.
    27. Tse HF, Kwong YL, Chan JK, et al. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003;361:47-49.
    28. Song YS, Lee HJ, Park IH, et al. Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells. Int J Impot Res 2007;19:378-385.
    29.段永芳,刘继红.家兔阴茎海绵体平滑肌细胞体外培养方法对比研究.中国男科学杂志2002;16:197-200.
    30. Krall JF, Fittingoff M, Rajfer J. Characterization of cyclic nucleotide and inositol 1,4,5-trisphosphate-sensitive calcium-exchange activity of smooth muscle cells cultured from the human corpora cavernosa. Biol Reprod 1988;39:913-922.
    31.刘洪国,朱广友,赵子琴, et al.兔阴茎海绵体平滑肌细胞培养及其RyRs的表达.法医学杂志2006;22:24-27.
    32. Hotston MR, Jeremy JY, Bloor J, et al. Sildenafil inhibits the up-regulation of phosphodiesterase type 5 elicited with nicotine and tumour necrosis factor-alpha in cavernosal vascular smooth muscle cells: mediation by superoxide. BJU Int 2006.
    33. Sato M, Kawatani M. Effects of noradrenaline on cytosolic concentrations of Ca(2+) in cultured corpus cavernosum smooth muscle cells of the rabbit. Neurosci Lett 2002;324:89-92.
    34. Turkof E, Wulkersdorfer B, Bukaty A. Reconstruction of cavernous nerves by nerve grafts to restore potency: contemporary review of technical principles and basic anatomy. Curr Opin Urol 2006;16:401-406.
    35.陈斌,黄旭元,童菊芳,等.成人及家兔阴茎海绵体平滑肌细胞培养和鉴定.中华男科学2004;10:282-286.
    36.张金明,黄红军,何涛.新西兰兔尿道海绵体平滑肌细胞的原代培养及鉴定.中华实验外科杂志2005:1051-1052.
    37. Simonsen U, Prieto D, Hernandez M, et al. Adrenoceptor-mediated regulation of the contractility in horse penile resistance arteries. J Vasc Res 1997;34:90-102.
    38. Sadeghi-Nejad H, Moreland RB, Traish AM, et al. Preliminary report on the development and characterization of rabbit clitoral smooth muscle cell culture. Int J Impot Res 1998;10:165-169.
    39. Craven M, Sergeant GP, Hollywood MA, et al. Modulation of spontaneous Ca2+-activated Cl- currents in the rabbit corpus cavernosum by the nitric oxide-cGMP pathway. J Physiol 2004;556:495-506.
    40. Abeysinghe HR, Clancy J, Qiu Y. Comparison of endothelin-1-mediated tissue tension and calcium mobilization effects in isolated rabbit corpus cavernosum. Urology 2002;60:925-930.
    41. Anfossi G, Massucco P, Mattiello L, et al. Insulin influences the nitric oxide cyclic nucleotide pathway in cultured human smooth muscle cells from corpus cavernosum by rapidly activating a constitutive nitric oxide synthase. Eur J Endocrinol 2002;147:689-700.
    42. Akbal C, Lee SD, Packer SC, et al. Bladder augmentation with acellular dermal biomatrix in a diseased animal model. J Urol 2006;176:1706-1711.
    43. Kolodsick JE, Peters-Golden M, Larios J, et al. Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol 2003;29:537-544.
    44. Campos de Carvalho AC, Roy C, Moreno AP, et al. Gap junctions formed of connexin43 are found between smooth muscle cells of human corpus cavernosum. J Urol 1993;149:1568-1575.
    45. Zheng Y, Malloy TR, Weber WT, et al. Establishment of a phenotypically stable contractile smooth muscle cell line from juman corpus cavernosum. J Urol 2003;169.
    46. Leyh R, Wilhelmi M, Haverich A, et al. [A xenogeneic acellularized matrix for heart valve tissue engineering: in vivo study in a sheep model]. Z Kardiol 2003;92:938-946.
    47. Lue TF. Erectile dysfunction. N Engl J Med 2000;342:1802-1813.
    48. Bivalacqua TJ, Deng W, Kendirci M, et al. Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am J Physiol Heart Circ Physiol 2007;292:H1278-1290.
    49. Azadzoi KM. Vasculogenic erectile dysfunction: beyond the haemodynamic changes. BJU Int 2006;97:11-16.
    50. Rajfer J. Endothelial dysfunction as a cause of erectile dysfunction--misdiagnosis or misnomer? Urology 2004;64:193-194.
    51. Sattar AA, Schulman CC, Wespes E. Objective quantification of cavernous endothelium in potent and impotent men. J Urol 1995;153:1136-1138.
    52. Shing Y, Folkman J, Sullivan R, et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984;223:1296-1299.
    53. Nachman RL, Jaffe EA. Endothelial cell culture: beginnings of modern vascular biology. J Clin Invest 2004;114:1037-1040.
    54. Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973;52:2745-2756.
    55. Zhang J, Chen X, Pan S, et al. [Effect of niti-alloy urethral stent in hypospadlas repair]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2006;20:223-225.
    56. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-926.
    57. Fu Q, Deng CL, Liu W, et al. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int 2007;99:1162-1165.
    58.宋鲁杰,徐月敏,傅强,等.体外分离培养兔阴茎海绵体平滑肌细胞的纯度分析.中国男科学杂志2007;21:1-5.
    59. Heimli H, Kahler H, Endresen MJ, et al. A new method for isolation of smooth muscle cells from human umbilical cord arteries. Scand J Clin Lab Invest 1997;57:21-29.
    60. Okker-Reitsma GH, Dziadkowiec IJ, Groot CG. Isolation and culture of smooth muscle cells from human umbilical cord arteries. In Vitro Cell Dev Biol 1985;21:22-25.
    61. Brehmer B, Rohrmann D, Becker C, et al. Different types of scaffolds for reconstruction of the urinary tract by tissue engineering. Urol Int 2007;78:23-29.
    62. Badylak SF. Regenerative medicine and developmental biology: the role of the extracellular matrix. Anat Rec B New Anat 2005;287:36-41.
    63.王永前,刘立强,李养群,等.无细胞人膀胱粘膜下基质的生物相容性初探.中国修复重建外科杂志2006;20:210-212.
    64.王永前,李养群,刘立强, et al.冻干无细胞膀胱黏膜下基质修复兔尿道缺损.中华整形外科杂志2005;21:62-65.
    65. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27:3675-3683.
    66. Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res 2006;98:25-35.
    67. Obara T, Matsuura S, Narita S, et al. Bladder acellular matrix grafting regenerates urinary bladder in the spinal cord injury rat. Urology 2006;68:892-897.
    68. Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995;21:243-248.
    69. Meezan E, Hjelle JT, Brendel K. A simple, versatile, nondisruptive method for the isolation of morphologically and chemicaly pure basement membranes from several tissues. Life Sci 1975;17:1721-1732.
    70. Bader A, Schilling T, Teebken OE, et al. Tissue engineering of heart valves--human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 1998;14:279-284.
    71. Reddy PP, Barrieras DJ, Wilson G, et al. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol 2000;164:936-941.
    72. Dahms SE, Piechota HJ, Dahiya R, et al. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol 1998;82:411-419.
    73. Voytik-Harbin SL, Brightman AO, Kraine MR, et al. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 1997;67:478-491.
    74. Anselme K, Bacques C, Charriere G, et al. Tissue reaction to subcutaneous implantation of a collagen sponge. A histological, ultrastructural, and immunological study. J Biomed Mater Res 1990;24:689-703.
    75. Borschel GH, Dennis RG, Kuzon WM, Jr. Contractile skeletal muscle tissue-engineeredon an acellular scaffold. Plast Reconstr Surg 2004;113:595-602; discussion 603-594.
    76.张忠民,徐杰,谈太生.硝苯吡啶体外对家兔阴茎海绵体平滑肌的舒张作用.中华实验外科杂志2005;22:1145.
    77. Cartledge JJ, Eardley I, Morrison JF. Advanced glycation end-products are responsible for the impairment of corpus cavernosal smooth muscle relaxation seen in diabetes. BJU Int 2001;87:402-407.
    78. Cartledge JJ, Eardley I, Morrison JF. Impairment of corpus cavernosal smooth muscle relaxation by glycosylated human haemoglobin. BJU Int 2000;85:735-741.
    79.陈俊,刘继红,王涛, et al. 6种中药提取物对离体新西兰白兔阴茎海绵体的松弛作用.中华男科学杂志2005;10:793-795.
    80. Acta Radiol Shin JH, Song HY, Moon DH, et al. Effects of irradiation using a radioisotope-filled balloon on tissue hyperplasia caused by stent placement in a canine urethral model. 2006;47:436-443.
    81. Galmiche MC, Koteliansky VE, Briere J, et al. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 1993;82:66-76.
    82. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000;6:1282-1286.
    83. Zhang Y, Lin HK, Frimberger D, et al. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int 2005;96:1120-1125.
    84. Chung S, Hazen A, Levine JP, et al. Vascularized acellular dermal matrix island flaps for the repair of abdominal muscle defects. Plast Reconstr Surg 2003;111:225-232.
    85. Santucci RA, Joyce GF, Wise M. Male urethral stricture disease. J Urol 2007;177:1667-1674.
    86. Waxman SW, Morey AF. Management of urethral strictures. Lancet 2006;367:1379-1380.
    87. Elliott SP, McAninch JW. Ureteral injuries: external and iatrogenic. Urol Clin North Am 2006;33:55-66, vi.
    88. McAninch JW. Urethral reconstruction: a continuing challenge. J Urol 2005;173:7.
    89. Kessler TM, Schreiter F, Kralidis G, et al. Long-term results of surgery for urethral stricture: a statistical analysis. J Urol 2003;170:840-844.
    90. De Coppi P, Bellini S, Conconi MT, et al. Myoblast-acellular skeletal muscle matrix constructs guarantee a long-term repair of experimental full-thickness abdominal wall defects. Tissue Eng 2006;12:1929-1936.
    91. Xu YM, Qiao Y, Sa YL, et al. 1-stage urethral reconstruction using colonic mucosa graft for the treatment of a long complex urethral stricture. J Urol 2004;171:220-223; discussion 223.
    92. Sa YL, Xu YM, Chen BF, et al. [Urethral reconstruction with buccal mucosa and colonic mucosa onlay grafts: experiment with dogs]. Zhonghua Yi Xue Za Zhi 2006;86:3207-3210.
    93. De Filippo RE, Yoo JJ, Atala A. Engineering of vaginal tissue in vivo. Tissue Eng 2003;9:301-306.
    94.黄翔,罗静聪,廖勇, et al.小肠粘膜下层修复尿道的实验研究.中国修复重建外科杂志2006;20:206-209.
    95.李胜文,张士伟,周余来, et al.组织工程技术重建尿道的实验研究.现代泌尿外科杂志2006;11:128-130.
    96. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology 1999;54:407-410.
    97. Kane CJ, Tarman GJ, Summerton DJ, et al. Multi-institutional experience with buccal mucosa onlay urethroplasty for bulbar urethral reconstruction. J Urol 2002;167:1314-1317.
    98. Bhargava S, Patterson JM, Inman RD, et al. Tissue-Engineered Buccal Mucosa Urethroplasty-Clinical Outcomes. Eur Urol 2008.
    99. Xu YM, Sa YL, Qiao Y, et al. Histopathological changes of free buccal mucosa and colonic mucosa grafts after translation to dog bladder. Chin Med J (Engl) 2005;118:337-339.
    100.李超,徐月敏,宋鲁杰.兔口腔黏膜细胞与灭活的3T3成纤维细胞体外共培养的实验研究.上海交通大学学报(医学版) 2007;27:1297-1300.
    101. Sievert KD, Fandel T, Wefer J, et al. Collagen I:III ratio in canine heterologous bladder acellular matrix grafts. World J Urol 2006;24:101-109.
    102. Gardner RL. Stem cells and regenerative medicine: principles, prospects and problems. C R Biol 2007;330:465-473.
    103. Mitterberger M, Pinggera GM, Marksteiner R, et al. Functional and Histological Changes after Myoblast Injections in the Porcine Rhabdosphincter. Eur Urol 2007.
    104. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987;20:263-272.
    105. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147.
    106. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004;36:568-584.
    107.孔国英,刘忠浩,帅建中. Dil在已固定脑组织中的示踪研究.湖南医科大学学报1994;19:70-72.
    108. Honig MG, Hume RI. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 1986;103:171-187.
    109. Soriano HE, Lewis D, Legner M, et al. The use of DiI-marked hepatocytes to demonstrate orthotopic, intrahepatic engraftment following hepatocellular transplantation. Transplantation 1992;54:717-723.
    110. Markus PM, Koenig S, Krause P, et al. Selective intraportal transplantation of DiI-marked isolated rat hepatocytes. Cell Transplant 1997;6:455-462.
    111. Ledley FD, Soriano HE, O'Malley BW, Jr., et al. DiI as a marker for cellular transplantation into solid organs. Biotechniques 1992;13:580, 582, 584-587.
    112. Ferrari A, Hannouche D, Oudina K, et al. In vivo tracking of bone marrow fibroblasts with fluorescent carbocyanine dye. J Biomed Mater Res 2001;56:361-367.
    113. Kruyt MC, De Bruijn J, Veenhof M, et al. Application and limitations of chloromethyl-benzamidodialkylcarbocyanine for tracing cells used in bone Tissueengineering. Tissue Eng 2003;9:105-115.
    114. Mimura T, Amano S, Usui T, et al. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp Eye Res 2004;79:231-237.
    115. Pattison MA, Wurster S, Webster TJ, et al. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 2005;26:2491-2500.
    116. Drewa T, Sir J, Czajkowski R, et al. Scaffold seeded with cells is essential in urothelium regeneration and tissue remodeling in vivo after bladder augmentation using in vitro engineered graft. Transplant Proc 2006;38:133-135.
    [1] Park HJ, Yoo JJ, Kershen RT, et al. Reconstitution of human corporal smooth muscle and endothelial cells in vivo[J]. J Urol, 1999, 162(3 Pt 2):1106-1109.
    [2] Kershen RT, Yoo JJ, Moreland RB, et al. Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo[J]. Tissue Eng, 2002, 8(3):515-524.
    [3] Falke G, Yoo JJ, Kwon TG, et al. Formation of corporal tissue architecture in vivo using human cavernosal muscle and endothelial cells seeded on collagen matrices[J]. Tissue Eng, 2003, 9(5):871-879.
    [4] Kwon TG, Yoo JJ, Atala A. Autologous penile corpora cavernosa replacement using tissue engineering techniques[J]. J Urol, 2002, 168(4 Pt 2):1754-1758.
    [5] Chen KL, Yoo JJ, Atala A. Total corpora replacement for erectile dysfunction[C]. AUA Annual Meeting Program Abstracts, Georgia, 2006, 1323
    [6] Moncada I, Martinez-Salamanca JI, Allona A, et al. Current role of penile implants for erectile dysfunction[J]. Curr Opin Urol, 2004, 14(6):375-380.
    [7] Yoo JJ, Park HJ, Atala A. Tissue-engineering applications for phallic reconstruction[J]. World J Urol, 2000, 18(1):62-66.
    [8] Kim BS, Yoo JJ, Atala A. Engineering of human cartilage rods: potential application for penile prostheses[J]. J Urol, 2002, 168(4 Pt 2):1794-1797.
    [9] Leungwattanakij S, Bivalacqua TJ, Yang DY, et al. Comparison of cadaveric pericardial, dermal, vein, and synthetic grafts for tunica albuginea substitution using a rat model[J]. BJU Int, 2003, 92(1):119-124.
    [10] Joo KJ, Kim BS, Han JH, et al. Porcine vesical acellular matrix graft of tunica albuginea for penile reconstruction[J]. Asian J Androl, 2006, 8(5):543-548.
    [11] El-Assmy A, El-Hamid MA, Abo-Elghar ME, et al. Single-layer small intestinal submucosa or tunica vaginalis flap for correcting penile chordee[J]. BJU Int, 2004, 94(7):1097-1101.
    [12] Hafez AT, El-Assmy A, El-Hamid MA. 4 layer versus 1 layer small intestinal submucosa for correction of penile chordee: experimental study in a rabbit model[J]. J Urol, 2004,171(6 Pt 1):2489-2491.
    [13] Kropp BP, Cheng EY, Pope JCt, et al. Use of small intestinal submucosa for corporal body grafting in cases of severe penile curvature[J]. J Urol, 2002, 168(4 Pt 2):1742-1745; discussion 1745.
    [14] Weiser AC, Franco I, Herz DB, et al. Single layered small intestinal submucosa in the repair of severe chordee and complicated hypospadias[J]. J Urol, 2003, 170(4 Pt 2):1593-1595; disussion 1595.
    [15] Schultheiss D, Lorenz RR, Meister R, et al. Functional tissue engineering of autologous tunica albuginea: a possible graft for Peyronie's disease surgery[J]. Eur Urol, 2004, 45(6):781-786.
    [16] Leungwattanakij S, Pummangura N, Ratana-Olarn K. Penile enhancement using a porcine small intestinal submucosa graft in a rat model[J]. Int J Impot Res, 2006, 18(1):39-43.
    [17] Perovic SV, Byun JS, Scheplev P, et al. New perspectives of penile enhancement surgery: tissue engineering with biodegradable scaffolds[J]. Eur Urol 2006, 49(1):139-147.
    [18] Schultheiss D. Regenerative medicine in andrology: Tissue engineering and gene therapy as potential treatment options for penile deformations and erectile dysfunction[J]. Eur Urol, 2004, 46(2):162-169.
    [19] Wessells H, Williams SK. Endothelial cell transplantation into the corpus cavernosum: moving towards cell-based gene therapy[J]. J Urol 1999, 162(6):2162-2164.
    [20] Wessells H, Teal TH, Luttrell IP, et al. Effect of endothelial cell-based iNOS gene transfer on cavernosal eNOS expression and mouse erectile responses[J]. Int J Impot Res, 2006, 18(5):438-445.
    [21] Kim Y, de Miguel F, Usiene I, et al. Injection of skeletal muscle-derived cells into the penis improves erectile function[J]. Int J Impot Res, 2006, 18(4):329-334.
    [22] Chancellor MB, Tirney S, Mattes CE, et al. Nitric oxide synthase gene transfer for erectile dysfunction in a rat model[J]. BJU Int 2003, 91(7):691-696.
    [23] Bochinski D, Lin GT, Nunes L, et al. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury[J]. BJU Int, 2004, 94(6):904-909.
    [24] Deng W, Bivalacqua TJ, Chattergoon NN, et al. Adenoviral gene transfer of eNOS:high-level expression in ex vivo expanded marrow stromal cells[J]. Am J Physiol Cell Physiol, 2003, 285(5):C1322-1329.
    
    1. Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006,367:1241-1246.
    2. Chung SY. Bladder tissue-engineering: a new practical solution? Lancet, 2006,367:1215-1216.
    3. Sievert KD, Fandel T, Wefer J, et al. Collagen I:III ratio in canine heterologous bladder acellular matrix grafts. World J Urol, 2006,24:101-109.
    4. Brown AL, Ringuette MJ, Prestwich GD, et al. Effects of hyaluronan and SPARC on fibroproliferative events assessed in an in vitro bladder acellular matrix model. Biomaterials, 2006,27:3825-3835.
    5. Brown AL, Brook-Allred TT, Waddell JE, et al. Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions. Biomaterials,2005,26:529-543.
    6. Farhat WA, Chen J, Sherman C, et al. Impact of fibrin glue and urinary bladder cell spraying on the in-vivo acellular matrix cellularization: a porcine pilot study. Can J Urol, 2006,13:3000-3008.
    7.王涌泉,甘秀国,安瑞华,等.膀胱无细胞基质移植物重建同种异体兔膀胱的研究.中华外科杂志, 2005,43:1219-1222.
    8. Youssif M, Shiina H, Urakami S, et al. Effect of vascular endothelial growth factor on regeneration of bladder acellular matrix graft: histologic and functional evaluation. Urology, 2005,66:201-207.
    9. Kanematsu A, Yamamoto S, Iwai-Kanai E, et al. Induction of smooth muscle cell-like phenotype in marrow-derived cells among regenerating urinary bladder smooth muscle cells. Am J Pathol, 2005,166:565-573.
    10. Moriya K, Kakizaki H, Watanabe S, et al. Mesenchymal cells infiltrating a bladder acellular matrix gradually lose smooth muscle characteristics in intraperitoneally regenerated urothelial lining tissue in rats. BJU Int, 2005,96:152-157.
    11. Long RA, Nagatomi J, Chancellor MB, et al. The role of MMP-I up-regulation in the increased compliance in muscle-derived stem cell-seeded small intestinal submucosa. Biomaterials, 2006,27:2398-2404.
    12. Lu SH, Sacks MS, Chung SY, et al. Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials, 2005,26:443-449.
    13. Danielsson C, Ruault S, Basset-Dardare A, et al. Modified collagen fleece, a scaffold for transplantation of human bladder smooth muscle cells. Biomaterials, 2006,27:1054-1060.
    14. Lai JY, Chang PY, Lin JN Bladder autoaugmentation using various biodegradable scaffolds seeded with autologous smooth muscle cells in a rabbit model. J Pediatr Surg, 2005,40:1869-1873.
    15. Pattison MA, Wurster S, Webster TJ, et al. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials, 2005,26:2491-2500.
    16. Wunsch L, Ehlers EM, Russlies M Matrix testing for urothelial tissue engineering. Eur JPediatr Surg, 2005,15:164-169.
    17. Kurzrock EA, Lieu DK, deGraffenried LA, et al. Rat urothelium: improved techniques for serial cultivation, expansion, freezing and reconstitution onto acellular matrix. J Urol, 2005,173:281-285.
    18. Drewa T, Sir J, Czajkowski R, et al. Scaffold seeded with cells is essential in urothelium regeneration and tissue remodeling in vivo after bladder augmentation using in vitro engineered graft. Transplant Proc, 2006,38:133-135.
    19. Zhang Y, Lin HK, Frimberger D, et al. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int, 2005,96:1120-1125.
    20. Chung SY, Krivorov NP, Rausei V, et al. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol, 2005,174:353-359.
    21. Frimberger D, Morales N, Shamblott M, et al. Human embryoid body-derived stem cells in bladder regeneration using rodent model. Urology, 2005,65:827-832.
    22. Frimberger D, Morales N, Gearhart JD, et al. Human embryoid body-derived stem cells in tissue engineering-enhanced migration in co-culture with bladder smooth muscle and urothelium. Urology, 2006,67:1298-1303.
    23. Lakshmanan Y, Frimberger D, Gearhart JD, et al. Human embryoid body-derived stem cells in co-culture with bladder smooth muscle and urothelium. Urology, 2005,65:821-826.
    24. Schultheiss D, Gabouev AI, Cebotari S, et al. Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model. J Urol, 2005,173:276-280.
    25. Brehmer B, Rohrmann D, Rau G, et al. Bladder wall replacement by tissue engineering and autologous keratinocytes in minipigs. BJU Int, 2006,97:829-836.
    26. Hattori K, Joraku A, Miyagawa T, et al. Bladder reconstruction using a collagen patch prefabricated within the omentum. Int J Urol, 2006,13:529-537.
    1. Alivizatos G, Skolarikos A.Incontinence and erectile dysfunction following radical prostatectomy: a review[J]. ScientificWorldJournal, 2005, 5:747-758.
    2. Quinlan DM, Nelson RJ, Walsh PC.Cavernous nerve grafts restore erectile function in denervated rats[J]. J Urol,1991, 145(2):380-383.
    3. Ball RA, Richie JP, Vickers MA, Jr. Microsurgical nerve graft repair of the ablatedcavernosal nerves in the rat[J]. J Surg Res,1992, 53(3):280-286.
    4. May F, Vroemen M, Matiasek K, et al.Nerve replacement strategies for cavernous nerves[J]. Eur Urol,2005, 48(3):372-378.
    5. Burgers JK, Nelson RJ, Quinlan DM, et al.Nerve growth factor, nerve grafts and amniotic membrane grafts restore erectile function in rats[J]. J Urol,1991, 146(2):463-468.
    6.胡万里,胡礼泉,李世文,等.自体静脉移植与胰岛素样生长因子-1重建勃起反射通路的实验研究.中华医学杂志[J], 2004, 84(15):1280-1282.
    7.胡礼泉,苏新军,李世文,等.神经套管术重建勃起功能的动物实验研究.中华泌尿外科杂志[J], 2003,24: 706-709.
    8. May F, Weidner N, Matiasek K, et al.Schwann cell seeded guidance tubes restore erectile function after ablation of cavernous nerves in rats[J]. J Urol,2004, 172(1):374-377.
    9. Hisasue S, Kato R, Sato Y, et al.Cavernous nerve reconstruction with a biodegradable conduit graft and collagen sponge in the rat[J]. J Urol,2005, 173(1):286-291.
    10. Kim ED, Nath R, Kadmon D, et al.Bilateral nerve graft during radical retropubic prostatectomy: 1-year followup[J]. J Urol,2001, 165(6 Pt 1):1950-1956.
    11. Chang DW, Wood CG, Kroll SS, et al.Cavernous nerve reconstruction to preserve erectile function following non-nerve-sparing radical retropubic prostatectomy: a prospective study[J]. Plast Reconstr Surg,2003, 111(3):1174-1181.
    12. Anastasiadis AG, Benson MC, Rosenwasser MP, et al.Cavernous nerve graft reconstruction during radical prostatectomy or radical cystectomy: safe and technically feasible[J]. Prostate Cancer Prostatic Dis,2003, 6(1):56-60.
    13. Walsh PC.Nerve grafts are rarely necessary and are unlikely to improve sexual function in men undergoing anatomic radical prostatectomy[J]. Urology,2001, 57(6):1020-1024.
    14. Kim ED, Scardino PT, Hampel O, et al.Interposition of sural nerve restores function of cavernous nerves resected during radical prostatectomy[J]. J Urol,1999, 161(1):188-192.
    15. Kim ED, Nath R, Slawin KM, et al.Bilateral nerve grafting during radical retropubic prostatectomy: extended follow-up[J]. Urology,2001, 58(6):983-987.
    16. Takenaka A, Murakami G, Soga H, et al.Anatomical analysis of the neurovascular bundle supplying penile cavernous tissue to ensure a reliable nerve graft after radicalprostatectomy[J]. J Urol,2004, 172(3):1032-1035.
    17. Turk IA, Deger S, Morgan WR, et al.Sural nerve graft during laparoscopic radical prostatectomy. Initial experience[J]. Urol Oncol,2002, 7(5):191-194.
    18. Kaouk JH, Desai MM, Abreu SC, et al.Robotic assisted laparoscopic sural nerve grafting during radical prostatectomy: initial experience[J]. J Urol,2003, 170(3):909-912.
    19. Porpiglia F, Ragni F, Terrone C, et al.Is laparoscopic unilateral sural nerve grafting during radical prostatectomy effective in retaining sexual potency? [J]. BJU Int,2005, 95(9):1267-1271.
    20.崔殿生,胡礼泉,李世文,等.腓肠神经移植重建海绵体神经保留勃起功能的实验研究.中华男科学杂志[J], 2004, 10:330-333.
    21. El-Sakka AI, Hassan MU, Selph C, et al.Effect of cavernous nerve freezing on protein and gene expression of nitric oxide synthase in the rat penis and pelvic ganglia[J]. J Urol,1998, 160(6 Pt 1):2245-2252.
    22. Ball RA, Lipton SA, Dreyer EB, et al.Entubulization repair of severed cavernous nerves in the rat resulting in return of erectile function[J]. J Urol,1992, 148(1):211-215.
    23. Bakircioglu ME, Lin CS, Fan P, et al.The effect of adeno-associated virus mediated brain derived neurotrophic factor in an animal model of neurogenic impotence[J]. J Urol,2001, 165(6 Pt 1):2103-2109.
    24. Burnett AL, Becker RE.Immunophilin ligands promote penile neurogenesis and erection recovery after cavernous nerve injury[J]. J Urol,2004, 171(1):495-500.
    25. Sezen SF, Blackshaw S, Steiner JP, et al.FK506 binding protein 12 is expressed in rat penile innervation and upregulated after cavernous nerve injury[J]. Int J Impot Res,2002, 14(6):506-512.
    26.孙磊,戴玉田,黄兴,等.FK506对大鼠阴茎海绵体神经再生影响的研究[J].中华男科学杂志, 2005,11(2):136-139.
    27. Klein LT, Miller MI, Buttyan R, et al.Apoptosis in the rat penis after penile denervation[J]. J Urol,1997, 158(2):626-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700