用户名: 密码: 验证码:
疏水缔合阳离子型聚丙烯酰胺絮凝剂的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在聚合物驱油技术提高石油采收率的同时,也随之产生了大量的采油污水。聚驱采油污水中含有大量残余的聚合物,粘度大,乳化程度高。用油田现有的采油污水处理剂处理聚驱采油污水,出现了油水分离困难、出水含油率高、废水外排严重污染环境等问题。
     针对上述问题,本研究以丙烯酰胺(AM)、二甲基二烯丙基氯化铵(DMDAAC)、丙烯酸丁酯(BA)为原料,采用水溶液自由基胶束聚合法,合成得到丙烯酰胺-二甲基二烯丙基氯化铵.丙烯酸丁酯共聚物[P(AM-DMDAAC-BA)],并将其应用于油田含油废水的处理,以提高除油性能。
     本论文的主要研究内容及结论如下:
     (1)采用水溶液自由基胶束聚合方式,用复合引发剂引发聚合,得到了具备不同分子量、阳离子度和疏水单体含量的系列有机高分子絮凝剂—二甲基二烯丙基氯化铵-丙烯酰胺-丙烯酸丁酯三元共聚物[P(AM-DMDAAC-BA)]。在研制过程中,系统地考察了不同引发体系、引发体系中各成分的用量、引发剂用量、引发时间、聚合反应时间、聚合单体总质量分数、阳离子单体含量、疏水单体含量、表面活性剂用量等因素对聚合反应的影响。结果表明,使用由氧化还原体系与热分解引发剂组成的复合引发体系,可以提高反应的转化率和聚合物的特性粘度;在保持单体的总质量分数为30.0%、反应单体的物质的量配比为n(AM):n(DMDAAC):n(BA)=68.6:29.4:2.0的条件下,合成P(AM-DMDAAC-BA)的最佳条件为:引发剂、CTAB含量分别占单体总质量的0.15%和2.0%,引发体系中各成分质量比为m(Na_2S_2O_3):m(K_2S_2O_8):m(AIBN)=1.0:2.0:1.0,引发温度为30℃,聚合反应时间为6 h;合成过程中添加尿素能够明显缩短溶解时间,当尿素用量为反应单体质量的2.5%时,产品溶解时间缩短,极大改善了聚合物的溶解性能。
     (2)运用红外光谱仪、核磁共振谱仪、透射电镜、同步热分析仪等现代分析仪器对P(AM-DMDAAC-BA)进行了分析表征。结果表明,聚合物已生成,产品具有较好的热稳定性。
     (3)通过烧杯实验研究了疏水缔合阳离子型聚丙烯酰胺对含油废水的除油效果,考察了聚合物中阳离子度、疏水单体含量、特性粘度、投加量对含油废水除油效果的影响:并与其他不同类型的高分子絮凝剂的除油效果做了比较。结果表明,该产品对含油废水具有很好的除油效果;在投加量为50 mg/L、阳离子度为24.3%~52.8%、疏水单体的含量为2.0%左右、特性粘度为500~700 mL/g时,对含油废水具有较好的除油效果;当絮凝剂的阳离子度为24.3%、BA含量为2.0%、特性粘度为636 mL/g、投加量为50 mg/L时,除油效果最佳,除油率可达93.4%。P(AM-DMDAAC-BA)与非离子型聚丙烯酰胺、阴离子型聚丙烯酰胺、聚环氧氯丙烷胺、聚二甲基二烯丙基氯化铵4种有机高分子絮凝剂相比,在除油方面表现出良好的性能;与阳离子型聚丙烯酰胺相比,可减少污水处理成本。
     (4)将聚合物与常用的天然高分子助凝剂可溶性淀粉、无机絮凝剂硫酸铝分别配合使用,考察了其协同作用。结果表明,P(AM-DMDAAC-BA)与可溶性淀粉和硫酸铝配合使用时,均具有较好的协同作用,可以减少有机絮凝剂的用量,在保证较好的除油效果下降低了成本;与无机絮凝剂配合使用时,与单独使用无机絮凝剂相比,可以提高沉降速率,减少污泥量;采取先投加无机絮凝剂、后投加有机絮凝剂的投加方式,对含油废水的除油效果较好。
     综合结果表明,P(AM-DMDAAC-BA)具有良好的性能,是一种适宜于含油废水处理的高效的有机高分子絮凝剂。
With the applying of polymer flooding to increase oil production in many oilfields,large amount of wastewater,which is much more difficult to treat than that from water flooding,has been produced.The produced water from polymer flooding contains a quantity of residual hydrolyzed polyacrylamide.As a result,the wastewater is of high viscosity and emulsion stability.The present wastewater treatment agent in the oilfield fails to treat the wastewater from polymer flooding properly.Therefore,it is difficult for the oil-water separation,and serious environment pollution would also be caused if the wastewater was discharged to land surface.It has high application value and environment benefits to develop effective water treatment agent for the oil field wastewater.
     Considering the properties of oil field wastewater and the weakness in the oil field wastewater treatment,a series of hydrophobically associating cationic copolymers,namely,poly(AM-DMDAAC-BA),were synthesized with acrylamide (AM),dimethyldially- ammonium chloride(DMDAAC) and butylacrylate(BA) by the micellar free radical copolymerization technique.
     The main contents and results are following:
     (1) Copolymerization was initiated by a complex initiation system,which was composed of redox initiator(K_2S_2O_8-Na_2S_2O_3) and thermal decomposition initiator (azobisisobutyronitrile).The effects of synthesis conditions,such as various initiation systems,initiator concentration,initiation temperature,polymerization time, monomers concentration,monomer ratio and surfactant concentration on properties of polymers were studied.The results showed that conversion and molecular weight of polymer could be raised with the use of the complex initiation system.The optimum conditions of copolymerization were as follows:the initiation temperature was 30℃; polymerization time was 6 h;monomers concentration was 30.0%;molar ratio of AM, DMDAAC and BA was 68.6,29.4 and 2.0,respectively;percentages of initiator and surfactant by weight in the monomers were 0.15%and 2.0%,respectively; compositions ratio in the initiation system was m(Na_2S_2O_3):m(K_2S_2O_8): m(AIBN)=1.0:2.0:1.0.Dissolution time was shorten by the addition of urea.When the percentage of urea by weight in the monomers was 2.5%,the solubility of polymer could be improved effectively.
     (2) IR,NMR,TEM and DSC-TGA were used to characterize the polymer.The results proved the formation of hydrophobically associating cationic copolymers,and showed that the polymer had good thermo-stability.
     (3) Deoiling property of P(AM-DMDAAC-BA) was studied by jar tests.The effects of cationic degree,hydrophobic group content,intrinsic viscosity,flocculant dosage on oil removal rate were studied.The results showed that,the a good deoiling effect could be obtained when the cationic degree,hydrophobic group content and intrinsic viscosity of flocculant were 24.3~52.8%,2.0%and 500~700 mL/g, respectively.The best oil removal rate was 93.4%when cationic degree was 24.3%, hydrophobic group content was 2.0%,intrinsic viscosity was 636 mL/g and flocculant dosage was 50 mg/L.The deoiling effect was superior to other traditional organic polymer flocculants including PAM,APAM,EPI-DMA and PDMDAAC.It could reduce the water treatment cost compared with CPAM.
     (4) Combining P(AM-DMDAAC-BA) with natural polymer coagulator(soluble starch) or inorganic flocculant(Al_2SO_4) in the treatment of oil field wastewater were applied to investigate the synergistic effect of different flocculants.The result indicated that the effect of oil removal by using combining flocculants could even be better than that of P(AM-DMDAAC-BA) alone,and the amount of P(AM-DMDAAC-BA) could be reduced.And also,settlement velocity could be accelerated and the amount of sludge was smaller than using inorganic flocculant alone.To achieve superior deoiling effect,the inorganic flocculant should be added before the organic flocculant.
     The results above showed that,P(AM-DMDAAC-BA) exhibited good performance of coagulation.It was suitable for the treatment of oil field wastewater.
引文
[1]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社,2004:1-14.
    [2]王启民.聚合物驱油技术的实践与认识[J].大庆石油地质与开发,1999,18(4):1-5.
    [3]卢磊,高宝玉,岳钦艳,等.油田聚合物驱采出污水絮凝过程研究[J].环境科学,2007,28(4):761-765.
    [4]陈国华.水体油污染治理[M].北京:化学工业出版社,2004:56-62.
    [5]苏燕.活化半焦处理含油废水的研究[D].青岛:中国海洋大学,2007.
    [6]邹启贤,陆正禹.油田废水处理综述[J].工业水处理,2001,21(8):1-3.
    [7]David L Greene Janet L et al.Have we run out of oil yet? Oil peaking analysis from an optimist's perspective[J].Energy Policy,2006,(34):515-531.
    [8]张鸿郭,周少奇,杨志泉,等.含油废水处理研究[J].环境技术,2004,(1):18-22.
    [9]桑义敏,李发生,何绪文,等.含油废水性质及其处理技术[J].化工环保,2004,24:94-97.
    [10]赵海荣.旋流膜分离器处理低浓度含油废水的研究[D].南京:南京理工大学,2007.
    [11]刘德绪.油田污水处理工程[M].北京:石油工业出版社,2001:13-58.
    [12]王国贵,等.含油废水处理技术的应用现状[J].环境科学与技术,1997,(3):32-38.
    [13]陈国华.环境污染治理方法原理与工艺[M].北京:化学工业出版社,2003:90-111.
    [14]邓述波,周抚生,余刚,等.油田采出水的特性及处理技术[J].工业水处理,2000,20(7):10-12.
    [15]冯家潮,赵健森.聚合物驱采出液油水分离特性[J].国外油田工程,1994,(4):125.
    [16]张伟,徐文杰.聚合物驱采出水的处理和利用[J].石油规划设计,2000, 1(3):13-15.
    [17]詹亚力,杜娜,郭绍辉.我国聚合物驱采出水处理方法研究进展[J].油气田环境保护,2003,13(1):19-23.
    [18]陆柱.油田水处理技术[M].北京:石油化工出版社,1990.
    [19]唐琼,张新申,李正山.油田含油污水处理降凝剂的研究与应用[J].化学研究与应用,2002,14(6):641-644.
    [20]温青,李凯峰,矫移山.油田含聚污水处理方法研究[J].应用科技,2002,29(8):64-66.
    [21]卢磊.油田聚合物驱采油污水处理药剂及工艺研究[D].济南:山东大学,2008.
    [22]李松田.含油废水中混凝剂的选择[J].平顶山师专学报,1997,11(1):2-7.
    [23]赵雅芝.混凝法处理含油废水的研究[J].环境保护科学,1996,22(1):58-60.
    [24]马喜平,刘雪娟.用混凝剂处理油田污水的应用现状及展望[J].钻采工艺,2004,24(1):79-81.
    [25]Cohen J.M.,Hannah S.A.In the 3rd water quality and treatment[M].New York,1971,66-122.
    [26]姜恒,宫红,等.含油污水气浮处理药剂的应用与研究进展[J].工业水处理,2001,21(5):5-8.
    [27]李凡修,陈武.聚合氯化铝制备技术的研究现状和进展[J].工业水处理,2003,23(3):5-8.
    [28]张立山,张玉芬.絮凝法处理油田废水的研究及应用现状[J].河北工业科技,2005,22(6):361-369.
    [29]李俊梅.聚硫氯化铝絮凝效果及在水处理中的应用[J].化工环保,1998,18(1):7-10.
    [30]吴宇峰,周坤坪.高效絮凝剂聚合氯化硫酸铁的制备及其混凝效果的研究[J].工业水处理,2000,20(10):24-26.
    [31]吴早春,胡勇有.新型混凝剂聚磷氯化铝在水处理中的特性[J].工业水处 理,1996,16(5):15-17.
    [32]关晓辉,刘海宁,等.新型高效絮凝剂生物聚合硫酸铁的制备及性能研究[J].环境污染治理技术与设备,2004,5(1):69-71.
    [33]李爱阳.PAES絮凝剂处理含油废水[J].中国井矿盐,2004,35(1):35-37.
    [34]郑怀礼,舒型武,等.含磷复合絮凝剂的应用研究[J].水处理技术,2001,27(5):274-276.
    [35]李大鹏,樊庆锌,等.油田聚合物采油废水混凝处理方法的试验研究[J].环境科学学报,2000,20:64-68.
    [36]李玉江,杨波.复合混凝剂PAFS处理油田三次采油废水[J].山东化工,2004,33(1):9-11.
    [37]刘国荣,徐群,等.油田含聚污水絮凝处理技术研究[J].Fluid Machinery,2005,33(10):8-11.
    [38]杨建平,赵京波,张兴英.丙烯酰胺-丙烯酸钠共聚物絮凝剂的合成及性能研究[J].石油化工,2005,34(4):338-342.
    [39]杨维本,李爱民,张全兴,等.含油废水处理技术研究进展[J].离子交换与吸附,2004,20(5):475-480.
    [40]彭晓春,彭晓宏,赵建青,等.改性聚酰胺-胺阳离子树状聚合物的制备、表征及其絮凝脱水性能的研究[J].石油化工,2005,34(10):986-089.
    [41]赵谨.国内有机高分子絮凝剂的开发及应用[J].工业水处理,2003,23(3):9-12.
    [42]廷伟.胜利油田开发使用的回注污水絮凝剂和浮选剂[J].油田化学,1998,15(4):382-384.
    [43]高宝玉,卢磊,等.利用新复合引发体系合成P(DMDAAC-AM)共聚物[J].环境化学,2005,24(2):162-167.
    [44]Miggzhu Liu.[J]J.Polym Sci.PartA,1993,31:3181-3186
    [45]Hiroyuki Kage,et al.The Canadian journal of Chem[J].Eng.October 1988,66:146-149.
    [46]曾文江,鞠耐霜.阳离子型聚丙烯酰胺乳液的工业开发研究[J].精细与专用化学品,2001,9(2):20-21.
    [47]杨福廷.疏水缔合型聚丙烯酰胺共聚物在水处理中的应用[J].精细化工,2001,18(3):144-147.
    [48]唐善法.DMDAAC/AM絮凝剂的合成与性能评价[J].精细石油化工进展,2003,4(2):26-28.
    [49]王光华.速溶聚丙烯酰胺的制备与应用[J].应用化工,2004,33(4):57-59.
    [50]刘惠卿,盘英.ZDMC絮凝剂工业应用研究[J].石油化工环境保护,2003,26(1):17-22.
    [51]吴彬,邓皓.工业水处理絮凝剂的发展状况与前景[J].石油与天然气化工,1999,28(1):71-73.
    [52]刘芝玲,卞华松.有机絮凝剂PYM絮凝特性的研究[J].上海环境科学,2000,19(3):117-119.
    [53]韩晶,张小燕,余中.我国水处理剂的研究与应用现状展望[J].精细石油化工,2001,18(3):38-42.
    [54]吴敏,周钰明,薛学佳.天然植物单宁季铵盐改性絮凝剂的制备和性能评价[J].环境科学与技术,2002,25(6):22-23.
    [55]郭玲香,郝晓红.PQAAM聚合物的制备及其絮凝性能研究[J].中国矿业,2002,11(5):47-49.
    [56]夏畅斌.新型阳离子絮凝剂的制备及其应用[J].水处理技术,2000,26(6):343-347.
    [57]赵华章,高宝玉.二甲基二烯丙基氯化铵(DMDAAC)聚合物的研究进展[J].工业水处理,1999,19(6):1-4.
    [58]蔡伟民,叶筠.壳聚糖季铵盐的合成及其絮凝性能[J].环境污染与防治,1999,21(4):1-4.
    [59]王凤艳,杨建华.聚合物电解质在石油化工废水处理中的应用[J].工业水处理,1996,16(5):18-19.
    [60]蔡清海,张光林.淀粉改性阳离子型絮凝剂的合成[J].化学工程师,2002,93(6):3-4.
    [61]尹华,彭辉.天然高分子改性阳离子型絮凝剂的开发与应用[J].工业水处 理,1998,18(5):1-3.
    [62]邢佶勇.壳聚糖絮凝剂制备工艺优化及废液处理[J].辽宁化工,2004,33(9):507-508.
    [63]田玲,王九思,李玉金.水处理絮凝剂的絮凝原理及其研究进展[J].甘肃教育学院学报,2004,18(1):54-57.
    [64]李淑红,俞敦义,罗逸,等.淀粉改性絮凝剂的制备及其在高矿化度油田水处理中的应用[J].水处理技术,2002,28(4):220-223.
    [65]张立峰.天然有机高分子及其改性产品在污水处理中的应用[J].化工新型材料,2002,30(9):35-38.
    [66]冯云生,赵欣,董国文.马铃薯淀粉改性阳离子絮凝剂的制备及其絮凝效果[J].化工时刊,2002,16(10):39-41.
    [67]陈卓,范宏.天然改性淀粉絮凝剂的制备及性能[J].西南师范大学学报(自然科学版),2002,27(4):528-531.
    [68]邱广明,邱广亮.淀粉与丙烯酰胺接枝共聚物的合成及絮凝助留性能[J].精细化工,2001,18(3):162-164.
    [69]王琛,李硕文,王惠丰,等.阳离子淀粉絮凝剂的合成及应用[J].精细石油化工进展,2001,2(8):13-16.
    [70]严文瑶,钱岑.阳离子型改性絮凝剂的制备及在废水处理中的应用[J].江苏石油化工学院学报,2001,13(4):7-10.
    [71]李峰,李济吾.水处理絮凝剂的研究进展[J].中国环保产业,2004,75(10):12-13
    [72]YAO K J.Synthesis of starch-g-poly(acryamide-Co-sodium allysulfonate) and its application of flocculant to kaolin suspension[J].Journal of Applied Polymer Science,1992,45:349-353.
    [73]胡勇有,高健.微生物絮凝剂的研究与应用进展[J].环境科学进展,1999,7(4):24-29.
    [74]鲁玉菱,翟素军.微生物絮凝剂的研究进展[J].山东环境,1997,(6):12-16.
    [75]TAKAHASH H.DNA as a flocculation factor in pseudomonas sp[J].Agricultural Biologic Chemistry,1981,45:2869-2876.
    [76]Strauss U P,Jackson E G.Polysoaps.I.Viscosity and solubilization studies on an n-dodecyl bromide addition compound of poly-2-vinylpyridine[J].J Polym Sci,1951,6(5):649-659.
    [77]Dubin P,Strauss U P.Hydrophobic hypercoiling in copolymers of maleic acid and alkyl vinyl ethers[J].J Phys Chem,1967,71(8):2757-2759.
    [78]Evani S,Rose G D.Water soluble hydrophobic association polymers.Polymer Material Science Engineering[J].1987,7:477-481.
    [79]Bock J,Siano D B,Schulz D N.Enhanced oil recovery with hydrophobically associating polymer containing N-vinyl pyrrolidone functionality.USP 4709759.
    [80]Landoll L M.Method for enhanced oil recovery.South Africa Pat.ZA 8304193.
    [81]Yamamoto H,Tomatsu I,Hashidzume A,et al.Associative Properties in Water of Copolymers of Sodium 2-(Acrylamido)-2-Methylpropanesulfonate and Methacrylamides Substituted with Alkyl Groups of Varying Lengths.Macromolecules 2000 33(21):7852-7861.
    [82]Akiyoshi K,Kang E C,Kurumada S,et al.Controlled Association of Amphiphilic Polymers in Water:Thermosensitive Nanoparticles Formed by Self-Assembly of Hydrophobically Modified Pullulans and Poly(N-Isopropylacrylamides)[J].Macromolecules,2000,33(9):3244-3249.
    [83]刘祥义,徐晓军.疏水缔合淀粉的制备及其对含油污水絮凝研究.石油炼制与化工2006,37(1):51-54.
    [84]陈琼,任海静,张珊珊,等.疏水改性缔合聚合物对含油废水的处理研究与絮凝作用机理.重型机械,2007,(5):18-21.
    [85]Taylor K C,Nasr Ei Din H A.Water-soluble hydrophobically associating polymers for improved oil recovery:A literature review[J].J.Petrol.Sci.Eng.,1998,19(3):265-280.
    [86]刘祥义,徐晓军,杨宇明.疏水缔合水溶性聚合物的合成与表征[J],弹性体,2005,15(6):64-68.
    [87]Ezzell S A,McCormick C L.Water-soluble copolymers.40.Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides[J].Macromolecules,1992,25(7):1887-1895.
    [88]Candau F,Selb J.Hydrophobically-modified polyacrylamides prepared by micellar polymerization[J].Adv Colloid Inter Sci,1999,79:149-172.
    [89]Vlint P L,Bock J B,et al.Properties of hydrophobically associating polyacrylamide:influence of the method of synthesis[J].Polymer Prepr,1990,31(2):67.
    [90]Hill A,Candau F,Selb J.Properties of hydrophobically associating polyacrylamides:influence of the method of synthesis[J].Macromolecules,1993,26(17):4521-4532.
    [91]Yahaya G O,Ahdab A A,et al.Solution Behavior of Hydrophobically Associating Water Soluble Block Copolymers of Acrylamide and N-Benzylacrylamide[J].Polymer,2001,42:3363-3372.
    [92]McCormick C L,Nonaka T,et al.Water soluble copolymers:Synthesis and aqueous solution behavior of associative acrylamide / N alkylacrylamide copolymers[J].Polymer PrePr,1988,29:731-735.
    [93]钟传蓉,黄荣华,等.疏水缔合改性三元丙烯酰胺共聚物的合成[J].化工学报,2006,57(10):2475-2480.
    [94]王东贤,王琳,等.疏水缔合聚合物的合成、表征及其溶液性能研究[J].胶体与聚合物,2005,23(2):19-21.
    [95]崔平,马俊涛,等.疏水缔合水溶性共聚物P(AM/BBAM)溶液性质研究[J].油田化学,2001,18(2):159-161.
    [96]岳钦艳,赵华章,高宝玉.有机高分子絮凝剂P(DMDAAC-VTMS)和P(DMDAAC-AM-VTMS)的合成及絮凝性能研究[J].工业水处理,2001,21(3):16-20.
    [97]陈鸿,张熙,梁兵.疏水改性阳离子型高分子絮凝剂P(AM-DMDAAC-BA)的合成与性能研究[J].高分子材料科学与工程,2003,19(2):97-100.
    [98]钟传蓉,何文琼,赖立,等.疏水改性阳离子型丙烯酰胺共聚物的微结构与絮凝性能[J].化工学报,2007,58(8):2138-2143.
    [99]张跃军,顾学芳.二甲基二烯丙基氯化铵与丙烯酰胺共聚物的研究进展[J]. 精细化工,2002,19(9):521-527.
    [100]李春晓,岳钦艳,卢磊,等.疏水缔合阳离子型聚丙烯酰胺的合成与应用[J].山东大学学报(工学版),2008,38(6):99-104.
    [101]岳钦艳,李春晓,高宝玉,等.疏水缔合阳离子型聚丙烯酰胺絮凝剂的制备及其对含油废水的除油效果[J].石油化工,2009,38(2):171-175.
    [102]李刚辉,沈一丁,李付萱,等.氟碳改性疏水缔合型阳离子聚丙烯酰胺的特性黏数及絮凝作用[J].石油化工,2007,36(5):492-496.
    [103]Biggs S,Hill A,et al.Copolymerization of acrylamide and an hdydrophobic monomer in an aqueous micellar medium:effect of the surfactant on the copolymer microstructure[J].The Journal of Physical Chemistry,1992,96(3):1505-1511.
    [104]常青.二甲基二烯丙基氯化铵-丙烯酰胺共聚物的研究[J].兰州铁道学院学报(自然科学版),2000,19(4):48-50.
    [105]方道斌,郭睿威,哈润华.丙烯酰胺聚合物[M].北京:化学工业出版社,2006:153.
    [106]潘祖仁.高分子化学[M].北京:化学工业出版社,1986:31-36.
    [107]潘祖仁,于石璋.自由基聚合[M].北京:化学工业出版社,1983:36-42.
    [108]孙艳萍.超高相对分子质量阳离子聚丙烯酞胺絮凝剂的合成研究[D].大庆:大庆石油学院,2004.
    [109]彭南.生产高分子质量聚丙烯酰胺工艺条件探索[J].石油化工高等学校学报,1996,9(2):25-28.
    [110]赵松梅,刘昆元.二甲基二烯丙基氯化铵/丙烯酰胺共聚物的合成[J].北京化工大学学报,2005,32(4):29-32.
    [111]Volpert E,Selb J,Candau F.Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide[J].Polymer,1998,39(5):1025-1033.
    [112]季鸿渐,孙占维,张万喜,等.丙烯酰胺水溶液聚合--添加Na_2CO_3制取高分子量阴离子型速溶聚丙烯酰胺的研究[J].高分子学报,1994,(5):559-564.
    [113]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989:38-39.
    [114]荣国斌.波谱数据表--有机化合物的结构解析[M].上海:华东理工大学出版社,2002:221-226.
    [115]栾兆坤,宇振东.高分子絮凝剂的絮凝机理及其应用.环境污染治理技术与设备,1981,(3):44-57.
    [116]于尔捷,陈浩,姜安玺.阳离子型有机絮凝剂处理含油乳化废水的研究[J].工业用水与废水,2002,33(5):31-32.
    [117]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999.206-212.
    [118]于洸,徐文国,周贵忠,等.新型高分子絮凝剂处理含油废水的研究.北京理工大学学报,2003,24(2):260-264.
    [119]赵立志,杜国勇,冯英,等.水处理中的无机混凝剂与有机絮凝剂的协同作用[J].化工时刊,2005,19(1):21-25.
    [120]赵树发,赵立群,戴继伟,等.无机/有机高分子复合絮凝剂处理含油废水[J].环境保护科学,2006,32(5):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700